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Olga Štěpánková, Igor Vajda, Pavel Źıtek,
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COUNTABLE EXTENSION OF TRIANGULAR NORMS
AND THEIR APPLICATIONS TO THE FIXED POINT
THEORY IN PROBABILISTIC METRIC SPACES

Olga Hadžić , Endre Pap and Mirko Budinčević

In this paper a fixed point theorem for a probabilistic q-contraction f : S → S, where
(S,F , T ) is a complete Menger space, F satisfies a grow condition, and T is a g-convergent
t-norm (not necessarily T ≥ TL) is proved. There is proved also a second fixed point
theorem for mappings f : S → S, where (S,F , T ) is a complete Menger space, F satisfy a
weaker condition than in [13], and T belongs to some subclasses of Dombi, Aczél–Alsina,
and Sugeno–Weber families of t-norms. An application to random operator equations is
obtained.

1. INTRODUCTION

The origin of triangular norms was in the theory of probabilistic metric spaces, in
the work K. Menger [9], see [4, 7, 14]. It turns out that t-norms and related t-
conorms are crucial operations in several fields, e.g., in fuzzy sets, fuzzy logics (see
[7]) and their applications, but also, among other fields, in the theory of generalized
measures [7, 11, 17] and in nonlinear differential and difference equations [11].

We present in this paper some results on t-norms which are closely related to the
fixed point theory in probabilistic metric spaces, see [4]. The first fixed point theorem
in probabilistic metric spaces was proved by Sehgal and Bharucha-Reid [15] for
mappings f : S → S, where (S,F , TM) is a Menger space, where TM = min . Further
development of the fixed point theory in a more general Menger space (S,F , T ) was
connected with investigations of the structure of the t-norm T. Very soon the problem
was in some sense completely solved. Namely, if we restrict ourselves to complete
Menger spaces (S,F , T ), where T is a continuous t-norm, then any probabilistic
q-contraction f : S → S has a fixed point if and only if the t-norm T is of H-type,
see [4].

We investigate in this paper the countable extension of t-norms and we introduce
a new notion: the geometrically convergent (briefly g-convergent) t-norm, which is
closely related to the fixed point property. We prove that t-norms of H-type and
some subclasses of Dombi, Aczél–Alsina, and Sugeno–Weber families of t-norms are
geometrically convergent. We prove also some practical criterions for the geometri-
cally convergent t-norms.
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A new approach to the fixed point theory in probabilistic metric spaces is given
in Tardiff’s paper [16], where some additional growth conditions for the mapping
F : S × S → D+ are assumed, and T ≥ TL. V. Radu [13] introduced a stronger
growth condition for F than in Tardiff’s paper (under the condition T ≥ TL), which
enables him to define a metric. By metric approach an estimation of the convergence
with respect to the solution is obtained, see [4].

We prove in this paper a fixed point theorem for a probabilistic q-contraction
f : S → S, where (S,F , T ) is a complete Menger space, F satisfies Radu’s condition,
and T is a g-convergent t-norm (not necessarily T ≥ TL). We prove a second fixed
point theorem for mappings f : S → S, where (S,F , T ) is a complete Menger
space, F satisfy a weaker condition than in [13], and T belongs to some subclasses
of Dombi, Aczél–Alsina, and Sugeno–Weber families of t-norms. An application to
random operator equations is obtained.

Notions and notations can be found in [4, 7, 11, 14].

2. TRIANGULAR NORMS

A triangular norm (t-norm for short) is a binary operation on the unit interval [0, 1],
i.e., a function T : [0, 1]2 → [0, 1] which is commutative, associative, monotone and
T (x, 1) = x. t-conorm S is defined by S(x, y) = 1− T (1− x, 1− y).

If T is a t-norm, x ∈ [0, 1] and n ∈ N ∪ {0} then we shall write

x
(n)
T =





1 if n = 0,

T
(
x

(n−1)
T , x

)
otherwise.

Definition 1. A t-norm T is of H-type if the family (x(n)
T )n∈N is equicontinuous

at the point x = 1.

A trivial example of a t-norm of H-type is TM. There is a nontrivial example of
a t-norm T such that (x(n)

T )n∈N is an equicontinuous family at the point x = 1.

Example 2. Let T̄ be a continuous t-norm and let for every m ∈ N ∪ {0}:

Im = [1− 2−m, 1− 2−m−1].

If

T (x, y) = 1− 2−m + 2−m−1T̄ (2m+1(x− 1 + 2−m), 2m+1(y − 1 + 2−m))

for (x, y) ∈ Im × Im and T (x, y) = min(x, y) for (x, y) 6∈ ⋃
m∈N∪{0}

Im × Im then the

family (x(n)
T )n∈N is equicontinuous at the point x = 1, i.e., T is a t-norm of H-type.
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Proposition 3. ([4]) If a continuous t-norm T is Archimedean than it can not be
a t-norm of H-type.

A method of construction a new t-norm from a system of given t-norms is given
in the following theorem, see [4, 7].

Theorem 3. Let (Tk)k∈K be a family of t-norms and let ((αk, βk))k∈K be a family
of pairwise disjoint open subintervals of the unit interval [0, 1] (i.e., K is an at most
countable index set). Consider the linear transformations ϕk : [αk, βk] → [0, 1], k ∈
K given by

ϕk(u) =
u− αk

βk − αk
.

Then the function T : [0, 1]2 → [0, 1] defined by

T (x, y) =





ϕ−1
k (Tk(ϕk(x), ϕk(y))) if (x, y) ∈ (αk, βk)2 ,

min(x, y) otherwise,

is a triangular norm, which is called the ordinal sum of (Tk)k∈K and will be denoted
by T = (< (αk, βk), Tk >)k∈K .

The following proposition was proved in [12].

Proposition 5. A continuous t-norm T is of H-type if and only if
T = (< (αk, βk), Tk >)k∈K and supβk < 1 or supαk = 1.

Remark 6. If T = (< (αk, βk), Tk >)k∈K and supβk < 1 or supαk = 1, then
T is of H-type for any summands Tk (not only for continuous and Archimedean
summands Tk, k ∈ K, see [12]). Hence , if

T =
(
< (1− 2−k, 1− 2−k−1), T̄ >

)
k∈N∪{0}

we have supαk = sup(1− 2−k) = 1 (cf. Example 2).

For an arbitrary t-norm of H-type we have by [4] the following characterization.

Theorem 7. Let T be a t-norm. Then (i) and (ii) hold, where:
(i) Suppose that there exists a strictly increasing sequence (bn)n∈N from the

interval [0, 1) such that lim
n→∞

bn = 1 and T (bn, bn) = bn. Then T is of H-type.

(ii) If T is continuous and of H-type, then there exists a sequence (bn)n∈N as in
(i).

From the proof of the above theorem it follows that the condition of continuity
of whole sequence (x(n)

T )n∈N can be replaced by the condition that the function
δT (x) = T (x, x) (x ∈ [0, 1]) is right-continuous on an interval [b, 1) for b < 1.
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Theorem 8. Let T be a t-norm such that the function δT (x) = T (x, x) (x ∈ [0, 1])
is right-continuous on an interval [b, 1) for b < 1. Then T is a t-norm of H-type if
and only if there exists a sequence (bn)n∈N from the interval (0, 1) of idempotents of
T such that lim

n→∞
bn = 1.

In particular, for continuous t-norms the following characterization holds, [4].

Theorem 9. Let T be a continuous t-norm. Then the following are equivalent:
a) T is not of H-type.
b) There exist aT ∈ [0, 1) and a continuous strictly increasing and surjective

mapping ϕaT : [aT , 1] → [0, 1] such that

T (x, y) = ϕ−1
aT

(ϕaT
(x) ? ϕaT

(y)), for every x, y ≥ aT ,

where the operation ? is either TP or TL, where TP(x, y) = xy and TL(x, y) =
max(x+ y − 1, 0).

3. COUNTABLE EXTENSION OF t-NORMS

An arbitrary t-norm T can be extended (by associativity) in a unique way to an
n-ary operation taking for (x1, . . . , xn) ∈ [0, 1]n, n ∈ N, the values T (x1, . . . , xn)
which is defined by

0

T
i=1

xi = 1,
n

T
i=1

xi = T

(
n−1

T
i=1

xi, xn

)
= T (x1, . . . , xn).

Specially, we have TL(x1, . . . , xn) = max
(

n∑
i=1

xi − (n− 1), 0
)

and TM(x1, . . . , xn) =

min(x1, . . . , xn).
We can extend T to a countable infinitary operation taking for any sequence

(xn)n∈N from [0, 1] the values

∞
T
i=1

xi = lim
n→∞

n

T
i=1

xi. (1)

The limit on the right side of (1) exists since the sequence (
n

T
i=1

xi)n∈N is non-

increasing and bounded from below.

Remark 10. An alternative approach to the infinitary extension of t-norms can
be found in [10].

In the fixed point theory it is of interest to investigate the classes of t-norms T
and sequences (xn)n∈N from the interval [0, 1] such that lim

n→∞
xn = 1, and

lim
n→∞

∞
T
i=n

xi = lim
n→∞

∞
T
i=1

xn+i = 1. (2)
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In the classical case T = TP we have (TP)n
i=1 =

n∏
i=1

xi and for every sequence (xn)n∈N

from the interval [0, 1] with
∞∑

i=1

(1− xn) <∞ it follows that

lim
n→∞

(TP)∞i=n = lim
n→∞

∞∏

i=n

xi = 1.

Namely, it is well known that

∞∏

i=1

xi > 0 ⇔ lim
n→∞

∞∏

i=n

xi = 1 ⇔
∞∑

i=1

(1− xi) <∞.

The equivalence
∞∑

i=1

(1− xi) <∞ ⇔ lim
n→∞

∞
T
i=n

xi = 1 (3)

holds also for T ≥ TL. Indeed

(TL)n
i=1xi = max

(
n∑

i=1

xi − (n− 1), 0

)
= max

(
n∑

i=1

(xi − 1) + 1, 0

)
,

and therefore
∞∑

n=1
(1− xn) <∞ holds if and only if

lim
n→∞

(TL)∞i=nxi = max

(
lim

n→∞

∞∑

i=n

(xi − 1) + 1, 0

)
= 1.

For T ≥ TL we have
n

T
i=1

xi ≥ (TL)n
i=1xi and therefore for such a t-norm T the

implication
∞∑

i=1

(1− xi) <∞ ⇒ lim
n→∞

∞
T
i=n

xi = 1

holds.
We shall need some families of t-norms given in the following example.

Example 11. (i) The Dombi family of t-norms (TD
λ )λ∈[0,∞] is defined by

TD
λ (x, y) =





TD(x, y) if λ = 0,

TM(x, y) if λ = ∞,
1 +

((
1− x

x

)λ

+
(

1− y

y

)λ
)1/λ



−1

if λ ∈ (0,∞).
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(ii) The Schweizer–Sklar family of t-norms (TSS
λ )λ∈[−∞,∞] is defined by

TSS
λ (x, y) =





TM(x, y) if λ = −∞,

(xλ + yλ − 1)1/λ if λ ∈ (−∞, 0),

TP(x, y) if λ = 0,

(max(xλ + yλ − 1, 0))1/λ if λ ∈ (0,∞),

TD(x, y) if λ = ∞.

(iii) The Aczél–Alsina family of t-norms (TAA
λ )λ∈[0,∞] is defined by

TAA
λ (x, y) =





TD(x, y) if λ = 0,

TM(x, y) if λ = ∞,

e−(| log x|λ+| log y|λ)1/λ

if λ ∈ (0,∞).

(iv) The family (TSW
λ )λ∈[−1,+∞] of Sugeno–Weber t-norms is given by

TSW
λ (x, y) =





TD(x, y) if λ = −1,

TP(x, y) if λ = ∞,

max
(

0,
x+ y − 1 + λxy

1 + λ

)
otherwise.

The condition T ≥ TL is fulfilled by the families: 1. TSS
λ for λ ∈ [−∞, 1]; 2. TSW

λ

for λ ∈ [0,∞].
On the other side there exists a member of the family (TD

λ )λ∈(0,∞) which is
incomparable with TL, and there exists a member of the family (TAA

λ )λ∈(0,∞) which
is incomparable with TL.

We shall give some sufficient conditions for (2).

Proposition 12. Let (xn)n∈N be a sequence of numbers from [0, 1] such that
lim

n→∞
xn = 1 and t-norm T is of H-type. Then (2) holds.

P r o o f . Since t-norm T is of H-type for every λ ∈ (0, 1) there exists δ(λ) ∈ (0, 1)
such that

x ≥ δ(λ) ⇒
p

T
i=1

x > 1− λ

for every p ∈ N. Since lim
n→∞

xn = 1 there exists n0(λ) ∈ N such that xn ≥ δ(λ) for

every n ≥ n0(λ). Hence
p

T
i=1

xn+i ≥
p

T
i=1

δ(λ)

> 1− λ,
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for every n ≥ n0(λ) and every p ∈ N. This means that (2) holds. 2

Remark 13. If T is a t-norm such that there exists a sequence (xn)n∈N from the

interval (0, 1) such that lim
n→∞

xn = 1 and lim
n→∞

∞
T
i=n

xi = 1, then T is continuous at

the point (1, 1). Indeed, let λ ∈ (0, 1) be given. Then there exists n0(λ) ∈ N such
that

∞
T

i=n0(λ)

xi > 1− λ.

Since T (xn0(λ), xn0(λ)+1) ≥
∞
T

i=n0(λ)

xi > 1−λ we obtain that x, y ≥ max(xn0(λ), xn0(λ)+1)

implies T (x, y) > 1− λ.

For some families of t-norms we shall characterize the sequences (xn)n∈N from
(0, 1], which tend to 1 and for which (2) holds.

Lemma 14. Let T be a strict t-norm with an additive generator t, and the corre-
sponding multiplicative generator θ. Then we have

∞
T
i=1

xi = t−1

( ∞∑

i=1

t(xi)

)

or
∞
T
i=1

xi = θ−1

( ∞∏

i=1

θ(xi)

)
.

The preceding lemma and the continuity of the generators of strict t-norms imply
the following proposition.

Proposition 15. Let T be a strict t-norm with an additive generator t, and the
corresponding multiplicative generator θ. For a sequence (xn)n∈N from the interval
(0, 1) such that lim

n→∞
xn = 1 the condition

lim
n→∞

∞∑

i=n

t(xi) = 0,

or the condition

lim
n→∞

∞∏

i=n

θ(xi) = 1,

holds if and only if (2) is satisfied.
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Example 16. Let (TD
λ )λ∈(0,∞) be the Dombi family of t-norms and (xn)n∈N be a

sequence of elements from (0, 1] such that lim
n→∞

xn = 1. Then we have the following
equivalence:

∞∑

i=1

(
1− xi

xi

)λ

<∞ ⇔ lim
n→∞

(TD
λ )∞i=nxi = 1.

For a t-norm TD
λ , λ ∈ (0,∞), the multiplicative generator θDλ is given by

θDλ (x) = e−( 1−x
x )λ

and therefore with the property θDλ (1) = 1. Hence

∞∏

i=n

θDλ (xi) =
∞∏

i=n

e
−(

1−xi
xi

)λ

= e
−P∞

i=n(
1−xi

xi
)λ

,

and therefore the above equivalence follows by Proposition 15. Since lim
n→∞

xn = 1,
we have that (

1− xn

xn

)λ

∼ (1− xn)λ as n→∞.

Hence ∞∑
n=1

(1− xn)λ <∞ ⇔
∞∑

n=1

(
1− xn

xn

)λ

<∞,

which implies the equivalence

∞∑
n=1

(1− xn)λ <∞ ⇔ lim
n→∞

(TD
λ )∞i=nxi = 1.

Example 17. Let (TAA
λ )λ∈(0,∞) be the Aczél–Alsina family of t-norms given by

TAA
λ (x, y) = e−(| log x|λ+| log y|λ)1/λ

and (xn)n∈N be a sequence of elements from (0, 1] such that lim
n→∞

xn = 1. Then we
have the following equivalence

∞∑

i=1

(1− xi)λ <∞ ⇔ lim
n→∞

(
TAA

λ

)∞
i=n

xi = 1.

For a t-norm TAA
λ , λ ∈ (0,∞), the multiplicative generator θAA

λ is given by

θAA
λ (x) = e−(− log x)λ
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and therefore with the property θAA
λ (1) = 1. Hence

∞∏

i=n

θAA
λ (xi) =

∞∏

i=n

e−(− log xi)
λ

= e−
P∞

i=n(− log xi)
λ

.

Since lim
i→∞

xi = 1 and log xi ∼ xi − 1 as i → ∞ by Proposition 15. the above

equivalence follows.
For t-norms TSW

λ , λ ∈ (−1,∞] we have the following proposition.

Proposition 18. Let (xn)n∈N be a sequence from (0, 1) such that the series
∞∑

n=1
(1− xn) is convergent. Then for every λ ∈ (−1,∞]

lim
n→∞

(TSW
λ )∞i=nxi = 1.

P r o o f . An additive generator of TSW
λ for λ ∈ (−1, 0) is given by

tSW
λ (x) = − log

(
1 + λx

1 + λ

)
· 1
log(1 + λ)

.

We shall prove that for some n1 ∈ N and every p ∈ N
p∏

i=1

θSW
λ (xn+i−1) = exp

(
p∑

i=1

log
(

1 + λxn+i−1

1 + λ

)
· 1
log(1 + λ)

)
> e−1 (4)

for every n ≥ n1 since in this case

(TSW
λ )p

i=1xn+i−1 = (θSW
λ )−1

(
p∏

i=1

θSW
λ (xn+i−1)

)
. (5)

We have to prove that for some n1 ∈ N and every p ∈ N

− 1
log(1 + λ)

p∑

i=0

log
(

1 + λxn+i−1

1 + λ

)
< 1 for every n > n1, (6)

since (6) implies (4). From lim
n→∞

(1− xn) = 0 it follows that

log
(

1 +
λ

1 + λ
(xn − 1)

)
∼ λ

1 + λ
(xn − 1)

and therefore the series

− 1
log(1 + λ)

∞∑
n=1

log
(

1 +
λ

1 + λ
(xn − 1)

)
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is convergent. Hence it follows that there exists n1 ∈ N such that (4) holds for every
n ≥ n1 and every p ∈ N, and this implies (5).

The above proposition holds also for λ ≥ 0 since in this case TSW
λ ≥ TL. 2

It is of special interest for the fixed point theory in probabilistic metric spaces to
investigate condition (2) for a special sequence (1− qn)n∈N for q ∈ (0, 1).

Proposition 19. If for a t-norm T there exists q0 ∈ (0, 1) such that

lim
n→∞

∞
T
i=n

(1− qi
0) = 1, (7)

then

lim
n→∞

∞
T
i=n

(1− qi) = 1,

for every q ∈ (0, 1).

P r o o f . If q < q0 then 1− qn > 1− qn
0 for every n ∈ N and therefore (7) implies

lim
n→∞

∞
T
i=n

(1− qi) ≥ lim
n→∞

∞
T
i=n

(1− qi
0) = 1.

Now suppose that q > q0. First, we consider the special case when q2 = q0, i.e.,√
q0 = q > q0. Then

∞
T

i=2m

(1− qi) ≥ T

( ∞
T
i=m

(1− q2i),
∞
T
i=m

(1− q2i+1)
)

≥ T

( ∞
T
i=m

(1− qi
0),

∞
T
i=m

(1− qi
0)

)

and since T by Remark 13 is continuous at (1, 1) it follows that

lim
m→∞

∞
T

i=2m

(1− qi) ≥ T (1, 1) = 1.

Therefore

lim
m→∞

∞
T

i=2m+1

(1− qi) ≥ lim
m→∞

∞
T

i=2m

(1− qi) = 1.

Now we consider an arbitrary q > q0 from the interval (0, 1). Since for q > q0 there
exists m ∈ N such that q2

−m

0 > q we reduce this situation on the case of the m-
iterations of the preceding procedure. 2



Triangular Norms in the Fixed Point Theory 373

Definition 20. We say that a t-norm T is geometrically convergent (briefly g-
convergent, in [4] called q-convergent for some q ∈ (0, 1)) if

lim
n→∞

∞
T
i=n

(1− qi) = 1.

for every q ∈ (0, 1).

Since lim
n→∞

(1− qn) = 1 and
∞∑

n=1
(1− (1− qn))s <∞ for every s > 0 it follows that

all t-norms from the family

⋃

λ∈(0,∞)

{TD
λ }

⋃ ⋃

λ∈(0,∞)

{TAA
λ }

⋃
T H

⋃

λ∈(−1,∞]

{TSW
λ }

are g-convergent, where T H is the class of all t-norms of H-type.
The following example shows that not every strict t-norm is g-convergent.

Example 21. Let T be the strict t-norm with an additive generator t(x) =

− 1
log(1−x) . In this case the series

∞∑
i=1

t(1 − qi) for any q ∈ (0, 1) is not convergent

since
∞∑

i=1

t(1− qi) = −
∞∑

i=1

1
log(qi)

= −
∞∑

i=1

1
i log q

.

In the following two propositions we shall give sufficient conditions for a t-norm
T to be g-convergent.

Proposition 22. Let T and T1 be strict t-norms and t and t1 their additive
generators, respectively, and there exists b ∈ (0, 1) such that t(x) ≤ t1(x) for every
x ∈ (b, 1]. If T1 is g-convergent, then T is g-convergent.

P r o o f . Since T1 is g-convergent we have lim
n→∞

(T1)∞i=n(1− qi) = 1. Therefore

lim
n→∞

∞∑

i=n

t1(1− qi) = 0. (8)

Since there exists n0 ∈ N such that 1− qn0 ∈ (b, 1] we have by the condition of the
proposition that

t(1− qn) ≤ t1(1− qn) for every n ≥ n0.

Therefore, by (8) lim
n→∞

∞∑
i=n

t(1− qi) = 0, i.e., T is g-convergent. 2
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Proposition 23. Let T be a strict t-norm with a generator t which has a bounded
derivative on an interval (b, 1) for some b ∈ (0, 1). Then T is g-convergent.

P r o o f . By the Lagrange mean value theorem we have for every x ∈ (b, 1) that

t(x)− t(1) = t(x) = t′(ξ)(x− 1)

for some ξ ∈ (x, 1), and therefore

∞∑

i=i0

t(1− qi) ≤M

∞∑

i=i0

qi,

where M = supx∈(b,1) |t′(x)|, and 1− qi0 ∈ (b, 1). 2

Proposition 24. Let T be a t-norm and ψ : (0, 1] → [0,∞). If for some δ ∈ (0, 1)
and every x ∈ [0, 1], y ∈ [1− δ, 1]

|T (x, y)− T (x, 1)| ≤ ψ(y) (9)

then for every sequence (xn)n∈N from the interval [0, 1] such that lim
n→∞

xn = 1 and
∞∑

n=1
ψ(xn) <∞, relation (2) holds.

For the proof see [4].

Corollary 25. Let T and ψ be as in Proposition 25. If for some q ∈ (0, 1),

∞∑
n=1

ψ(1− qn) <∞

then T is g-convergent.

P r o o f . Since lim
n→∞

(1− qn) = 1 by Proposition 25 we obtain that

lim
n→∞

∞
T
i=n

(1− qn) = 1. 2

Example 26. Let α > 0, p > 1 and zα,p : (0, 1]× [0, 1] → [0,∞) be defined in the
following way:

zα,p(x, y) =





y − α

| ln(1− x)|p if (x, y) ∈ (0, 1)× [0, 1],

y if (x, y) ∈ {1} × [0, 1].

In this case the function zα,p is equal zero on the curve which connects the points
(1, 0) and (1− e−α1/p

, 1), where 1− e−α1/p

< 1.
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Let T be a t-norm such that T (x, y) ≥ zα,p(x, y) for every (x, y) ∈ [1 − δ, 1] ×
[0, 1]. Then for every (x, y) ∈ [0, 1]× [1− δ, 1)

|T (x, y)− T (x, 1)| = |T (y, x)− T (1, x)|
≤ |zα,p(y, x)− zα,p(1, x)|
≤ α

| ln(1− y)|p ,

i.e., (9) holds for

ψ(y) =





α

| ln(1− y)|p if y ∈ [1− δ, 1),

0 if y = 1.

Since
∞∑

n=1

ψ(1− qn) =
∞∑

n=1

α

| ln(qn)|p

=
∞∑

n=1

α

np| ln(q)|p <∞,

T is g-convergent.

4. FIXED POINT THEORY IN PROBABILISTIC METRIC SPACES

Let ∆+ be the set of all distribution functions F such that F (0) = 0 (F is a
nondecreasing, left continuous mapping from R into [0, 1] such that sup

x∈R
F (x) = 1).

The ordered pair (S,F) is said to be a probabilistic metric space if S is a nonempty
set and F : S×S → ∆+ (F(p, q) is written by Fp,q for every (p, q) ∈ S×S) satisfies
the following conditions:

1. Fu,v(x) = 1 for every x > 0 ⇒ u = v (u, v ∈ S).
2. Fu,v = Fv,u for every u, v ∈ S.
3. Fu,v(x) = 1 and Fv,w(y) = 1 ⇒ Fu,w(x + y) = 1 for u, v, w ∈ S and x, y ∈

R+ = [0,∞).

A Menger space is a triple (S,F , T ), where (S,F) is a probabilistic metric space,
T is a t-norm and the following inequality holds

Fu,v(x+ y) ≥ T (Fu,w(x), Fw,v(y)) for every u, v, w ∈ S and every x > 0, y > 0.

The (ε, λ)-topology in S is introduced by the family of neighbourhoods

U = {Uv(ε, λ)}(v,ε,λ)∈S×R+×(0,1),

where
Uv(ε, λ) = {u | u ∈ S, Fu,v(ε) > 1− λ}.
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4.1. Probabilistic q-contraction and g-convergent t-norms

Definition 27. ([15]) Let (S,F) be a probabilistic metric space. A mapping f :
S → S is a probabilistic q-contraction (q ∈ (0, 1)) if

Ffp1,fp2(x) ≥ Fp1,p2

(x
q

)
(10)

for every p1, p2 ∈ S and every x ∈ R.

By Remark 13 each g-convergent t-norm T satisfies the condition supx<1 T (x, x) =
1, which ensures the metrizability of the (ε, λ)-topology.

Theorem 28. Let (S,F , T ) be a complete Menger space and f : S → S a proba-
bilistic q-contraction such that for some p ∈ S and k > 0

sup
x>0

xk(1− Fp,fp(x)) <∞. (11)

If t-norm T is g-convergent, then there exists a unique fixed point z of the mapping
f and z = lim

n→∞
fnp.

P r o o f . Let µ ∈ (q, 1) and δ = q/µ < 1. We shall prove that (fnp)n∈N is a Cauchy
sequence. Choose ε > 0 and λ ∈ (0, 1) and prove that there exists n0(ε, λ) ∈ N such
that

Ffnp,fn+mp(ε) > 1− λ for every n ≥ n0(ε, λ) and every m ∈ N.

Since the series
∞∑

i=1

δi is convergent, there exists n1 = n1(ε) ∈ N such that
∞∑

i=n1

δi ≤ ε.

Let n > n1. Then we have

Ffnp,fn+mp(ε) ≥ Ffnp,fn+mp

( ∞∑

i=n

δi

)

≥ Ffnp,fn+mp

(
n+m−1∑

i=n

δi

)

≥ T
(
T

(
· · ·

(
T

︸ ︷︷ ︸
(m−1)-times

(
Ffnp,fn+1p(δn), Ffn+1p,fn+2p(δn+1)

)
,

. . . , Ffn+m−1p,fn+mp(δn+m−1)
)

≥ T
(
T

(
· · ·

(
T

︸ ︷︷ ︸
(m−1)-times

(
Fp,fp

( 1
µn

)
, Fp,fp

( 1
µn+1

))
, . . . , Fp,fp

( 1
µn+m−1

))
.

Let M > 0 be such that

xk(1− Fp,fp(x)) ≤M for every x > 0. (12)
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Suppose that n2 is such that

1−M(µk)n ∈ [0, 1) for every n ≥ n2. (13)

From (12) it follows that

Fp,fp

(
1
µn

)
> 1−M(µk)n for every n ∈ N

and by (13) for n ≥ max(n1, n2)

Ffnp,fn+mp(ε) ≥ T
(
T

(
· · ·

(
T

︸ ︷︷ ︸
(m−1)-times

(
1−M(µk)n, 1−M(µk)n+1

)
, . . . , 1−M(µk)n+m−1

)
.

Let s0 be such that M(µk)s0 < µk. Then for every n ∈ N

1−M(µk)n+s0 ≥ 1− (µk)n+1

and therefore for n ≥ max(n1, n2) and m ∈ N

Ffn+s0p,fn+s0+mp(ε) ≥ T
(
T

(
· · ·

(
T

(

︸ ︷︷ ︸
(m−1)-times

1−M(µk)n+s0 , 1−M(µk)n+s0+1
)
,

. . . , 1−M(µk)n+s0+m−1
)

≥
∞
T

i=n+1

(1− (µk)i).

Since T is g-convergent we conclude that (fnp)n∈N is a Cauchy sequence. Let z =
lim

n→∞
fnp. By the continuity of the mapping f it follows that fz = z. 2

Corollary 29. Let (S,F , T ) be a complete Menger space such that T is a strict
t-norm with a multiplicative generator θ, and f : S → S a probabilistic q-contraction
such that for some k > 0 and p ∈ S (11) holds. If there exists µ ∈ (0, 1) such that

lim
n→∞

∞∏

i=n

θ(1− µi) = 1,

then there exists a unique fixed point x of the mapping f and x = lim
n→∞

fnp.

Let

T =
⋃

λ∈(0,∞)

{TD
λ }

⋃ ⋃

λ∈(0,∞)

{TAA
λ }.



378 O. HADŽIĆ , E. PAP AND M. BUDINČEVIĆ

Corollary 30. Let (S,F , T ) be a complete Menger space such that T ≥ T1 for
some T1 ∈ T and f : S → S a probabilistic q-contraction such that for some k > 0
and p ∈ S (11) holds. Then there exists a unique fixed point x of the mapping f
and x = lim

n→∞
fnp.

From the proof of Theorem 28 it follows that f : S → S has a unique fixed point
if (11) and the condition that T is g-convergent is replaced by the condition

lim
n→∞

∞
T
i=n

Fp,fp

(
1
µi

)
= 1 (µ ∈ (0, 1)). (14)

Using Examples 16 and 17 and Proposition 18 we obtain a fixed point theorem,
where the condition (11) is replaced by the condition

sup
x>1

lnk x(1− Fp,fp(x)) <∞, (15)

for some k > 0, which under some additional conditions implies (14).

Theorem 31. Let (S,F , T ) be a complete Menger space and f : S → S a proba-
bilistic q-contraction. Suppose that one of the following two conditions is satisfied:
(i) T ∈ {TD

λ , TAA
λ } for some λ > 0 and there exists p ∈ S such that (15) holds,

where kλ > 1.
(ii) T = TSW

λ for some λ ∈ (−1,∞] and there exists p ∈ S such that (15) holds,
where k > 1.

Then there exists a unique fixed point z of the mapping f and z = lim n→∞fnp.

P r o o f . (i) Suppose that sup x>1 lnk x(1 − Fp,fp(x)) < ∞, i.e., that there exists
M > 0 such that

lnk x(1− Fp,fp(x)) < M for every x > 1. (16)

Relation (16) implies that

Fp,fp

(
1
µn

)
≥ 1− M

lnk
(

1
µn

)

= 1− M

nk| lnµ|k (µ ∈ (0, 1)).

Suppose that 1− M
nk| ln µ|k > 0 for every n ≥ n0. Then

∞
T
i=n

Fp,fp

(
1
µi

)
≥

∞
T
i=n

(
1− M

nk| lnµ|k
)

for every n ≥ n0.

By Examples 16 and 17

lim
n→∞

∞
T
i=n

(
1− M

nk| lnµ|k
)

= 1
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since for kλ > 1 ∞∑

i=1

Mλ

ikλ| lnµ|kλ
<∞.

Hence (14) holds.
(ii) If T = TSW

λ for some λ ∈ (−1,∞] and (16) holds for some k > 1 then (14)
holds, since by Proposition 18,

∑∞
i=1

M
ik| ln µ|k <∞ implies (14). 2

Remark. It is obvious by Proposition 18 that in the case (ii) the condition (15)
can be replaced by the Tardiff’s condition (see [16])

∫ ∞

1

lnu dFp,fp(u) <∞.

4.2. An application to random operator equations

Special non-additive measures, so called decomposable measures, see [11], generate
a probabilistic metric space ([4]) on which Theorem 28 implies a random fixed point
theorem.

Definition 32. Let S be a t-conorm. An S-decomposable measure m is a set
function m : A → [0, 1] such that m(∅) = 0 and

m(A ∪B) = S(m(A),m(B))

whenever A,B ∈ A and A ∩B = ∅.

Example 33. Taking SL t-conorm, Ω = N, A = 2N and m(E) = min (|E|/N, 1)
for a fixed natural number N , where |E| is the cardinal number of E, we obtain that
m is SL-decomposable measure.

Definition 34. Let S be a left-continuous t-conorm. A set function m : A → [0, 1]
is σ-S-decomposable measure if m(∅) = 0 and

m

( ∞⋃

i=1

Ai

)
=

∞
S
i=1

m(Ai)

for every sequence (Ai)i∈N from A whose elements are pairwise disjoint set.

The set function considered in Example 33. is σ-SL-decomposable.
An S-decomposable measurem is monotone, which means that A,B ∈ A, A ⊆ B

implies m(A) ≤ m(B). A measure m is of (NSA)-type (see [17]) if and only if s ◦m
is a finite additive measure, where s is an additive generator of the t-conorm S
(see [17]), which is continuous, non-strict, and Archimedean, and with respect to
which m is decomposable (s(1) = 1). If (Ω,A,m) is a measure space and (M,d) is
a separable metric space, by S we shall denote the set of all the equivalence classes
of measurable mappings X : Ω → M . An element from S will be denoted by X̂ if
{X(ω)} ∈ X̂. The following proposition is proved in [14].
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Proposition 35. Let (Ω,A,m) be a measure space, where m is a continuous S-
decomposable measure of (NSA)-type with monotone increasing generator s. Then
(S,F , T ) is a Menger space, where F and t-norm T are given in the following way
(F(X̂, Ŷ ) = F bX,bY ) :

F bX,bY (u) = m({ω | ω ∈ Ω, d(X(ω), Y (ω)) < u}) = m({d(X,Y ) < u})

(for every X̂, Ŷ ∈ S, u ∈ R),

T (x, y) = s−1(max(0, s(x) + s(y)− 1)), for every x, y ∈ [0, 1].

Let f : Ω×M →M be a continuous random operator. Then for every measurable
mapping X : Ω → M, the mapping ω 7→ f(ω,X(ω))(ω ∈ Ω) is measurable. If
X : Ω → M is a measurable mapping let (f̂ X̂)(ω) = f(ω,X(ω)), ω ∈ Ω, X ∈ X̂.

Hence f̂ : S → S.

Corollary 36. Let (Ω,A,m) be a measure space, where m is a continuous S-
decomposable measure of (NSA)-type , s is a monotone increasing additive generator
of S, (M,d) a complete separable metric space and f : Ω ×M → M a continuous
random operator such that for some q ∈ (0, 1)

m({ω | ω ∈ Ω, d((f̂ X̂)(ω), (f̂ Ŷ )(ω)) < u})

≥ m

(
{ω | ω ∈ Ω, d(X(ω), Y (ω)) <

u

q
}
)

(17)

for every measurable mappings X,Y : Ω → M and every u > 0. If there exists a
measurable mapping U : Ω →M such that for some k > 0

sup
x>0

xk(1−m({d(Û , f̂ Û) < x})) <∞

and t-norm T defined by

T (x, y) = s−1(max(0, s(x) + s(y)− 1), x, y ∈ [0, 1],

is g-convergent, then there exists a random fixed point of the operator f.

Corollary 37. Let (Ω,A,m) be a measure space, where m is a continuous SSW
λ -

decomposable measure of (NSA)-type for some λ ∈ (−1,∞], (M,d) a complete
separable metric space and f : Ω ×M → M a continuous random operator such
that for some q ∈ (0, 1) (17)holds for every measurable mappings X,Y : Ω → M
and every u > 0. If there exists a measurable mapping U : Ω → M such that for
some k > 1

sup
x>1

lnk x(1−m({d(Û , f̂ Û) < x})) <∞,

then there exists a random fixed point of the operator f.
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Obradovića 4. Yugoslavia.

e-mail: pape@eunet.yu, pap@im.ns.ac.yu
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