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ADAPTIVE MAXIMUM-LIKELIHOOD-LIKE
ESTIMATION IN LINEAR MODELS

Part 1. Consistency

JAN AMoOSs ViSEK

An adaptive estimator of regression model coefficients based on maximization of kernel estimate
of likelihood is proposed. Its consistency (in Part 1) and asymptotic normality (in Part 2) is proved.
An asymptotic representation of the estimate implies also its asymptotic efficiency.

1. INTRODUCTION

This paper is a continuation of [6] and [7] which has shown that the adaptive esti-
mator of regression coefficients based on minimization of Hellinger distance of the
density estimate of residuals and the density estimate of “mirror reflection of resid-
uals” is not efficient for dimensions larger than one.

Hence the present paper brings a new proposal of adaptive estimator of linear
regression model coefficients based on estimating density of residuals. The estimate
of density of residuals uses a preliminary estimate of regression coefficients and than
applies maximum likelihood technique. This new estimator is proved to be efficient
in the sense given in Corollary 1 at the end of this paper.

One of the main problems lies in proving consistency of proposed estimator.
Solution of this problem may be surely given in a similar way as in [4] requiring
some rather abstract conditions on probability distribution of (carriers and) errors.
This paper preferred to stay conditions in a way which may seem less verifiable
but which are more transparent namely that (very) large values of coefficients are
not very probable. In applications due to some requirements which are implied by
hardware circumstances we usually transform data into some “reasonable” range
and hence we have “some feeling” about the physical possibilities how large this or
that parameter may be. The paper is rather long since most of steps in proofs were
made in details. Only the steps which are standardly made in similar texts were
omitted.

2. NOTATIONS

Let us denote by A the set of all positive integers, by R the real line. We shall
consider a linear model

Y=X-8"+e (1)
where Y = (Y1,...,Y,)" is a real vector (response variable), X = (‘Tij)?:lle a
design matrix, 4° = (ﬁ?, e ,BS)T a vector of unknown (but fixed) parameters and
e=(e1,..., en)T a vector of i.1i.distributed — according to a d.f. G — variables. We

suppose that intercept, if any, is included in the model, i.e. when we assume that
the model (1) contains an intercept we have x;; = 1 for all i. D.f. G is assumed
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to be fixed, unknown, but symmetric (i.e. for any x € R G(zr) = 1 — G(z)) and
allowing density with respect to Lebesgue measure.

Throughout the paper, whenever the probabilistic assertions, the mean values
etc. are understood with respect to G, this will not be emphasized. Only when they
will be taken with respect to another distribution it will be marked by a subscript.

Remark 1. Symmetry of the d.f. G may be more than technical necessity. Since
the adaptive estimator (which will be proposed later on) is based on the estimate
of density of residuals we may get into troubles with bias not assuming symmetry.
It might be perhaps improved by estimating density of residuals by an estimator
having “sufficiently small” bias. It would be however so complicated that it probably
hamper any possibility to prove even rather simple property of estimator. Moreover,
it seems that without symmetry adaptive estimation is able to estimate consistently
only slopes and estimation of intercept (has to) contain(s) some bias.

It implies that another way how to solve the problem of estimating regression
model is not to assume symmetry (but some normalization of design matrix, namely
Z;;l x;; = 0 for any j = 2,...,p) and estimate only slopes. In a second step we
may try to estimate intercept separately (as location parameter). Naturally it may
then happen that the first and the second step will have a different efficiency.

Let us denote for any 8 € R? and i € N by

e(8) =Yi— X' (2)
ith r~esidua1 where X3 stays for ?:1 X;;B;. For 3 we have e;(3") = e; (see (~1))
Let 3" be a preliminary estimator of 4% and let us write simply é; instead of e;(3").
Let {¢,}22; | 0 and denote for any y € R, Y € R™ and § € RP

n

a0 Y.B) = —— S w (e (y — Vi + X7 ) = % D_w (e (v =)

ne
=1

3. ASSUMPTIONS

Condition A. Let the kernel w(y) be three times differentiable, positive every-
where and symmetric. Suppose that there are constants K, Ko, K3 and K4 such
that

sup w(y) < K, sup hfu/(i(;’))l < Ko,
yER yeER

sup 7“1:””((?’))' < K3, and sup 7|w1;,£(")’)| < Ky.
YyER Y YyER v

Preliminary estimator B” is assumed to be such that for some
4> i we have

n’[|5" = 87 = Op(1).
Moreover let
lim ¢, =0, lim ncd = oo (4)

n—oo n—oo
and 1
n
Further let g be symmetric, having continuous second derivative and for some M,
0 < M < oo we have

S
2

sup |¢'(y)| < M. (5)
YyER

Finally let g(x) be decreasing for « > 0.
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Condition B. Let for any a € R
lim n%c;Q/ sup w™t (et (z+b—1)) g(t) g(z)) dtdz = 0.
n—oo |b|<a

Moreover let us assume that there are positive v, D such that for any z1, 20 € R
such that |21 — 22| < v we have w(z1)/w(z2) < D.

Remark 2. Although Condition B may look rather strange it is easy to see that
for a kernel with “sufficiently” heavy tails it can be fulfilled even for density ¢g having
also rather heavy tails. As an example we may consider w(z) = 1+ —1. We obtain

7T 1422°
for any a € R

/ ‘§}1<p w (e (z4+b—t)) g(z)g(t)dzdt < 7 (1 + 2¢,” [a® + E|e| + var(e)]) .

It is not difficult to verify that the rest of Condition B is fulfilled, too. Although
this kernel doesn’t fulfill next condition, namely that [ |z|w(z)dz < oo it is easy
to see that any kernel of type const TIRE for some v > 0 will be acceptable for
Condition B as well as for all following.

Assertion 1. Let lim, .o, = 0 and [ |zJw(z)dz < co. Moreover let f be a
density such that its derivative exists and sup,cr |f'(y)| < oo. Then there is a
sequence {d,}>°; | 0 such that for any n € N we have

1
Py {sup l0a (0¥, 57) = )] > 5 b <
YyER

Proof. We may write
gn(y,Y,8°) —Efgn(y, Y, 8°) =
= 2| futu- 0 o - [uto-n) ao)

Cn

where F,,(t) is the empirical distribution function. Hence we have

sup [gn(y,Y, 8°) — Epga(y, Y, 8°)] <
YyER
< ndertsup [Va(EL(y) - F(y)| / (1)) (6)
yER

(see also [1]). Now let {Ly,,}5°_; T co. Since sup,cr v/n|Fn(y) — F(y)| is bounded
in probability we have for min{m,n} — oo

P {sup VAlFa(y) - F(y)| > Lm} N}

YyER
For every k € N find n} € N and my, € N such that for all n > nj
1
Py < sup \/ﬁ|Fn<y) —F(y)| > L, ¢ < 7
yER k

Now select 7, > nj; such that for any n > ny,

-1 -1 ’ 1
d
wbert [ wldy < g,
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i.e.

1 1
Pf{n2c sup vn|F,(y /|w )| dt > } T

YER
Further

sup €19, (.Y, %) = )] = sup [t - s ar - f(y)’

- 522 [ e 0ensas s =cosmp| [u) { [ 10 canar} o

el / 2l w(z)dz = Ofey), (7)

where L = sup,cx | f'(y)|. Hence we may find ny > 7 such that for any n > ny

sup |Efgn(y7Y7 ﬂo) - f(y)| < E
yER

So, we have found a sequence {nj}32, such that for any n > nj we have

Py {sup lgn (v, Y, 8°) — f(y)| > 1} <1
YyER

and then one may put for any n € N, n € (ng,ngs1] dn = % and the proof follows.
O

Remark 3. Instead of using (7) one may employ the result of [2] (which is recalled
bellow as Lemma 5 in the Part 2 of this paper) that SUPyeRr |Eggn y,Y, 3°) ‘ =
O(cy,). From the proof of Assertion 1 it is also possible to see that there is {d’ }nfl .
0 so that

1
P, {Sup lgn(y, Y, 8°) — Egn(y, Y, 8%)| > 2d;} <d,.
YyER

Definition 1. For any fixed {d,,}32; \, 0 let us put

G{d,}o2,) = {f, f is density such that for any n € N/

1
Py {ama {sup Lo 3. 5000 50D Lo 0. 50010 Y2 9] 5 i b }.
yER YyER

Now for the rest of this paper let us fix some sequence {d,}52; and we shall
assume

Condition C. Let

lim — = oo. (8)

Moreover let there be K5 < oo such that max;epr, j=1,. p |Zij| < Ks. We shall
also assume that the density g is an element of G({d,}52;). It follows from the
assumption that g(x) is decreasing for z > 0 that there is a sequence {a,}5,, a, >
0, a, /" oo such that

(—an, an) C {y ER: gly) > dé}

Then define b, (y) = 1 for |y| < a, and b,(y) = 0 elsewhere.
In addition to the requirement (4) we will assume that

lim ncla,? = cc. (9)

n—oo
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Remark 4. It is easy to see that to fulfill (9) it requires possibly to make conver-
gence of ¢, to zero slower. It may imply that we have to fix a sequence {d,,}°°
such that also d,, will have to converge to zero a little slower (see (8)) and it may
again cause that a, will converge to infinity also slower but it improve convergence
in (9) and hence (9) is not in a contradiction with any earlier made assumptions.

Remark 5. Let us recall that empirical d.f. is given by F,(y) = %2?21 Iy, <y
where V; are i.i.d. distributed random variables. Hence varpF,(y) = 1 F(y) (1 —
F(y)) and therefore the upper bound in (6) may be found uniform for all f (for fixed
kernel w). The estimate of difference in (7) is uniform for all densities having the
same upper bound of its derivative (this is the reason why we have assumed (5)).
Hence for a given sequence {d,, }22; the set of all densities belonging to G({d,}22,)
will be rather broad.

Condition D. Let us assume that there is Kg such that

P argmax [ 9n (e5(8).Y, ") ba(&;)|| > K¢ | n—2c 0.
S

Let us assume for a while that we know the density of residuals. Then we may
estimate regression coefficients by means of maximum likelihood estimator, i.e. as
a point (or points) ™ of RP for which

n

Hg(Yi—XiTﬂ) = max!

i=1

or (due to assumption about existence of g’)

~ g(Yi - X[B)
> wi TGy — 0

i—1 9(Y; = Xi'B)
for k = 1,...,p. This would lead for normal distribution to the normal equations.
Hence using kernel estimate

Yo ) = —— 3w (e y — &)

ney, “

n
=1

for the estimation of g(y) we may define 3" as follows.

4. DEFINITION OF ESTIMATOR

Definition 2. Under B" we shall understand a point (or points) of RP for which
H In (ej(5)7 YaB") b, (€;) = max!
j=1

or equivalently

p" = a%ge%%x jl;[lgn (61(5)7}/;/5)") bn(éj)'
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Remark 6. Due to assumption about existence of derivative we may look for B”
by means of equations

- . i w' (e (ei(B) — &)
; " S w (ent(e5(8) — &) ’

which have to be fulfilled for all k =1,...,p.
Let us assume, for the sake of simplicity that starting from this point all Condi-
tions A, B, C and D hold.

5. PRELIMINARIES

Assertion 2. Let {h;}!_; be positive numbers. Then

n -1 n
[n_lzhil Sn_Ithl.
=1 i=1

A proof follows from the convexity of the function %

Lemma 1. Let @ be a regular and positive definite symmetric matrix. For any
d >0 denote Zs = {z € RP: ||z|| =6}. Then

min 2T Qz > 0.
2€Z5

Proof. Since @ is regular and symmetric it may be decomposed at TTT where
T is a regular matrix. Moreover zTQz is continuous and hence there is a point
29 € Zs such that 2TQzy = min,cz, 2TQz. Further for any 2z € Zs we have

zTQz =T7TT2 > 0.

If 20Qzp = 0 then 2 TTTzy = 0 and therefore also Tzp = 0. But T is regular and it
implies that zg = 0 which contradicts with zg € Zs. O

Lemma 2. Let V = {vg;};2,,_, be a matrix such that there is a F/ > 0 such that
for any n € N
max |vkj| < H
k?=1, n

J=1,..., P

and lim,, %VTV = (@ where @ is a regular matrix (limit is meant so that for any
k, 7, 1<k, 7 <pwe have lim,,_, o %2221 Uk Vej = qkj). Then for any 6 > 0 there
exist A > 0, 7 > 0 and ng € N such that for any z € RP, ||z|| > § and n > ng we
have

p
#k: ke{l,...,n}; kajzj >Ap>T1-n
j=1
(#A denotes the number of elements of the set A).

Proof. At first we shall prove the assertion of the lemma in a little modified

version, namely:
V(@ >0)3A>0, 7>0and ng € N) V(2 € RP, ||z|| = § and n > ng) we have

P
#k: ke{l,...,n}; kajzj >Ap2>Tmn.

Jj=1
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Let us assume that it is not true. Then there is 69 > 0 such that for any A > 0, 7>0
and i € N there is 20 € RP, 20 = 20(\,7,7), ||2°|| = dp and ng > 7 such that

p
#k: ke{l,...,n}; kajzz > A <7 -np. (10)
j=1

Now let Ag = miny s, 2TQz. Then Ag > 0. Find n; € N such that for any n > n,
and for any j, £ € {1,...,p}

1 n

— VkeVkj — Qej| <

nE’ j — 45
k=1

Then for any z, ||z|| = dg and n > n; we have

P P
A A
E E Z[( E VkeUkj — >Z] <p- 50 720 2'])‘50:70'
.p .60 4

But it implies that for any z, ||z]| = do, n > ni,any A > 0andm = # {k: k€ {1,...
I>0_, Treze| > A} we have

p P 1 p P n
DD meE < > D D kv (% =
/=1 j=1 /=1 j=1 k=1

p

n D
E ZZUM E 2§V
j=1

k=1

_ Ao
4-p252°

Ay
T

m
+—[H-6-p*.
n

S

Put now A = fo, F=[H- 6 p|™2 4 and 7 = n;. According to (10) then
there exists ng > f = ny and 2 € RP (zo = z%ﬂ,%,ﬁ)), |2°]] = 8o such that
# {k: ked{l,...,n}; |30  vnezf| > } < %. But then we have for

this 2° and ng (remember that Ay = min|,—s, 27 Q2)

A ng—m A Agn
_80 LA < —O+Z()TQZO< 0 0 )

2
[ e el Cn. <
4 4 no 4 T Ing [HopoagE Pl s

4o
2

which is a contradiction.

Now let z € RP be arbitrary point with ||z|| > §. Put y = = - H%\I € RP. Then
llyll = 6 and we may apply previous part of proof. O

Lemma 3. Let f(u) be a convex function on (0, 00). Then there is a nondecreasing
function ¢(x) on (0,00) such that for any pair g; and g of densities on (—o0, 00)

we have
Egl{f <zj>}—f(l)—i—/ol(t—l)dcp(t)—i-;/Ooo{l—t—kEgl zjgg —t‘} dy(t).

Proof. Since f(v) is convex we may write

< FO+ [ledt v>1

FO) = [Fedt  0<wv<1

flv) =

RO



364 J. A. VISEK

where ¢(t) is a nondecreasing function (see [3], 18.43). Denote g2(x)/g1(x) by D(z)
and by P; probability measure generated by g;. Then

To )
/ fO@)n@ de= [ FDE)g @) det [ f(D@)ar (@) da

— 0o To
where we have defined Tp so that D(Tp) = 1. Then we have

To 1 o0 D(z)
€, f(D() = | {f(l)—/D (_)«p(t)dt} o1 () dat | {f(1)+/1 w(t)dt} () do.

Let us study at first the second term of the right hand side. Now f;: fWgi(z)dx =
Py(D(x) > 1) - f(1). Further

/TOO {/1%) (1) dt 91(%)} dz

= [ {ie-p@nee o} ar- [ {/1%) e d“”(t)} e

0

_— /; (D) - D)+ / { /{D(W}(Du)—t)gl(x)dw} dg(t).

Moreover

1-t= [ (D@t = [ D@-ta@deiz [ (D)) do
oo —o0 {D(z)>t}

Together it gives

TOO F(D(@))gs () da
— FWP(D@) > 1) + p(1) [P(D(x) > 1) — P(D(x) > 1)]
+% /1 {1 =t +Eg|D(z) —t|} de(t).

Similarly for

/TO/ (t—D (t) g1(x) da =

1) +¢(1) (P2(D(z) <1) = P (D(z) <1))

) <
/ /D(w)<t} (t = D(x)) g1(z) da dep(t).

But the last integral may be written as

/ / (t — D(x)) g1(x) da dep(t) / /D(I)>t} ) —t) g1(x) da dep(t)

_ /O(t_nd@ /{1 t+ Eq,|D(x) — 1]} di(t)

and the proof follows. O

e
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Lemma 4. For any 61, 05, 0 < 61 < 05 and ¢ > 0 we have

! [w(e (t— 01 — 2))g(2)dz ™ fw(e™H(t — 0y — 2))g(2)dz
"0 > Eglog 0 .

Eg log

Proof. We need to show that

! [w(ecH(t— 60, — 2))g(2)dz ™t [w(e (t =0 — 2))g(z) dz
& {_log 9(t) } = {_log 9(t) }

Let us denote gc(z) = ¢! [w(c™ (z—y))g(y)dy and gei(z) = g.(x—6;) for i =1, 2.
Due to the fact that the function ¢(t) from Lemma 3 is nondecreasing it is sufficient
to verify that for any t € R

g

gec1 (37) .
9(x) t‘ =F

For an arbitrary density g we have

~ oo | ~
g_t‘:/ ‘g(x)—t‘g(sc)d:czl—t-i-%-/ gd:L‘—Q/ gdz.
g —o |9(T) g<t-g g<t-g

1

1 {Eg

2 g

— ¢ {/ gd:c—/ gdx}Jr/ ger dx—/ ger da.(11)
{gc2<t-g} {ge1<t-g} {ge1<t-g} {gca<t-g}

Let us denote A; = {ge2 < tg} and By = {ga1 < tg} and draw an exhibit

Ey

Hence

Gc2
2=

Let ag be a point of intersection of g.; and geo, i.e. ge1(aog) = ge2(ag). Let us recall
that ge1 = ge(z — 01), ge2 = ge(x — 62) and hence

gelao —01) = ge(ao — 02),
1
apg = 5(01 + 02)

Moreover we have g.1(z) > ge2(x) for any © < ag. The expression in (11) may be
written as

/At (tg — ge2) dx—/ (tg — ge1) da.

By
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Let us consider the situation when A; C (—o00,ap). Then B, C (—o0,ap) (even
Bt C At) and

/ (tg — ge2) dw */ (tg — ge1) dw > / (ger — ge2) dz > 0.
Ay By

By

For the case when A; is not subset of (—00,ag) let us realize that

ao o0
/ (gcl - 902) dz = / (902 - gcl) dx

—o00 ao

and even ge1(ag—7r) — ge2(ao—r) = ge2(ao+7) — ge1(ag +r) for any r € R. Moreover

[;ug—%gdx—/'ug—%ndx

By

= / (tg = ge2) dm—/ (tg — ger) dz
AiN(—o0,a0) BiN(—o0,a0)

+ / (tg — ge2) dx — / (tg — ge1) dz.
AiN(ag,+00) BtN(ag,+o0)

Now (keep in mind that B; N (—o00,a,) C A: N (—00,ap))

/ (tg - gc2) dx — / (tg - gcl) dzr =

A¢N(—o0,a0) B;N(—00,a0)

= / (ger — ge2) dz +/ (tg — ge2) dz =
AiNBiN(—00,a0) (A:\Bt)N(—00,a0)

(min{tg, ge1} — ge2) da =

tN(—00,a0)

b (gcl - gc2) dx — / (gcl - max{gc27tg}) dz. (12)

BYN(—o00,a0

1 I
—

— 00

Similarly

/ (tg = ge2) dz — / (tg — ge1) da =
AiN(ag,+00) BiN(ag,+o0)

- /w@df%g+/“ (gez — max{tg, g }) da. (13)

ag Ag¢N(ag,+o0)

Let us take into account that (12) represents the shadow square given left from ag
in the next exhibit while (13) is equal to the shadow square right from ag but with
minus sign.

Let us assume for a while the above exhibit modified as follows.
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Then the shadow square left from ag is equal to the shadow square right from ag.
The last but one picture differ from the last one only in position of dashed curve
which is (in last but one) shifted to the left. But it means that the square left from
ap increases and vice versa the square right from ag decreases (it follows directly
from the assumption that g is decreasing for x > 0). On the other hand (as already
mentioned above) “left” square represents a positive part of (11) namely (12) and
“right” square contributes negatively to (11). It is equal to (13) with minus sign. It
concludes the proof. a

6. CONSISTENCY

We are going to give now the main result of this paper. Alghough the proof is rather
long we have prefered to present it in full details for convenience of reader.

Theorem 1. Under Conditions A, B, C and D the estimator 3, is (weakly)
consistent.

Proof. The proof will be based on a finite sequence of comparatively simple
approximations. The first step will be to show that
1 - *w(e e (B) — &
L Sl Sl 6(8) — &)
np-poll<is T 2imawlcn (65 — &)

{bn(&5) = bulej)} = 0p(1).

It is clear that the above expression is nonzero (and hence it may be larger than
some ¢) only for those w’s € Q for which b, (€;) # bn(e;), i.e. for the case when
&;] < 1a, and |ej| > 1a, or |¢;| > 1a, and |ej| < Sa,. Let us realize that

ej =& =Y; = X[~ Y; + XJ 5" = X[ (8" - 5°).

And hence 5T
_ 30
eaMe — ) = L 0T
" ndcy,
Due to this we have, uniformly in j = 1,...,n, ¢, 'le; — €;] < 7 (for some 7 > 0

starting with some ng € N) with probability 1 — ¢ (for apriori given £ > 0). Let us
restrict ourselves on the set on which ¢, !|e; —¢&;| < 7. To have a possibility to obtain
then by, (e;) # b,(€;) we must have e; € (3a, — 8, 3a, + ). Let us bound at first
just studied expression from above. Let us keep in mind that for ¢, '|e; — ;| < 7 we

have for j = 1,...,n w(c,'(e; — €;)) > k where £ is a positive number. It implies

that
i wley (e(B) — &) n- K

log = — < log
iy wien (e — é)
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(remember that w is bounded) with probability at least 1 —¢. Let us use Chebyshev’s
inequality saying that (for € > 0)
1
P(X>¢) < gEmax{Xﬂ}.

The probability that there are k indexes such that b, (é;) = 1 and b, (e;) = 0 is not
larger than

(:) V(1 — v, "
where v, = P(lej| € (an — ¢ (e; — €;), an + ¢t (e; — €;))) = O <n’%> Hence

1 i w(c, (e (B) — &)
S b 2 Z 8 S (et (e, — &)

{bn(€5) — bn(ej), 0}

1 n- Ky n\ K n- Ky
< 21 k- 1—u,)" k=0, 1
< —log— ; (k>vn( Vn) v - log —

which tends to zero as n — oo.

Similarly for a lower bound. We should consider case that {b,(e;) = 1 and
b, (€;) = 0 for some j’s} and evaluate conditional mean value of
1 - m ~L(e; — €;
L W v L il () )
™ ||5—50]|<Ke 5= Y wlen (e — €))

Due to the fact that 3’s over which we take infimum are such that || — 3% < Ks
the mean value over these cases will be of order
n

-2p - K - Kg) ny k n—k
Z K, : (k>yn(1_yn) .

k=

Under a straightforward computation we find that it is of order v, logw(c;!) and
taking into account that v, = O(n_%) we obtain that the conditional mean value
converges to zero.

Let us show now that

L Z{log Ty ulei!el) — &)

T ||p—p° <K

R A
S w(en (e — &) }b”(”

Having rewritten this expression into the form

—  log

= 0,(1). (14)

n

Losup 304 g S wle (e (8) — @) — log 3 w(e e (8) — &)

n | g_
18=B°lI<Ks |51 i=1 7]

- 1ogzw(c*1(ej(5) — &) —log Y w(c ™ (e;(B) — &))| ¢ bule))

i#]

and using Taylor’s expansion we obtain

1 " {w(cnl(ej(ﬂ)éj)) w(Cnl(ejéj))}bn(ej)

—  sup
&5 7;

" l-gll<Ks |52
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where

and

mi€ | Y wle M ey — &), > wle e — &)

i#j i=1

Hence (14) can be bounded by
1 - w(c, ' (e;(8) — &) w(c, ' (ej — &) b (e
" o pol <o Z {Z- Jw(cn (e;(8) = &)) T Jw(cn (e — éi))} (%)

n Lw(e1(e; —€;
U

N g—BOl<Ke |5

IA

N 1 sup Z izyll.u)(-cnl(ej _‘é_i))‘ bue;) (15)

N g—pOl<Ke |5

Let us consider the first member of (15). It is not greater than

-1

|1
_2K . 1 L ) ~i .
b ' H5—213|1|)<K6 32::1 n ;w (Cn (6] (6) e )) ( )

Using Assertion 2 we obtain as an upper bound of (16) the expression

n

n 3K sup w (e (e (B) — &)) .
1|ﬁ—ﬁ0|<xﬁjz_:1; (el )

Now for any € > 0 (notice that in that follows residua are without “7”)
n

- 1 €
P{n™3 sup Z w (' (e;(B) —€;)) > 3
18-B°lI<Ks ;=1 i#j

P{n™3 sup Z Zwil (et (ej — XJT(ﬂ - 3% —€)) >

g
18-8°l<Ks =1 2
J=1#g

IN

gn_Q Z/ sup  w (e (2 — X]T(ﬁ = 8% —1)) g(2) g(t)dzdt

1B=B°lI<Ks¢

which converges to zero as n — oo (see Condition B). Let us fix a A > 0. Moreover
denote by B,, the set

n 1 e
we: n3 sup — >3
lo-soli<s S ; wlen' (e —ei = X7 (B=p%) ~ 2

Then find ng so that for any n > ng P(B,,) < A. For w(c,(e;(8) — &)) write

w (e, (e;(8) — &) = w (Cil(ej - X5 (B -p") - ei)) ' (Gin) - X1 (8% = B)e, !
(17)
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where &;;, is appropriately selected point which will be specified later. Since we
have assumed that n?||" — 8°|| = O,(1) we may find ny € N, n1 > ng and L > 0
such that for any n > n

P{n5||ﬂ0 — B > L} < A

Finally let us denote by Cy, = {w cQ: nd|p0 — Gr| > L} and

E,={weQ: n? sup ZZw‘l(cgl(ej—Xj(ﬁ—ﬂo)—éi))>5
16-8°1<Ks =1 j=;

(notice that e’s in definition of E,, are with “™” in difference with B,,). Now, find
ny € N, ng > ny such that for any n > ny we have c;l-n_‘s-Kg-K4~D-L-p< %
and ¢;'n"°L- K, -p < v (see Condition A and B). Since we have for any j € N/

lej = XJ(B—=5") =& —(e; = X[ (B—8°) —ei)| = |es — & = | X" (8" — %)
and for £;;, from (17) we have
&in € [c min{e; — X[ (8- 8%) —ei, 5 — X (B — 8°) — &},
et max{e; — XJ-T(ﬁ — 8% — ey, ej — XJ-T(B - 3% — éi}]

it holds for any n > ny and w € C¢
e v | W (EGin) w(jin) ' 1 wTia_ 30y _ ..
|’U} (gﬂn)‘ - w(gﬂn) w(cﬁl(ej _ XjT(ﬁ _ 60) _ el)) w (Cn (63 X] (ﬁ ﬁ ) el))
< Ky-D-w(c," (e —X]-T(ﬁ—ﬂo) —€)) .

Taking into account (17) it implies that for w € C¢ and n > ny we have

w (cgl(ej(ﬁ) — éi)) > w (c,:l(ej(ﬁ) — ei)) [1 — n_‘scgl Ky - Ks-D-L -p]
> (e (e(9) ).

Now for any n < ng and w € E, N CS we have

n
e<n™®  sup ZZw_l (¢l (ej — (B) —&))
18=8°N<Ks =1 1=,

n

< 2n7%  sup ZZw_l (et (ej(B) —€)),
18=BlI<Ks 521 25

i.e. w € By. So, since we may write
P(E,)=P(E,NC,)+ P(E,NC;) < P(C,) + P(By) <2A,

we have proved that the first supremum in (15) is small in probability. The second
supremum may be treated in a similar way. Now we would like to prove that also
supremum of the difference

1 sup - {log Zi#]’ w(c, ' (e;(B) — &)
" |B-p0ll<Ks =1 Z#J_ w(Cﬁl(ej —&)

Ei;éj w(c, (e(B) —e:))
Zi;ﬁj w(cﬁl(ej —€i))

— log

} bn(ej) = op(1).
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Analogously as above we may write this difference in a form

L oqup ST og S w(e e (8) — @) — log 3wl (e5(8) — )

N 1B—Bo) <K j=1 i#£j ]

- long(C_l(ej —&;)) — long(C_l(ej —e))| ¢ bnley).

i#] i#]

Let us use again Taylor’s expansion. We obtain that this difference is bounded by

n w(cy, (e (B) — &) —w(cyt(e;(B) — e
sup ZZi;ﬁj{ (cn (&5 (B) — €)) —w(c,  (e;(B) — )}

5;7@ = Ajn
where
Tin € [min{ Y w(c™(e;(8) — &), Y w(cHe;(B) —e:)) ¢
i#] i#£j
max Y w(c (e;(8) — &), D w(c (e (8) —er)
i#j i#]
and

Ajn € |min Zw(cfl(ej —&)), ZUJ(cfl(ej —€)) ¢

i#] i#]
max ¢ Y w(c (e — &), Y _w(c(e; —e))
i#] i#]

Now let us fix again some A > 0 and L € R and find an ng € A such that for any
n > ng

P8 - 3"l > L} < A
and again denote
Cn = {w e B0 — | > L} .
Similarly as above find ny > ng such that for any n > n; we have c;ln_5K2 Ky -

D-L-p< % and ¢;'n"9L - K4 -p < v (see again Condition A). Then we have for
n>n; and w € CS

e3(8) = & — e5(8) — il = [XT (8" = B")| <n~® - L Ka-p
and hence again for any w € Cf, and for any

y € [cgl min {e;(B) — e;, ;(B) — &}, ¢, max{e;(B) — e, e;(B) — éi}]

W' (y)| < Ko+ D w (e (e;(8) — ei))
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which implies that -, w (cnt(e;(B) — &) > %Zi# w (e, (e;(B) — €;)). There-
fore we have for n > ny and w € C¢

1 -
Tin 2 5 Zw (C 1(63(ﬂ) - ei)) .
i
It allows to bound from above the first member of (18) by

fmpz Py (e (65 (8) = ) — ey (e, (9) = )|

el %y 0o (e (B) = €0) )
But we have also
w (e, (e5(8) — &) —w (¢, (e;(8) — €i)) = w' (& i) X (8° — Bn)
(see (17)) and hence for n > ny and w € CF
o (e (es(8) = 20) —w e’ (es(6) —e0)]| <
< n Ky Ks-L-p-D-w(c;' (e;(8) —ei)) -
Now fix any ¢ > 0 and denote by
F,lweq: 1 znzlog 2z w(cﬁi(ej(ﬁ) —é)) >e
n 2 BT e (e (8) — )
Finally find ns > ny such that
2.-ny° Ky Ks-L-p-D<e. (20)
Since for any n > ng and w € C¢ we have from (19) and (20)
1 S Vil (e(B) — &)
w e T B —e)| <

w € C¢ implies w € Ff,i.e. CS C F¥ and therefore F,, C C,, and this is the same as
P(F,) < A

for any n > ny. The second member of (18) may be proved to be small in probability
along similar lines.
Now we shall show that

n

S, = n!  sup log
1660l <Ks Zl

Z#J‘ w(c, ' (e;(B) —e:))
i= Zi;éj w(cﬁl(ej —€i))

e fiog S 00) )
E%% > wlen (e —e)

..,en:zn}H = 0,(1). (21)

€1 =21,--,€j—-1 = 2j—1,€j41 = Zj415---

Notice that
iy w(ey (e5(B) — ei)
E%g S v%@—m>
/ iy w(ey (y = X7 (8 = 8°) = 1))
z;éj ( (y - Zl))

€1=21,.-.,€j-1=2j—-1,€j41 = Zj+1,~-~6n=2’n}=

g(y) dy.
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To prove (21) we shall start with proving

Va(B) = n' > |log Y w (e (e;(8) —ei))

j=1 i#j

—E long(cgl(eJ(ﬂ)—eZ)) €1 = 21,...,€j—1 = Zj—1,€j41 = Zj41,---
i#]

cep = zn}] = o0,(1).

Using Chebyshev’s inequality for some fix (positive) ¢ we arrive

PVa()] > <) < 5 EV2(B) = 5 > &

where
& = ES{n 2> |log) w(c,M(e;(B) —ei)) —E{log Y w(c, (e;(B) — e:))
Jj=1 i#£] i#£]

2
61—21,~~-,€j—1_Zj—1,€j+1_Zj+17~-~€n_ZnH )

n 23 "N " log Y w ey (es(B) — ) —E{ log > w (e, (e;(8) — €s))

j=1s>j i#j i

&

€1 =21,.--,€j—1 = 2j—1,€j4+1 = Zj+1,---€En = ZnH

logz ) —e,)) —E logz B) —ev))

v#Ss v#s
v#£j v#Ej
€1 = 21,.--,€5-1 = 25—1,€5+1 = Zs+1,---En = Zn 3

& = 2E{n? Z Z long (¢, '(e;(B) —e;)) —E long (e, (e;(B) —€5))

J=1s>j ij i#j
€1 =21,---,€j—1 = 2j—1,€j41 = Zj41,---En = Zn}‘|

log » w (e, (e5(B) —ey)) —log > _w (¢, " (e5(8) — ev))

vt
'u;é; Uis
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and finally

j=1s>j it
—E IOgZU) (C;Ll(ej(ﬂ)—Gz)) €1=21,...,€j-1=2j—1,€j41=2j+1,..-En=2n
i#£j ]
E long (cgl(es(ﬂ)—ev)) €1=21, .-y €5—1=25—1, €501 =2541,- - En=2n
v#S

—E long (c,_ll(es(ﬁév)) C1=21, .+ Cs 1=25 1,Cs41=Zs41,- -+ Cn=2n

vF#ESs
v#j

Since 37, w (cn(e;j(B) —e€;)) <mn- Ky and n™! log®n — 0 for n — oo, & — 0
for n — oco. (Notice that convergence to zero is a consequence of boundedness of
the kernel w and doesn’t depend on .) & may be rewritten into the form

2EXn 23" S flog > w (e (es(B)—eu))

j=15s>j Zij
- E logz w (c;l(es(ﬁ)—ev)) €1=21, €5 1=25_1,Cs11=%511,- -+ En=2n
v#S

xE logzw (Cﬁl(ej(ﬂ)*ei))*

i#j
-1
- E 10g§ w(cn (ej(ﬂ)*ei)) €1=Z1,.++,Cj_1=Zj—1,€j41=Zj41,.--Cn=2n
i#]
€1=21,. -, 617251, €j41=2541;5 - - -en:zn}

(Remember that e;(8) = Y;— X3 = V;— X 30— XT(6-3°) = ¢;— X[ (3—3°), and
hence e;(/5) doesn’t depend on e1, €,...,€j_1,€j41,...,€,). The last modification
is possible due to fact that the expression

IOng (C;I(QS(ﬁ) - 61)))

v#s
v#j

as well as its conditional mean value depends only on random variables which are
“fixed” by the set in condition, namely {e1 = 21,...,€;_1 = 2j_1,€j41 = Zj41,... €5 = 2Zn}.
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But

E long (Cﬁl(ej(ﬁ)_ei»

i#]
—1
- n j —€; =21y € -17%-1,€j+1=%5+15 - - - En=%2n
E<log » wi(c, (ej(B)—e;)) | ex=z €/ 1=2j-1,€j41=Zj 41, - - - En=2
i#]
€1=21,++-,€6j_1=2j-1,€j41=%5415-- - en:zn} =0.

(Notice again that the last mean value is equal to zero without any dependence on

B).
Hence & = 0. The expression £ may be bounded by

n~?log(K;.n) ZZ E logz €s ev))—long (e (es(B)—€v))

j=1s>j V#S vFES

-2, C:zl (es(B) *ej))
= A losth ZZ " wlen (en(B) — )
< dntKylog (K - ZZZ Ew™" (e, (es(B) — ev))

j=15s>j v#s

— 42 log(K; - ZEw (e — X (B—8°) —e1))
= 4n~? - log(K Z/ 2z = XT3 - 8% —1) g(z) g(t)dzdt

which converges to zero for n — oo (even uniformly for || — 3°|| < Kg). The
expression £, may be treated similarly.

Now we have to make use of the fact that V,(53) is continuous in 3, uniformly con-
tinuous for 3 € {B € RP: || — B°|| < K¢} and by means of standard technique of

covering the ball {8 € R? : |8 — °|| < K} by a finite set of balls {3 € R? : || — ] < 'yi}le
we may find, using the law of large numbers, (for any apriori fixed € and 7, ¢ > 0,7 >
0) a set A, and ng € N such that for any n > ng and w € 4,

n

1 _
— sup Y |log Y w(cy,!(e;(B) —es))
T 8—80)| <Ko j=1 i#j
- Elogz on B)—ei)) | e1=21,...,€_1=2j_1,€j41 =Zj41,.- -, En=2n <e

and P(Ay,) > 1 — 7. Similarly we may show that also

W, = n! sup long (cgl(ej - e,;))
18—B°|I<Ks iz

— log E — 61) €1=21,..-,€j—1=2j—1,€j41=2j41,.---,En=2n :Op(l).
i#]
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So we have proved that

1 - S w(ey (e (B) — &)
— q 1 b
RN s e ey

/log Zi;ﬁj w(ey (t — XjT(ﬂ — 3% —e))
Ziyﬁj w(cﬁl(t —ei))

n(éj)

g(t) b (t) dt} = o0,(1).

Now we will prove that

/ Diggwlcp (t = X (8= 5°) —ei))
Sz wien (t —ei)

g(t) by (t) dt

may be substituted by
/ i 1w ’W*XT(ﬁ 3%) —e;))
Sy w(en (t—e))

To do it, let us consider at first the difference

L Z/FQ: —XT(B - B°) — )

T 6-pCl<Ks |51

g(t) ba(t) dt.

— log Y w( — X[ (B8 —e))| baly) g(y)dy|.
i#]

The absolute value of this expression may be bounded by

1 " sw(e,(y — XT(8—Bo) — ;)
— sup

T || 69 | <K ; £ wlen (y— XF(B—6°) —e))

9(y) bn(y) dy
(compare (14) and (15)). This is not larger than (see Assertion 2)

Lk swp Z/ (v — XF (8= 5°) =€) 9(u) bu(y) dy

3
T IB=BNI<Ke =1 52y

and for some fixed € > 0

n

Pn  sup ZZ/w’l (et (y = XF(B= 8% —e) g(y) baly)dy > &

18=POlI<Ks =1 525
1 n
< en‘Q/lﬁ_zg&KG;/w‘l (cn'ly = X7 (B—=8% —1) g(y) baly) g(t) dy dt

which converges to zero according to Condition B.
Now we shall use Condition C. Let us fix some positive € and positive A and

1
find ng € N so that d,, < min {&?, %} and d,, < 2dZ,. Denote

Sean = {w € Q: max {bup lgn (v, Y, 8%) — g(y)
YyER

1
, sup |ga(y, Y, 8%) — Egn(y,Y,ﬂO)’} < 2dn}.
yeER
Then for any n > ng and w € S; A, we have (notice that supremum in the next

1
expression is in fact taken over [a,, 2a,| and hence g(y) > d3)

n(y,Y, %) —Egn(y, Y, 3° dp/2 1
sup 1920, Y- 57) — g(y, By () < / k<
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and also

lgn(y, Y, 8°) —Egn(y,Y, %)
3 bn
;lelg gn(y,Y, %) )
‘g7z(yaxﬁo) - Egn(y7Y ﬂo)lbn( )
= b
veR  gn(®: Y, B%) — g(y) + 9(v)

d,/2 1
/ T <dj <e.
—dp/2 —d,/2+ d?

n(Y)

<

So we have (remember that g € G({d,,}32 ;)

P (max <sup |gn(yv Yv 50) — Egn(ya Kﬁo)‘ bn(y),

yER Egn(yaY 60)
lgn(y, Y, 8°) — Egn(y, Y, 3%)] } )
b, A.
i Egn(s,Y,0") Wy>e)<

Starting with some ng we have K5 - Kg - p < %an which implies that we have

also sup;_; ., supj5_go<x, 1 X, (6= 6°)| < 1a, and hence for any y for which

bu(y) =1, i.e. |y| < 5an, we have sup;_; _, sup|5_goj<s, [y — X; (8 — )] < an.
1

Therefore also infj—y, ., inf)g_go|<x, 9(y — X;-f(ﬁ —(Y)) > d2 (see Condition C)

and carrying out similar step as a few lines above we obtain for any n > ng

P (o] sup sup 1m0 =X E =) By~ XTGPV

P 9y — XT(B— B9, Y, 39 o
lgaly— XT(B— B°) — Egly — XT(5— B°),Y, )]

o e Eg(y — XT(5— 79), Y, 7) beY)>e ) <4

Now using inequality (a,b > 0)

a—b

loga —logb < m

we may show that
1 - { Sy wlen ' (t = XT (5 - 8°) — )
— sup log -
M B-pll<Ke ;=3 it w(cn (t—ei))
/log Zi;ﬁj w(ey ' (t - XgT(ﬁ — %) = 2))g(2)dz

Zi;ﬁj w(cn ' (t — 2))g(z)dz

So we have proved that

g(t) b, (t) dt

9(t) bu(?) dt} = 0,(1).

— Sup — —
M ||5— B0l <Ko S wlen'(ej — &))

Jw(e; 'y — XF(8— 8% — 2)g(2)dz
Jw(en'(y — 2))g(2)dz

Now using Lemma 2 and 4 we may find for any v > 0 some 7 > 0 and ng € N/
such that for any n > ny we have

1 / Jwle (y = X5 (8= 8°) = 2))g(2)dz
I<Ke ;= (

— sup
N o<|f—p0 e (y—2))g(2)dz

j=1

— log

g(y)bn(y)dy}‘ = op(1).

9(y) bu(y)dy < —.
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It may be shown as follows. One may order the absolute values {| X (3 — ﬂ0)|}7;1.
Lemma 2 then says that for the above given  there are A > 0 and £ > 0 such that
starting with some n; € A for all n > n; and any 3, |3 — 3°|| > ~, the number of
indices for which [X1(6 — )| > A is larger than n-£. Let us denote by I the set of
corresponding indices. From Condition C it follows that there is an ng € N, ng > n;
and A < 0 such that for any n € N, n > ng we have

Ll (b A—Dg()dz e (e (t - 2))g(2)dz
%%% o) o) }<A

— log

Using Lemma 4 we have for the above given integral

_1 ) -2 z)d(z
Z/ It (Xl((yﬁ ﬁ))) (Z);i gl )g(y) bn(y) dy
B w(cgl(y—XT(ﬁ 3%)—=2))g(2)d(2)
; ;/{bg 9(y)

Jw(e, (yg—(z;)g( 2)d(z )} 9(y) buly) dy

o Jw(e, ' (y=A—2))g(z)d(z ) 1 Jw(e, (y—=2))g(2)d(z)
< Z/ {1 s 9(y) tog 9(y)

— log

}mwm@My

Jel

Since b,(y) — 1 for n — oo the last integral is — starting with some ng(> ny) —
bounded by %n <€+ A. So it is sufficient to put 7 = f% SE- A
On the other hand for 3 = 3° we have €;(3°) = e; and hence

1§ S e ) 2
E) S (et (e, —ay) =0

which implies that for any n € A we have

1 D el (e(8) — &)

—  sup log = — - n(€;) > 0.

N ||8—pB0|<Ks ; S w(cn(e; — &) !
Due to continuity of all functions and compactness of the ball {3 € R : || — 8°| < K¢}
we have

I LTl ) - E)

—  sup log
N a—p0) <K ; S w(en ' (e; — &)

n(€;)

€;
j=1 Z?:l w C:Ll(ej - él))

Assuming that B” is not consistent (together with Condition C) one finds a conver-
gent subsequence which is — starting from some n; — out of the ball {5 ERP: 28 -8 < 'y}.
This lead to contradiction. O

The asymptotic normality of Bn(Y) will be proved in the second part of this
paper.

(Received March 7, 1991.)
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