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ON LEAST SQUARES ESTIMATION
IN CONTINUOUS TIME LINEAR
STOCHASTIC SYSTEMS 1

Tyrone E. Duncan, Petr Mandl and Bożenna Pasik–Duncan

The sufficient conditions for the convergence of a family of least squares estimates of some
unknown parameters are given. The unknown parameters appear affinely in the linear transforma-
tions of the state and the control in a linear stochastic system. If the noise in the stochastic system
is colored then the family of least squares estimates does not converge to the value and the bias is
given explicitly.

1. INTRODUCTION

This paper considers stochastic systems whose trajectories satisfy the stochastic
differential equation

dX(t) = f(α) X(t) dt + g(α)U(t) dt + dB(t), (1)
X(0) = x

where t ≥ 0, B = {B(t), t ≥ 0} is, unless stated otherwise, an n-dimensional Wiener
process with incremental covariance matrix h ≥ 0, that is formally,

dB(t) dB′(t) = h dt

and U = {U(t), t ≥ 0} is an m-dimensional stochastic process that is nonanticipative
with respect to B. The matrices f(α) and g(α) depend on α as

f(α) = f0 + α1 f1 + · · ·+ αp fp (2)

and
g(α) = g0 + α1 g1 + · · ·+ αs gs (3)

where 0 ≤ p ≤ s are integers and α =
(
α1, . . . , αs

)
is a parameter vector whose

value is estimated from the observation of X and U by a least squares method. The
matrices f0, . . . , fp, g0, . . . , gs are fixed and known. If p ≤ s is not mentioned then
it is assumed that p = s.

Let ` be a symmetric, nonnegative definite matrix. The least squares estimate of
the unknown vector α based on {X(t), 0 ≤ t ≤ T} and {U(t), 0 ≤ t ≤ T} denoted
α?(T ), is the minimizer of the formal functional

L(T ; a) =
∫ T

0

[(
Ẋ(t)− f(a) X(t)− g(a) U(t)

)′
`

(
Ẋ(t) (4)

−f(a) X(t)− g(a)U(t)
)
− Ẋ ′(t) `Ẋ(t)

]
dt.

1This research was partially supported by the U. S. National Science Foundation Grant ECS-
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In (4), Ẋ(t) dt = dX(t) and the undefined product Ẋ(t) `Ẋ(t) is eliminated by
subtraction because it does not depend on a. Equating the gradient with respect to
a of L(T ; a) to zero yields the following family of linear equations

s∑

j=1

∫ T

0

(fi X(t) + gi U(t))′ ` (fj X(t) + gj U(t)) dt α?j(T ) (5)

=
∫ T

0

(fi X(t) + gi U(t))′ ` (dX(t)− f0 X(t) dt− g0 U(t) dt)

for i = 1, 2, . . . , s and α?(T ) =
(
α?1(T ), . . . , α?s(T )

)
. Using (1), (5) can be rewritten

as
s∑

j=1

∫ T

0

(fiX(t) + giU(t))′ ` (fjX(t) + gjU(t)) dt
(
α?j(T )− αj

)
(6)

=
∫ T

0

(fiX(t) + giU(t))′ `dB(t)

for 1, 2, . . . , s.
The family of estimates (α?(T ), T > 0) is consistent (resp. strongly consistent)

if α?(T ) → α in probability (resp. almost surely) as T →∞. The consistency of the
family of estimates is the basis of the concepts of identification and self-tuning.

The results of this paper are presented in the following two sections. In Section 2,
the process U does not depend on X, that is, U is not feedback control. It is
assumed that the empirical covariance function of U converges to a nonrandom
limit as T →∞. The asymptotic distribution of α∗(T ) is obtained and, in the case
that the noise in (1) is colored, explicit formulas for the asymptotic error in α∗(T )
are presented. However the independence hypothesis on X and U is not satisfied in
important cases, e. g. when U is a self-tuning control and α∗(T ) is used to adjust
the feedback gain.

In Section 3 the methods of [3] are extended to the case where the gain factor
acting on U also contains unknown parameters. A sufficient condition for strong
consistency of α∗(T ) is presented. It involves the hypotheses guaranteeing the iden-
tifiability of α under linear feedback controls, stability conditions on X and U , and
an excitation condition on U needed to estimate the parameters occurring solely in
the gain factor. Another approach to strong consistency is given in [2]. Systems
with a drift depending on unknown parameters are treated in [1]. The relaxation of
the stability conditions for estimation is considered in [4].
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Example. For illustration of the subsequent results consider the system described
in Diagram 1.

6

- - - -? ?
k α2 1

s
1

α1+s

⊗ ⊗ ⊗U c U X2 X1

Ḃ2 Ḃ1

+ +

−

Diagram 1.

Let U c be the input signal so the system is described by the stochastic differential
equation

d
(

X1(t)
X2(t)

)
=

( −α1 1
0 1

)(
X1(t)
X2(t)

)
dt +

(
0

k α2

)
U c(t) dt + d

(
B1(t)
B2(t)

)
.

The results of Section 2 can be applied if B is independent of U c.
Let U c be described by

dU c(t) = −α3 U c(t) dt + dB3(t)

and set X3 = U c so that

d




X1(t)
X2(t)
X3(t)


 =



−α1 1 0

0 0 0
0 0 −α3







X1(t)
X2(t)
X3(t)


 dt+




0
k α2

0


 U(t) dt+d




B1(t)
B2(t)
B3(t)


 .

If the gain k has a desirable k(α) that depends nontrivially on the parameter vector
then the results of Section 3 can be used to investigate the self-tuning property of
the family of gains (k(α?(t)), t > 0) where

U(t) = k (α?(t))
(
X3(t)−X1(t)

)

for t ≥ 0.

2. INDEPENDENT INPUT AND NOISE PROCESSES

For two matrices of the same type the dot product is M · N = trace (MN ′). The
terms p-lim and l.i.m. mean the limit in probability and the limit in quadratic
mean, respectively. An ergodic property for U is assumed to obtain the following
asymptotic distribution of α?(T ) as T −→∞.

Proposition 1. Let f = f(α) in (1) be a stable matrix and let U be independent
of B such that

sup
t≥0

E|U(t)|2 ≤ const . (7)

l.i.m.
T→∞

1
T

∫ T

0

U(s)U(s + t)′ ds = R(t) (8)

where t ≥ 0 and R(t) is not random. Let V be the solution of the Lyapunov equation

fV + V f ′ + Qg′ + gQ′ + h = 0 (9)
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where g = g(α) from (1) and

Q =
∫ ∞

0

exp(sf) gR(s) ds (10)

and let θ and ∆ be the matrices given by

θ =
(
f ′i`fj · V +

(
f ′i`gj + f ′j`gi

) ·Q + g′i`gj ·R
)

∆ =
(
f ′i`h`fj · V +

(
f ′i`h`gj + f ′j`h`gi

) ·Q + g′i`h`gj ·R
)

where R = R(0) and i, j ∈ {1, . . . , s}.
If θ is nonsingular, then (α?(T )− α)

√
T has asymptotically the normal distri-

bution N
(
0, θ−1 ∆ θ−1

)
as T →∞.

P r o o f . Let F be defined by

F (s) = exp(sf).

From (1) it follows immediately that

X(t) =
∫ T

0

F (t− s) gU(s) ds +
∫ T

0

F (t− s) dB(s) + F (t)x.

It can be verified using (7, 8) that

p−lim
T→∞

1
T

∫ T

0

X(t)X ′(t) dt (11)

=
∫ ∞

0

F (s)
[∫ ∞

0

(gR(t) g′F ′(t) + F (t) gR(t) g′) dt + h

]
F ′(s) ds = V.

Using (10) we obtain

V =
∫ ∞

0

F (s) [gQ′ + Qg′ + h] F ′(s) ds.

Thus V is the unique, symmetric solution of (9). Similar to the verification of (11)
it follows that

p−lim
T→∞

1
T

∫ T

0

X(t)U ′(t) dt =
∫ ∞

0

F (s) gR(s) ds = Q. (12)

From (7), (8), (11), (12) it follows by passage to the limit in (6) that

p−lim
T→∞

1
T

∫ T

0

(fi X(t) + gi U(t))′ ` (fj X(t) + gj U(t)) dt = θ (13)

for j, j ∈ {1, . . . , s}. For the quadratic variation of the stochastic integral in (6) we
have

p−lim
T→∞

1
T

∫ T

0

(fi X(t) + gi U(t))′ `h` (fj X(t) + gj U(t)) dt = ∆.

Thus the family of random variables

1√
T

∫ T

0

(fi X(t) + gi U(t))′ ` dW (t)

for i = 1, 2, . . . , s and T > 0 has asymptotically the joint N(0, ∆) distribution.
This conclusion follows easily by representing the family of stochastic integrals as
a time changed Wiener process. From (6), (13) it follows that (α?(T )− α)

√
T has

asymptotically a N
(
0, θ−1 ∆ θ−1

)
distribution as T →∞. 2
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Remark. Let U satisfy

d U(t) = cU(t) dt + d0W (t)

where T ≥ 0, c is a stable matrix and 0W is a Wiener process with incremental
covariance matrix r. In this case R = R(0) and Q in (10) satisfy the following
equations

cR + Rc′ + r = 0
fQ + Qc′ + gR = 0.

The effect of the correlation in the noise process in (1) can be seen by assuming
that B satisfies the stochastic differential equation

dB(t) = bB(t) dt + dW (t) (14)

where t ≥ 0, b is a stable matrix and W is a Wiener process such that dW (t) dW ′(t) =
hdt. The consistency of the family (α?(T ), T ≥ 0) is no longer valid. The following
proposition describes explicitly the asymptotic bias of the family of estimators.

Proposition 2. Assume that the hypotheses of Proposition 1 are satisfied and
that B in (1) satisfies (14). Let RB , QB and VB be the solutions of the following
equations

bRB + RBb′ + h = 0
fQB + QBb′ + bRB = 0
fVB + VBf ′ + QBb′ + bQ′

B = 0

and define the matrix θB and the vector β by the following equations

θB = (f ′i`fj · VB)

where i, j ∈ {1, . . . , s} and

β = (f ′1`b ·QB , . . . , f ′s`b ·QB)′ .

If θ + θB is nonsingular then

p−lim
T→∞

α?(T ) = α (θ + θB)−1
β. (15)

P r o o f . Rewrite (1) as

dX(t) = fX(t) dt + (g, b)
(

U(t)
B(t)

)
dt + dW (t). (16)

Let RB(·), R(·) and Q be defined by the following equations

RB(τ) = RB exp(τb)

R(τ) =
(

R(τ) 0
0 RB(τ)

)

Q =
∫ ∞

0

F (s) (g, b)R(s) ds = (Q,QB).
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Applying the method of the proof of Proposition 1 to (16) it follows that

p−lim
T→∞

1
T

∫ T

0

X(t)X ′(t) dt = V + VB

p−lim
T→∞

1
T

∫ T

0

X(t)U ′(t) dt = Q

p−lim
T→∞

1
T

∫ T

0

X(t)B′(t) dt = QB .

The verification of these equations is simplified by expressing the solution of (1) as a
sum of the responses to U and B. Using this same method if equation (6) is divided
by T and T →∞, then (15) is obtained. 2

3. NONANTICIPATIVE INPUT

In this section it is assumed that B in (1) is a Wiener process and it is allowed that
p ≤ s in (2), (3). To achieve the consistency of the family of estimates (α?(T ), T > 0),
the possible values of α must be distinguishable using the weight matrix ` for any
feedback control U(t) = k X(t). If p < s then there are components of α that cannot
be estimated if u ≡ 0 or even if u does not vary sufficiently. This requirement is
reflected in the hypotheses of the following proposition.

√
` denotes the symmetric

square root of `.

Proposition 3. Assume that the following conditions are satisfied:
i) The matrices g = g(α) and h have full rank.
ii) For any gain matrix k ∈ L (IRn, IRm) the family of linear transformations(√

` (fi + gik) , i = 1, 2, . . . p
)

is linearly independent and

span
(√

` (fi + gik) , i = 1, 2, . . . , p
)
∩ span

(√
` gp+j , j = 1, 2, . . . , s− p

)
= {0}.

iii) The family of linear transformations
(√

` gp+j , j = 1, . . . , s− p
)

is linearly inde-
pendent.
iv)

1
T

∫ T

0

(|X(t)|2 + |U(t)|2) dt

for T > 0 is bounded a. s. and

lim
T→∞

|X(t)|2
T

= 0 a. s.

v) If p < s, then for each nonzero y ∈ IRm

lim inf
T→∞

1
T

∫ T

0

(y′U(t))2 dt > 0 a. s.

Then
lim

T→∞
α?(T ) = α a. s. (17)

where α?(T ) gives the minimum of (6).

To verify Proposition 3 a positivity (a. s.) of a quadratic form is verified. This
type of property is often called persistent excitation. By slightly modifying (6) we
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have

s∑

i,j=1

1
T

∫ T

0

(fi X(t) + gi U(t))′ ` (fj X(t) + gj U(t)) dt
(
α?i(T )− αi

) (
α?j(T )− αj

)

=
s∑

i=1

1
T

∫ T

0

(fi X(t) + gi U(t))′ ` dB(t)
(
α?i(T )− αi

)
. (18)

If the quadratic form on the left hand side of (18) is asymptotically positive and the
coefficients of the components of the vector α?(T )−α on the right hand side tend to
zero then we obtain the consistency of the family of estimates (α?(T ), T > 0). The
positivity of the quadratic form is described in the following lemma.

Lemma 1. Assume the hypotheses in Proposition 3. For each nonzero µ ∈ IRs

lim inf
T→∞

s∑

i,j=1

1
T

∫ T

0

(fi X(t) + gi U(t))′ ` (fj X(t) + gj U(t)) dt µi µj > 0 a. s.

(19)

P r o o f . Fix a nonzero µ ∈ IRs. Define the matrices r and q by the following
equations

r =
√

`

p∑

i=1

µi fi

q =
√

`

s∑

i=1

µi gi.

The sum in (19) can be expressed as

1
T

∫ T

0

|r X(t) + q U(t)|2 dt. (20)

If
µ1 = µ2 = · · · = µp = 0 (21)

then by (iii) of Proposition 3, q 6= 0 and (19) follows from (v) of Proposition 3.
Now assume that (21) is not satisfied. The condition (ii) of Proposition 3 implies

that
r + q k 6= 0 (22)

for all k ∈ L (IRn, IRm). By coordinate transformations of X and U it can be
assumed that g satisfies

g =
(

Im

0

)
. (23)

Now the range of U is enlarged to IRn and the input is denoted U. Equation (1) is
modified as

dX(t) = f X(t) dt + U(t) dt + d B(t). (24)

By coordinate transformation on the two summands IRm ⊕ IRn−m it can be as-
sumed that q ∈ L

(
IRm̃, IRn

)
where m̃ ≤ m has full rank. In these coordinates

the control is again denoted U by abuse of notation. Define Q ∈ L (IRn, IRn) as
Q = (q, 0). A control problem for (24) is to minimize (almost surely) the asymptotic
average cost C(T )

T as T →∞ where

C(T ) =
∫ T

0

(
|r X(t) + QU(t)|2 + c |X(t)|2 + c |U(t)|2

)
dt, (25)
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(X(t), t ≥ 0) satisfies (24) and c > 0 is a small parameter.
The algebraic Riccati equation for this control problem is

vf + f ′v + r′r + cI − (v + r′Q) (Q′Q + cI)−1 (Q′r + v) = 0 (26)

and its solution v satisfies the stationary Hamilton–Jacobi equation

inf
u∈IRn

[
2x′vfx + 2x′vu + |rx + Qu|2 + c|x|2 + c|u|2] = 0. (27)

Let U satisfy (iv) and (v) of Proposition 3 and let U = (U, 0). Apply the Itô
formula to X ′(T ) v(c) X(t) and use (26), (27) to obtain the inequality

1
T

∫ T

0

(
|r X(t) + q U(t)|2

)
dt ≥ trace (v(c)h) (28)

− c

T

∫ T

0

(
|X(t)|2 + |U(t)|2

)
+

2
T

∫ T

0

X ′(t) v(c) dB(t)

− 1
T

X ′(t) v(c) X(T ) +
1
T

X ′(0) v(c)X(0).

The last three terms on the right hand side converge (almost surely) to zero by the
assumptions. We shall show that

lim sup
c↓0

trace
(v(c)h)√

c
> 0. (29)

This will verify (19).
Partition the matrix v, that is the solution of (26), into blocks

v(c) =
[

v11(c) v12(c)
v21(c) v22(c)

]

where v11 is an m̃ × m̃ matrix and v22 is an (n − m̃) × (n − m̃) matrix. It follows
easily from the Riccati equation and the fact that v(c) determines the optimal cost
that

v11(c) = u11 + w11(c) (30)

where u11 ≥ 0 does not depend on c and

lim
c↓0

w11(c) = 0.

Furthermore
lim
c↓0

vij(c) = 0

for (i, j) 6= (1, 1). The matrix u11 satisfies

u11 F11 + F ′11 u11 + R11 − u11(q′q)−1 u11 = 0

where

F = f −
(

(q′q)−1 q′r
0

)

F =
[

F11 F12

F21 F22

]

R = r′
(
I − q(q′q)−1q′

)
r

R =
[

R11 R12

R21 R22

]
.
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If R11 6= 0 then u11 6= 0.
Now it is shown that R 6= 0. The nonzero columns of q are eigenvectors of

q(q′q)−1q′ with eigenvalue 1. The vectors that are a basis for the orthogonal comple-
ment of the subspace spanned by the eigenvectors with eigenvalue 1 are eigenvectors
of q(q′q)−1q′ with eigenvalue 0. If R = 0 then the columns of r are in the span of
the columns of q which would contradict (22).

If u11 6= 0 then from (30) it follows that

lim
c↓0

trace (v(c) h) ≥ trace
(√

hu11

√
h
)

> 0

and (29) is satisfied.
If u11 = 0 then R11 = 0. Since R is a symmetric, nonnegative definite matrix

R =
[

0 0
0 R22

]

and R22 6= 0 because R 6= 0. The equation for the (2,2) block elements of (26) is

v21 f̃12 + v22 f22 + f̃ ′12 v12 + f ′22 v22 + R22 + c In−m − c−1 v22 v22 = 0 (31)

where
f̃12 = f12 −

[
(Q′Q + c I)−1 Qr

]
12

and [
r′r − r′Q(Q′Q + c I)−1Q′r

]
22

= R22.

Note that f̃12 and R22 do not depend on c because Q = (q, 0).
Let v(c) be defined by the equation

v(c) = c−1 v(c).

Then (31) can be rewritten in terms of v as

v12 f̃12 + v22 f22 + f̃ ′12 v12 + f ′22 v22 + c−1 R22 + In−m̃ − v22 v22 = 0. (32)

Since |a− b|2 ≤ 2
(|a|2 + |b|2) we have

(v22(c)− f22)
′ (v22(c)− f22) ≤ 2 (v22(c) v22(c) + f ′22 f22) . (33)

Using (32) in (33) we have the inequality

2 v22(c) v22(c) ≥ c−1 R22 + In−m + v21(c) f̃12 + f̃ ′12 v12(c)− f ′22 f22.

Using a property of the trace of a symmetric, nonnegative definite linear transfor-
mation it follows that

( tr v(c))2 ≥ (tr (v22(c)))
2 ≥

∑

j

〈v22(c) ej , v22(c) ej〉

≥ c−1

2

∑

j

〈R22ej , ej〉+
∑

j

〈v21(c) f12ej , ej〉 (34)

+
∑

j

〈ej , ej〉 − 1
2

∑

j

〈f22ej , f22ej〉

where the index of summation j = 1, . . . , n − m̃ and (ej , j = 1, . . . , n− m̃) is an
orthonormal basis of IRn−m̃. Since v21(c) = c−1 v21(c) and limc↓0 v21(c) = 0 it
follows that the right hand side of (34) is bounded below by c−1k where k > 0 and
c is sufficiently small. Thus (29) is satisfied. 2
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P r o o f o f P r o p o s i t i o n 3.
Denote the quadratic form in (19) as

1
T

∑

i,j

Qij(T )µi µj . (35)

Assumption (iv) ensures that for µ, λ ∈ IRs

∣∣∣∣∣∣
1
T

∑

i,j

Qij(T )µi µj − 1
T

∑

i,j

Qij(T ) λi λj

∣∣∣∣∣∣
≤ K|µ− λ|

for all T > 0 where K is a real-valued random variable. From Lemma 1 it follows
using continuity, compactness of the unit sphere in IRs and homogeneity of (19) that

lim inf
T→∞

1
T

∑

i,j

Qij(T ) µi µj ≥ η|µ|2 a. s. (36)

for all µ ∈ IRs where η is a positive random variable. Rewrite (18) using (35) as

1
T

∑

i,j

Qij(T )
(
α?i(T )− αi

) (
α?j(T )− αj

)
=

1
T

∑

i

Li(T )
(
α?i(T )− αi

)
(37)

where

Li(T ) =
∫ T

0

(fi X(t) + gi U(t))′ ` dW (t). (38)

The stochastic integral (38) can be expressed as a random time change of a Wiener
process so the Strong Law of Large Numbers for a Wiener process and (iv) imply
that

lim
T→∞

1
T

Li(T ) = 0 a. s. (39)

for i = 1, 2, . . . , s. Using (36), (37) it follows that there is a random time τ such that
for T > τ

η

2
|α?(T )− α|2 ≤ 1

T

∑

i

Li(T )
(
α?i(T )− αi

)
a. s.

This inequality and (39) verify (17). 2

(Received June 21, 1991.)
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