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ON L-ESTIMATORS VIEWED AS M-ESTIMATORS

Jan Šindelář

Arithmetical mean and median usually serve as basic examples of M -estimators ([5]).
Both of them are L-estimators. Thus there is a natural question whether there are some
other L-estimators which are M -estimators as well. We shall show that, with rare ex-
ceptions, this is not the case. More precisely, we shall show that the arithmetical mean
and empirical quantiles are the only L-estimators with nonnegative coefficients having a
nontrivial ψ-function.

INTRODUCTION

The presented paper has the following source of motivation.
There are many nonstatistical approaches to uncertainty, some of them resulting

in their own estimators (like gnostical theory of uncertain data, cf. [4]). Moreover,
many people develop their own “problem oriented” estimators. Statistical properties
of new-developed estimators are of interest from viewpoint of statistics as well as for
practical purposes. E. g. it should be favorable to circumscribe (qualify) the field
of successfull applicability of the estimator. Statistics could be a largely developed
and well examined source of the desirable information.

But how to find statistical properties of some estimator derived independently of
statistics?

A possible way is to verify whether the estimator is an M -estimator e. g. find-
ing some of its ψ-functions. It is a well known fact that the notion of ψ-function
playes a central role in theory of M -estimators (cf. [3, 2, 7] ). Most of M -estimators
are defined on the basis of corresponding ψ-functions. Statistical properties of M -
estimators could be derived from their ψ-functions (ibid). Hence if some ψ-function
of an M -estimator is found, then the above stated question can be answered using
standard statistical methods (see [2]; see also [6] for examples).

Two theorems on problem of determining ψ-functions of given estimator are
stated in Section 1. General ideas are then illustrated on a specific class of es-
timators, namely on the class of L-estimators in Section 2. It is shown that the
arithmetical mean and empirical quantiles are the only L-estimators with nonnega-
tive coefficients having nontrivial ψ-functions.
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1. M -ESTIMATORS, L-ESTIMATORS

The concept of estimator plays a central role in statistics. Various approaches
to this notion can be found in the literature. For instance, an estimator could be
a mapping from a sample space into a parametric space (see [5]), or a mapping
from a set of probability distribution functions (containing empirical distribution
functions) into a set of probability distribution functions (see [7]). For purposes of
the presented text we shall view estimators as mappings ascribing reals to sequences
of real-valued observations. Hence, with n ∈ N = {1, 2, 3, . . .} fixed, an estimator
T is a mapping from Rn into R, i. e.

T : Rn 7→ R. (1)

Consider a measurable space 〈Ω, A〉 equiped with a probability measure P . Let
X1, X2, X3, . . . be a sequence of independent and identically distributed random
variables.

An M -estimator is obtained by minimizing
∑n

i=1 ρ(Xi, θ) where ρ is a given real-
valued function (cf. [7]). If ρ has a partial derivative ψ = ∂ρ

∂θ , then the M -estimator
may be defined as a solution of the equation

n∑

i=1

ψ(Xi, θ) = 0. (2)

The M -estimators getting out of (2) will be considered below. Hence if T is an
M -estimator and n ∈ N is fixed, then

n∑

i=1

ψ (Xi, T (X1, . . . , Xn)) = 0 a. e. (3)

should hold.

Consider n ∈ N and an estimator T given by (1). Assume that we want to
know whether the estimator T is an M -estimator. For this purpose we should find
functions ψ satisfying (3), i. e. solve the functioal equation (3) in ψ.

Finding all solutions of (3) could be quite difficult. On the other hand we are
usually interested in solutions of (3) satisfying some additional regularity conditions
like measurability, continuity, differentiability etc., i. e. solutions of (3) are searched
for in some class of functions ψ : R2 7→ R. Such a class of functions will be denoted
by F .

Finally, we can formulate our task of verifying whether a given estimator is an
M -estimator in the following manner. Given

– n ∈ N ,
– an estimator T : Rn 7→ R,
– a class F of functions ψ, ψ : R2 7→ R,

find all solutions ψ of the functional equation (3) lying in the class F .

The set {
ω ∈ Ω|

n∑

i=1

ψ (Xi, T (X1, . . . , Xn)) = 0

}
(4)
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may not be measurable. But this set is measurable under relatively general condi-
tions laid on ψ and T . For instance, if both the function ψ and the estimator T are
measurable functions, or, more generally, if

{
〈x1, . . . , xn〉 ∈ Rn

∣∣∣∣∣
n∑

i=1

ψ (xi, T (x1, . . . , xn)) = 0

}
(5)

is a Borel subset of Rn, then the set (4) is measurable. For a fixed estimator T , the
symbol FT denotes the set of all mappings ψ : R2 7→ R the set (4) is measurable
which for.

If some additional regularity conditions are laid on an estimator T , on desirable
solutions of (3) and on an underlying statistical model, then solution of the functional
equation (3) can be reduced to solution of a more simple functional equation. Let
us discuss this topic in detail.

Consider n ∈ N fixed. The random vector 〈X1, . . . , Xn〉 induces a Borel measure
on the σ-field Bn of Borel subsets of Rn denoted by

PX1,...,Xn .

Its support will be denoted by
SpPX1,...,Xn .

Solution of (3) can be reduced to solution of a more simple functional equation
if, for instance,

– T is a continuous mapping,
– continuous solutions of (3) are searched for.

The following two theorems are devoted to the topic.

Theorem 1.1. Suppose that ψ ∈ FT . Then ψ is a solution of (3) if

∀〈x1, . . . , xn〉 ∈ SpPX1,...,Xn :
n∑

i=1

ψ (xi, T (x1, . . . , xn)) = 0. (6)

P r o o f . Consider ψ ∈ FT . Then the set (3) is measurable. Moreover {ω ∈
Ω | 〈X1, . . . , Xn〉 ∈ SpPX1,...,Xn} is measurable and has the probability one, so that
(3) follows from (6). 2

We shall call solutions of (6) as T -solutions.

Theorem 1.2. Consider 〈x1, . . . , xn〉 ∈ SpPX1,...,Xn . Suppose that T is contin-
uous at 〈x1, . . . , xn〉, ψ is continuous at points 〈xi, T (x1, . . . , xn)〉 for i = 1, . . . , n.
If ψ is a solution of (3), then

n∑

i=1

ψ (xi, T (x1, . . . , xn)) = 0.
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P r o o f . Consider a function f : Rn 7→ R defined by

∀〈y1, . . . , yn〉 ∈ Rn : f(y1, . . . , yn) =
n∑

i=1

ψ (yi, T (y1, . . . , yn)) .

Hence f is continouus at 〈x1, . . . , xn〉. We want to show that f(x1, . . . , xn) = 0.
Consider 0 < ε. The interval I = (f(x1, . . . , xn) − ε, f(x1, . . . , xn) + ε) is a
neighbourhood of f(x1, . . . , xn) and f is continuous at 〈x1, . . . , xn〉, hence there is an
open neighbourhood U of 〈x1, . . . , xn〉 such that f(U) ⊆ I. Now 0 < PX1,...,Xn

(U),
because 〈x1, . . . , xn〉 ∈ SpPX1,...,Xn

. So that there is some 〈y1, . . . , yn〉 ∈ U such
that f(y1, . . . , yn) = 0, as follows from (3). Hence 0 ∈ I, because f(U) ⊆ I.
Now 0 < ε is arbitrary and 0 ∈ (f(x1, . . . , xn) − ε, f(x1, . . . , xn) + ε), so that
f(x1, . . . , xn) = 0. 2

Corollary 1.1. Suppose that T is a continuous estimator, ψ : R2 7→ R is a
continuous function. Then the conditions (3) and (6) are equivalent.

Assume moreover that PX1 is equivalent to the Lebesgue measure on B1. Then
(3) takes place iff

∀〈x1, . . . , xn〉 ∈ Rn :
n∑

i=1

ψ (xi, T (x1, . . . , xn)) = 0.

Let us turn to L-estimators.

An order statistics corresponding to X1, . . . , Xn will be denoted by X(1), X(2), . . .
. . . , X(n) (see [5], p. 40).

An L-estimator has the form
n∑

i=1

wiX(i), (7)

where wi are constants satisfying
n∑

i=1

wi = 1 (8)

(cf. [5] , pp. 368–369). It is convenient to define w1, . . . , wn by means of a probability
distribution on 〈0, 1〉 (ibid). In such a case an L-estimator equals (7) with nonneg-
ative w1, . . . , wn. Further on, w1, . . . , wn may depend on the value of X1, . . . , Xn;
they are constant (fixed) if observations X1, . . . , Xn are different. Then

X(1) < X(2) < · · · < X(n). (9)

In the following we assume that the distribution function of X1 is equivalent to
the Lebesgue measure. Hence (9) is true almost shurely.

Let us use an L-estimator (7) in (3). We obtain

n∑

i=1

ψ

(
X(i),

n∑

i=1

wiX(i)

)
= 0 a. e. (10)
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From our viewpoint an unknown parameter in the equation (10) is the function
ψ. Thus the functional equation (10) with “known” wi and Xi should be solved.
The task of the presented text could be thus formulated as follows.

What are the L-estimators for which (10) is solvable (in ψ); how do the solutions
of (10) look like?

We shal use the symbols x and y for n-tuples of observed values, i. e.
x = 〈x1, . . . , xn〉, where x1, . . . , xn ∈ R. We introduce an auxiliary set

S = 〈x ∈ Rn |x1 < x2 < · · · < xn〉 (11)

of ordered and different observations. This is motivated by the fact that w1, . . . , wn

are fixed for different observations only.
Consider an L-estimator T . Hence

∀x ∈ S : T (x) =
n∑

i=1

wi xi (12)

is true, where w1, . . . , wn are some nonnegative constants satisfying (8). Assume
moreover that ψ : R2 7→ R is a T -solution. Then

∀ x ∈ S :
n∑

i=1

ψ(xi, T (x)) = 0 (13)

is true. Hence any solution of (13) is a candidate for a T -solution.
The estimator T is continuous on S. Therefore any continuous solution of (3) has

to satisfy (13), as follows from Theorem 1.2.
We shall found all solutions of (13) below. For the sake of simplicity we limit

ourselves for the case when at least three observations are given, i. e. when n ≥ 3.
We shall show that the L-estimators

arithmetical mean

(
w1 = w2 = · · · = wn =

1
n

)

and
empirical quantile (wk + wk+1 = 1 for some k)

are the only L-estimators leading to nontrivial solution of (13). Moreover we shall
found all solutions of (13).

2. ON T -SOLUTIONS OF L-ESTIMATORS

The functional equation (13) will be solved in ψ having the domain R2. The class
of all such solutions of (13) will be denoted by

ΨT,R2 .

Clearly, (13) is true if and only if

∀ x ∈ T−1(t) ∩ S :
n∑

i=1

ψ(xi, t) = 0 (14)

holds for all t ∈ R.
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The following convention will be used repeatedly. If t is not speficied, then t ∈ R
is arbitrary but fixed.

Using this convention we find that each ψ ∈ ΨT,R2 satisfies (14).

Two main cases will be considered concerning coefficients w1, . . . , wn.

(C0) There are at most two positive consecutive elements among w1, . . . , wn

(i. e. at least one of wk−1, wk, wk+1 equals zero for all k = 2, . . . , n− 1).

(C4) There are at least three positive consecutive elements among w1, . . . , wn

(i. e. wk−1, wk, wk+1 are positive for some k ∈ {2, . . . , n− 1}).
The former one will be partitioned into the following three subcases

(C1) wk = 1, k ∈ {1, . . . , n}.
(C2) wk + wk+1 = 1 with wk, wk+1 positive, k ∈ {1, . . . , n− 1}.
(C3) wj = 0 and there are k < j < ` with wk, w` positive, j, k, ` ∈ {1, . . . , n}.

For J ⊆ {1, 2, . . . , n} we denote

y ∼J x

iff y and x differ at most in coordinates from J , i. e. iff yi = xi holds for all
i ∈ {1, . . . , n} \ J .

Lemma 2.1. Let x, y ∈ T−1(t)∩S and x ∼J y take place for some J ⊆ {1, . . . , n}.
If ψ ∈ ΨT,R2 , then

∑

i∈J

ψ(xi, t) =
∑

i∈J

ψ(yi, t). (15)

P r o o f . It holds (14) and ψ(xi, t) = ψ(yi, t) takes place for all i ∈ {1, . . . , n}\J ,
thus (15) is true. 2

Corollary 2.1. Let ψ ∈ ΨT,R2 .

a) If w1 = 0, then ψ(·, t) is constant on (−∞, t).

b) If wn = 0, then ψ(·, t) is constant on (t,∞).

c) If wj = 0 for some 1 < j < n and x ∈ T−1(t) ∩ S, then ψ(·, t) is constant on
(xj−1, xj+1).

P r o o f . We prove the part a) only. Consider x1 and y1 from (−∞, t). There
are x2, . . . , xn ∈ R such that x ∈ T−1(t) ∩ S. Take yi = xi for i = 2, . . . , n. Then
ψ(x1, t) = ψ(y1, t) is true according to Lemma 2.1, hence ψ is constant on (−∞, t).

2

The following two propositions characterize T -solutions of empirical quantiles.
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Proposition 2.1 (Case C1). Let wk = 1 for some k ∈ {1, . . . , n}. Then ψ ∈
ΨT,R2 iff ψ : R2 7→ R and

∀u1, u2, t ∈ R : u1<t<u2 =⇒ (k − 1)ψ(u1, t)+ψ(t, t)+(n− k)ψ(u2, t) = 0. (16)

The form of T -solution ψ for Case C1 is explained below. Consider t ∈ R fixed.
If k = 1, then (16) is equivalent to

∀ u2, t ∈ R : t < u2 =⇒ ψ(t, t) + (n− 1)ψ(u2, t) = 0

and therefore ψ(·, t) is constant on (t,∞). The function ψ(·, t) can reach arbitrary
values on the interval (−∞, t).

If 1 < k < n, then (16) implies that ψ(·, t) is constant on each of the intervals
(−∞, t) and (t,∞). Hence ψ(·, t) can reach at most three values.

If k = n, then (16) implies that ψ(·, t) is constant on (−∞, t). Moreover the
function ψ(·, t) can reach arbitrary values on the interval (t, ∞).

P r o o f . (Proposition 2.1). Assume that wk = 1 for some k ∈ {1, . . . , n}.
If x ∈ T−1(t) ∩ S is arbitrary, then both

x1 < x2 < · · · < xn and xk = t

hold.
(only if) Let us fix ψ ∈ ΨT,R2 and u1, u2, t ∈ R satisfying u1 < t < u2. Consider
x ∈ T−1(t) ∩ S arbitrary.
a1) Let k = 1. Then wn = 0, thus ψ(·, t) is constant on (t,∞) by Corollary 2.1 b,
i. e. ψ(xi, t) = ψ(u2, t) holds for i = 2, . . . , n and x1 = t, so that

0 =
n∑

i=1

ψ(xi, t) = ψ(t, t) + (n− 1)ψ(u2, t).

Therefore (16) is valid, as k = 1.
Analysis of the case k = n is similar.

a2) Let 1 < k < n. Then both w1 = 0 and wn = 0 hold, so that ψ(·, t) is constant
on each of the intervals (−∞, t) and (t,∞). Therefore ψ(xi, t) = ψ(u1, t) holds for
i = 1, . . . , k − 1 and ψ(xi, t) = ψ(u2, t) takes place for i = k + 1, . . . , n. Thus (16)
is true.
(if) Assume that ψ : R2 7→ R satisfies (16). Let x ∈ S and t = T (x). Finally,
consider u1 < t < u2 arbitrary.
b1) Let k = 1. Then ψ(·, t) is constant on (t,∞), thus

n∑

i=1

ψ(xi, t) = ψ(t, t) + (n− 1)ψ(u2, t). (17)

The right-hand side of (17) equals zero, as follows from (16) and k = 1. Thus
ψ ∈ ΨT,R2 .

Analysis of the case k = n is analogical.



558 J. ŠINDELÁŘ

b2) Let 1 < k < n. Then ψ is constant on each of the intervals (−∞, t) and (t,∞).
Thus n∑

i=1

ψ(xi, t) = (k − 1)ψ(u1, t) + ψ(t, t) + (n− k)ψ(u2, t),

i. e. ψ ∈ ΨT,R2 by (16). 2

Proposition 2.2 (Case C2). Let wk and wk+1 be positive reals satisfying wk +
wk+1 = 1, k ∈ {1, . . . , n− 1}. Then ψ ∈ ΨT,R2 iff ψ : R2 7→ R and

∀ u1, u2, t ∈ R : u1 < t < u2 =⇒ kψ(u1, t) + (n− k)ψ(u2, t) = 0. (18)

As can be easily seen, (18) implies that ψ(·, t) is constant on each of the intervals
(−∞, t) and (t,∞).

P r o o f . (Proposition 2.2). Let wk and wk+1 be positive reals satisfying wk +
wk+1 = 1, k ∈ {1, . . . , n− 1}.

If x ∈ T−1(t) ∩ S is arbitrary, then

t = T (x) = wk xk + wk+1 xk+1 (19)

takes place. Thus xi < t holds for i = 1, . . . , k and t < xi holds for i = k+1, . . . , n.
(only if) Let ψ ∈ ΨT,R2 and u1, u2, t ∈ R satisfying u1 < t < u2 be fixed.
a1) Let k = 1. In this case x ∈ T−1(t)∩S can be found such that x1 = u1. Moreover
wn = 0, thus ψ(·, t) is constant on (t,∞) by Corollary 2.1 b, i. e. ψ(xi, t) = ψ(u2, t)
holds for i = 2, . . . , n. Therefore ψ ∈ ΨT,R2 implies 0 = ψ(u1, t)+(n−1)ψ(u2, t) =
kψ(u1, t) + (n− k)ψ(u2, t).

Analysis of the case k + 1 = n is analogical.
a2) Let 1<k and k+1<n. In this situation w1 = wn = 0, thus ψ(·, t) is constant on
both (−∞, t) and (t,∞), so that ψ∈ΨT,R2 implies kψ(u1, t)+(n−k)ψ(u2, t) = 0.
(if) Assume that ψ : R2 7→ R satisfies (18). Let x ∈ S and t = T (x). Finally,
let u1 < t < u2 be arbitrary elements of R. Then ψ(·, t) is constant on each of the
intervals (−∞, t) and (t,∞), which gives

n∑

i=1

ψ(xi, t) = kψ(u1, t) + (n− k)ψ(u2, t).

Thus (18) implies ψ ∈ ΨT,R2 . 2

Trivial mapping from R2 into R will be denoted by σ. Thus σ(u, t) = 0 for all
〈u, t〉 ∈ R2.

Proposition 2.1 (Case C3). In the Case C3 it holds ΨT,R2 = {σ}.
P r o o f . Consider ψ ∈ ΨT,R2 . Let (a, b) ⊆ R be an open interval. Clearly, it

suffices to prove that ψ(·, t) is constant on (a, b). We have k < j < l with wk, wl

positive and wj = 0. Hence there is x ∈ T−1(t) ∩ S satisfying xj−1 < a and
b < xj+1. Thus ψ(·, t) is constant on (a, b) by Corollary 2.1 c. 2
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It remains to analyze the Case C4 when at least three consecutive coefficients
among w1, . . . , wn are positive. We shall show that for any T -solution ψ and any
fixed t ∈ R the function

ψ(t+ ., t)− ψ(t, t)
is additive in this case. Using this fact we prove that if ΨT,R2 6= {σ}, then T is the
arithmetical mean.

It is worth mentioning that a function f : R 7→ R is called additive iff

f(u+ v) = f(u) + f(v) (20)

takes place for all u, v ∈ R.

In the following a slightly more general functional equation then that of (20) is
analyzed, namely a special case of the so-called Pexider’s equation is used (see [1],
pp. 141–142).

Lemma 2.2. Let g, f : R 7→ R and α ∈ (0, ∞). If

g(u+ v) = f(u) + g(v) (21)

holds for any u, v ∈ R satisfying the constraints

0 < u+ v and − α (u+ v) < u < α (u+ v), (22)

then f is additive.

P r o o f . Consider s1, s2 ∈ R arbitrary. Let us take some s ≥ (
1
α + 1

)·(|s1|+|s2|).
We use (21) and subsequently put u = s1 + s2 and v = s; u = s1 and v = s2 + s;
u = s1 and v = s. It is possible to do it because the constraints (22) are fulfilled
in all these three cases. We add the last two obtained equations and substract the
first one from the result. We find that f(s1 + s2) = f(s1) + f(s2) is true. 2

Corollary 2.2. Let g : R 7→ R and α, β ∈ (0,∞). Assume that

g(u+ v) = g(β u) + g(v)− g(0) (23)

holds for any u, v ∈ R satisfying (22). Then g(.)− g(0) is additive.

P r o o f . The function g(β · .)− g(0) is additive by Lemma 2.2, thus g(.)− g(0) is
additive as well. 2

Lemma 2.3. Let wk−1, wk and wk+1 be positive for some k ∈ {2, . . . , n − 1}. If
ψ ∈ ΨT,R2 and t ≤ w, then

ψ(w + ., t)− ψ(w, t)

is additive.

P r o o f . a) We shall consider points x, y ∈ T−1(t) ∩ S satisfying x ∼{k,k+1} y.
Thus it should hold both

wk xk + wk+1 xk+1 = wk yk + wk+1 yk+1
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and
ψ(xk, t) + ψ(xk+1, t) = ψ(yk, t) + ψ(yk+1, t).

The differences xk+1 − xk and xk+1 − yk+1 play key role in the proof. For this
reason we rewrite the above stated equalities as

yk = xk + (xk+1 − yk+1) · wk+1

wk
(24)

and

ψ(xk, t) + ψ [xk + (xk+1 − xk), t] = (25)

= ψ

(
xk + (xk+1 − yk+1) · wk+1

wk
, t

)
+ ψ [xk + (xk+1 − xk)− (xk+1 − yk+1)] .

We specify points x, y mentioned above.
a1) Let us fix xk, xk+1 satisfying

t ≤ xk < xk+1 (26)
(but otherwise arbitrary).
a2) Further on, let yk+1 satisfy

−α(xk+1 − xk) < xk+1 − yk+1 < α(xk+1 − xk), (27)
where

α = wk.

Now yk is computed using (24).
It holds yk < yk+1, as follows from (27) and (24) (namely,

yk < xk + wk+1(xk+1 − xk) < xk+1 − wk(xk+1 − xk) < yk+1).
a3) We take an auxiliary open interval (a, b), where

a = xk − wk+1 (xx+1 − xk)
b = xk+1 + wk (xx+1 − xk) .

All yk+1 satisfying (27) and all corresponding yk computed by (24) lie in (a, b).
Moreover, we introduce an auxiliary constant xn+1 = +∞.

There are x1, . . . , xk−1 less then a and xk+2, . . . , xn+1 greater then b such that
x ∈ T−1(t) ∩ S (which follows from 2 ≤ k, t ≤ xk and 0 < wk−1, wk, wk+1). We
put yi = xi for all i ∈ {1, . . . , n} \ {k, k + 1}.

Thus x, y ∈ T−1(t) ∩ S and x ∼{k,k+1} y take place. Therefore under the con-
straints (26) and (27) the equality (25) holds.
b) Let us put

w = xk, u+ v = xk+1 − xk, u = xk+1 − yk+1.

With this substitution (25) converts into

ψ(w, t) + ψ(w + u+ v, t) = ψ

(
w +

wk+1

wk
u, t

)
+ ψ(w + v, t)

and constraints (26) and (27) convert into (22). If we set g(.) = ψ(w + ., t) and
β = wk+1

wk
, we find that g satisfies (23). Thus g(.)− g(0) = ψ(w + ., t)− ψ(w, t) is

additive by Corollary 2.2. 2
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Proposition 2.4 (Case C4). a) Let

w1 = w2 = · · · = wn =
1
n
. (28)

Then ψ ∈ ΨT,R2 iff ψ : R2 7→ R and ψ(t+ ., t) is additive for all t ∈ R.
b) Let k ∈ {2, . . . , n− 1} be such that wk−1, wk, wk+1 are positive. If (28) does not
hold, then ΨT,R2 = {σ}.

P r o o f . Let wk−1, wk, wk+1 be positive, ψ ∈ ΨT,R2 . Let us fix t ∈ R. Then
ψ(t+ ., t)− ψ(t, t) is additive by Lemma 2.3. If x ∈ T−1(t) ∩ S, then

0 =
n∑

i=1

ψ(xi, t) =
n∑

i=1

{ψ (t+ [xi − t], t)− ψ(t, t)}+ nψ(t, t)

is true, thus
0 = ψ

(
t+

n∑

i=1

[xi − t], t

)
+ (n− 1)ψ(t, t) (29)

holds.
(Part a) Assume that (28) takes place, x ∈ T−1(t) ∩ S. Then

n∑

i=1

[xi − t] = 0. (30)

(only if) Let ψ ∈ ΨT,R2 . Then ψ(t, t) = 0 by (29) and (30), hence ψ(t + ., t) is
additive.
(if) Suppose that ψ(t+ ., t) is additive for all t ∈ R. Then

n∑

i=1

ψ(xi, t) =
n∑

i=1

ψ(t+ [xi − t], t) = ψ

(
t+

n∑

i=1

[xi − t], t

)
(31)

is true, so that n∑

i=1

ψ(xi, t) = ψ(t+ 0, t)

is valid by (30). On the other hand ψ(t + 0, t) = 0 follows from additivity of
ψ(t+ ., t). Thus ψ ∈ ΨT,R2 .
(Part b) Assume for contrary that ψ ∈ ΨT,R2 is nontrivial, i. e that ψ(u, t) 6= 0
for some 〈u, t〉 ∈ R2. Then ψ(t+ ., t)− ψ(t, t) is nonconstant (otherwise ψ(t+ ., t)
is constant; there is x ∈ T−1(t) ∩ S; thus 0 =

∑n
i=1 ψ(xi, t) = nψ(u, t), so that

ψ(u, t) = 0 which is a contradiction).
The relation (28) does not hold, thus there is a nonempty open interval (a, b) ⊆ R

such that

(a, b) ⊆
{

n∑

i=1

[xi − t]

∣∣∣∣∣ x ∈ T
−1(t) ∩ S

}
.

So that ψ(t+ ., t)− ψ(t, t) is constant on (a, b) by (29).
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Now ψ(t + ., t) − ψ(t, t) is nonconstant and additive, thus it is nonconstant on
any nonempty open interval (e. g. on (a, b)) which is a contradiction. 2

Let Tm be the arithmetical mean, i. e. let

Tm(x) =
n∑

i=1

1
n
xi

hold for each x ∈ Rn.
We consider Tm-solutions, i. e. “arithmetical mean”-solutions, satisfying weak

additional regularity conditions. Namely, weak type of measurability of Tm-solutions
will be assumed.

We denote
F =

{
ψ : R2 7→ R |ψ(·, t) is measurable for each t ∈ R}

.

Proposition 2.5. It holds ψ ∈ ΨTm,R2 ∩ F iff ψ : R2 7→ R and

∀u, t ∈ R : ψ(u, t) = (u − t) · h(t), (32)

where h : R 7→ R is arbitrary.

P r o o f . (only if) Let ψ ∈ ΨTm,R2 ∩ F , t ∈ R. Then ψ(t + ., t) is both additive
and measurable, thus ψ(t+ v, t) = v ·ψ(t+ 1, t) holds for any v ∈ R, i. e. ψ(u, t) =
(u− t) · ψ(t+ 1, t) is true for all u ∈ R. Put h(t) = ψ(t+ 1, t) for all t ∈ R.
(if) Let h : R 7→ R be arbitrary, ψ be defined by (32). Then ψ(t+ ., t) is additive,
so that ψ ∈ ΨTm,R2 by Proposition 2.4 a. Clearly, ψ ∈ F . 2
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