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LINEAR APPROXIMATIONS
TO SOME NON–LINEAR AR(1) PROCESSES

Jiř́ı Anděl

Some methods for approximating non-linear AR(1) processes by classical linear AR(1)
models are proposed. The quality of approximation is studied in special non-linear AR(1)
models by means of comparisons of quality of extrapolation and interpolation in the orig-
inal models and in their approximations. It is assumed that the white noise has either
rectangular or exponential distribution.

1. INTRODUCTION

Consider a non-linear AR(1) process {Xt} defined by

Xt = λ(Xt−1) + et, t ≥ 1, (1)

where λ is a measurable function and et is a strict white noise with a density h.
A random variable X0 is supposed to be given. Let Ee2

t < ∞. Denote γ = Eet,
σ2 = var et. There are applications such that it is possible to obtain a long realization
of the white noise without any signal. Then parameters of the white noise like γ
and σ2 can be estimated very precisely.

In some cases it can be proved that a non-linear process is stationary. Then there
are two ways how to approximate it by a linear stationary process.

(i) If expectation and covariance function of the non-linear process are known then
one can try to find a linear stationary process with the same characteristics.
Pemberton [4] studied this approach and applied it to special threshold autore-
gressive models, because it was proved in [3] that the autocorrelation structure
of a piecewise constant autoregressive threshold model with k regimes is the
same as that of an ARMA(p, p) model with p ≤ k − 1.

(ii) If the function λ is smooth, then it is possible to expand it in a Taylor series
and to use only its linear approximation. This method is discussed in [6].

In this paper we study quality of approximations of the type (ii). We demonstrate
our ideas on the model

Xt = ωXq
t−1 + et, t ≥ 1, (2)
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where ω > 0, q ∈ (0, 1), random variables et are non-negative and X0 is also a non-
negative variable. In order to compare values obtained by a linear approximation
with the true ones, we need exact formulas for extrapolation and interpolation in
the model (1.2). Such results can be derived only for some distributions of the white
noise et. Here we present two such cases.

A. Rectangular distribution of the white noise. Assume that et ∼ R(a, b)
where 0 ≤ a < b < ∞ and R denotes the rectangular distribution. The model (1.2)
with this white noise will be denoted by R(q, ω, a, b). Further we define R(q, ω) =
R(q, ω, 0, 1).

It is known that for z ≥ 0 the equation x = ωxq + z has a unique positive root
xz. Define α = xa, β = xb. Then there exists a distribution of X0 such that the
process {Xt, t ≥ 0} is strictly stationary and α ≤ Xt ≤ β for all t ≥ 0 (see [1]).

B. Exponential distribution of the white noise. Assume that et ∼ Ex(1)
where Ex(1) is the exponential distribution with parameter 1 having the density
h(x) = e−x for x > 0. In this case we denote the model (1.2) by E(q, ω). For
simplicity, here we investigate only the model E( 1

2 , ω).

Our approximations are based on an AR(1) process Zt = ν + ρZt−1 + εt where
εt is a white noise with Eεt = 0, var εt = σ2. It is known (cf. Lemma A.1) that

µ = EZt =
ν

1− ρ
, varZt =

σ2

1− ρ2
.

Approximations of the parameter ν will be denoted as ν̂, ν̃, etc. and similar
denotations will be used also for approximations of other parameters of the AR(1)
model.

In a simulation study 10 000 realizations of the process R (
1
2 , 1

)
and 10 000 real-

izations of the process E (
1
2 , 1

)
were calculated. The length of each realization was

10 000. The average µ̄ of arithmetic means of realizations and its standard deviation
sµ̄ were calculated as well as the average of empirical autocorrelation coefficients ρ̄
and its standard deviation sρ̄. The results, which will be used in the following parts
of the paper for numerical illustrations, are summarized in Table 1.

Table 1. Results of simulations.

Model µ̄ sµ̄ ρ̄ sρ̄

R (
1
2 , 1

)
1.858 0.0046 0.369 0.0093

E (
1
2 , 1

)
2.578 0.0140 0.282 0.0095

2. METHODS OF LINEARIZATION

Consider model (1.2) with a general non-negative white noise. For q = 0 we have
Xt = ω + et and for q = 1 we have Xt = ωXt−1 + et. In both cases Xt is a linear
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process. It can be expected that q = 0.5 leads to a model which mostly differs from
a linear one.

Consider the model R(q, ω, a, b). The first method of linearization used in this
paper is based on the approximation of the function y = ωxq by its tangent at a
point ξ, which has equation y = ω(1 − q)ξq + ωqξq−1x. Then the model (1.2) can
be approximated by

Zt = ω(1−q)ξq + ωqξq−1Zt−1 + et = ω(1−q)ξq + γ + ωqξq−1Zt−1 + εt (3)

where εt = et − γ. We consider only values ξ ∈ [α, β]. A natural choice would be
ξ = EXt. Since the stationary distribution of Xt needed for calculation of EXt is
rarely known we use ξ = (α + β)/2 in our paper. Lemma A.4 gives that

0 ≤ ωqξq−1 ≤ ωqβq−1 < 1

and thus (2.1) represents a stationary AR(1) model. If a = 0 and b = 1 then γ = 0.5,
α = 1, β = 2.618 and ξ = (α+β)/2 = 1.809. In the case of R (

1
2 , 1

)
, the parameters

of the AR(1) process Zt given by (2.1) are µ̂ = 1.866, ρ̂ = 0.372 and ν̂ = 1.172,
which corresponds to model

Zt = 1.172 + 0.372Zt−1 + εt. (4)

In our second method we approximate the function y = ωxq on [α, β] by a line
y = u + vx derived by the least-squares method. The coefficients u, v minimizing∫ β

α
(ωxq − u− vx)2 dx are

u =
ω

(β − α)4

{
4(β3 − α3)

1 + q
(βq+1 − αq+1)− 6(β2 − α2)

2 + q
(βq+2 − αq+2)

}
,

v =
ω

(β − α)4

{
12(β − α)

2 + q
(βq+2 − αq+2)− 6(β2 − α2)

1 + q
(βq+1 − αq+1)

}
.

In this case we have for the model (1.2) an approximation

Zt = u + vZt−1 + et = U + vZt−1 + εt (5)

where U = u + γ and εt = et − γ. It follows from Corollary A.3 and Lemma A.4
that 0 < v < 1 so that (2.3) represents also a stationary AR(1) model.

Numerically, for R (
1
2 , 1

)
the second approximation gives u = 0.650, v = 0.378 =

ρ̃, µ̃ = 1.848, ν̃ = 1.149 and it yields

Zt = 1.149 + 0.378Zt−1 + εt. (6)

By the way, an AR(1) process {Zt} with parameters corresponding to values µ̄ and
ρ̄ given in Table 1 for the model R (

1
2 , 1

)
, i.e. with expectation 1.858 and autocor-

relation coefficient 0.369 is

Zt = 1.172 + 0.369Zt−1 + εt.
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Other approximations can be based on piece-wise linear functions, which would
lead to threshold autoregression.

Now, consider model E (
1
2 , 1

)
. In this case the distribution of Xt has support

(1,∞). The expectation of Xt is not known. Since
√

x is a concave function, we
have E

√
Xt−1 ≤

√
EXt−1 and thus for stationary {Xt} we get EXt ≤ ξ where

ξ = ξ(ω) =

√
ω +

√
ω2 + 4
2

.

If we approximate the function y = ω
√

x by its tangent at the point ξ, i. e. by
y = ω

√
ξ/2 + ωx/(2

√
ξ), then we come to the model

Zt =
ω

2

√
ξ +

ω

2
√

ξ
Zt−1 + et =

(ω

2

√
ξ + 1

)
+

ω

2
√

ξ
Zt−1 + εt

where εt = et − 1. It is easy to show that the function r(ω) = ω
/[

2
√

ξ(ω)
]

is
increasing on [0,∞) and the equation r(ω) = 1 has a unique root ω0 = 2.62362. It
means that for ω ∈ [0, ω0] our process Zt is stationary. In the special case ω = 1 we
have ξ = 1.272 and

Zt = 1.564 + 0.443Zt−1 + εt (7)

with EZt = 2.809.
The linear least squares approximation of the function ω

√
x on [1,∞) cannot be

used and so we consider its weighted form

min
u,v

∫ ∞

1

e−x(ω
√

x− u− vx)2 dx.

Since
∫

xe−x dx = −xe−x − e−x,

∫
x2e−x dx = −(x2 + 2x + 2)e−x,

∫ √
xe−x dx = −√xe−x +

√
πΦ

(√
2x

)
,

∫
x3/2e−x dx = −x3/2e−x − 3

2
√

xe−x +
3
2
√

πΦ
(√

2x
)

,

we get

u = 2ωe
√

π
[
1− Φ

(√
2
)]

,

v =
ω

2

{
1− e

√
π

[
1− Φ

(√
2
)]}

.

This approximation gives

Zt = u + vZt−1 + et = (u + 1) + vZt−1 + εt
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with εt = et − 1. For ω = 1 we have u = 0.757873, v = 0.310532 and

Zt = 1.758 + 0.311Zt−1 + εt (8)

with EZt = 2.550.

3. ESTIMATING THE PARAMETERS OF THE NON–LINEAR MODEL

Assume that α, β and γ are known parameters. If we have a realization Z1, . . . , Zn

of the process R(q, ω, a, b, ) then EZt and ρ are easily estimable parameters. We
denote their estimates by µ∗ and ρ∗. The moment method applied to (2.1) gives

ω(1− q)ξq + γ

1− ρ∗
= µ∗, ωqξq−1 = ρ∗. (9)

Inserting ξq = ρ∗ξ/(ωq) into the first equation we get for estimates q̂ and ω̂ of the
parameters q and ω the following formulas:

q̂ =
ρ∗ξ

ρ∗ξ + µ∗(1− ρ∗)− γ
, ω̂ =

ρ∗

q̂ξq̂−1
. (10)

In the second method u and v are quite complicated functions of q and ω so that
the equations

u + γ

1− ρ∗
= µ∗, v = ρ∗ (11)

must be solved numerically. The solution of these equations is denoted by q̃ and ω̃.
Consider the model R(q, ω). If we take µ = µ∗ = 1.858 and ρ = ρ∗ = 0.369 then

(3.2) yields q̂ = 0.498 and ω̂ = 0.997. From (3.3) we obtain q̃ = 0.486 and ω̃ = 1.013.
All the estimates are quite close to the true values of the corresponding parameters.

In the model E( 1
2 , ω) we estimate only one parameter ω. The moment method

applied to the first method of linearization leads to equations

µ =

ω

2
√

ξ + 1

1− ω

2
√

ξ

, ρ =
ω

2
√

ξ
.

Their solutions will be denoted by ω∗1 and ω∗2 , respectively.
Using the second method of linearization we come to equations

µ =
2ωe

√
π[1− Φ(

√
2)] + 1

1− ω

2
{1− e

√
π[1− Φ(

√
2)]}

, ρ =
ω

2
{1− e

√
π[1− Φ(

√
2)]}.

Their solutions will be denoted by ω+
1 and ω+

2 , respectively. If we insert values
µ̄ = 2.578 and ρ̄ = 0.282 from our simulations, we obtain

ω∗1 = 0.922, ω∗2 = 0.608, ω+
1 = 1.266, ω+

2 = 0.908.

In this case the estimates considerably differ from the true value ω = 1.
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4. EXTRAPOLATION

Let X̂t be the LS extrapolation of Xt one step ahead based on {Xt−1, Xt−2, . . . }. It
is known that for model (1.1) we have

X̂t = λ(Xt−1) + γ, E(Xt − X̂t)2 = σ2.

The LS extrapolation two or more steps ahead in model (1.1) is more complicated.
Some results for R (

1
2 , 1

)
and for E (

1
2 , 1

)
can be found in the Appendix. In a

simulation of the length n = 10 000 of R (
1
2 , 1

)
one step ahead extrapolations X̂t as

well as extrapolations Z∗t of (2.2) and Z+
t of (2.4) were calculated. The averages of

(Xt−X̂t)2, (Xt−Z∗t )2 and (Xt−Z+
t )2 are denoted by σ̂2, σ∗2 and σ+2, respectively.

They are given in Table 2. Similarly, in a simulation of the length n = 10 000 of
E (

1
2 , 1

)
one step ahead extrapolations X̂t as well as extrapolations Z∗t of (2.5) and

Z+
t of (2.6) were calculated together with the corresponding averages σ̂2, σ∗2 and

σ+2. See Table 2.

Table 2. Results of extrapolations.

Model σ2 σ̂2 σ∗2 σ+2

R (
1
2 , 1

)
0.083 0.084 0.084 0.084

E (
1
2 , 1

)
1.000 1.017 1.060 1.020

Values σ̂2 and σ2 are close which verifies quality of simulations. Values σ∗2 and
σ+2 are also very close to σ2, which shows that the LS extrapolations based on
linear approximations have nearly the same quality as the LS extrapolations in the
considered non-linear models.

5. INTERPOLATION

Formulas for interpolation in models R (
1
2 , 1

)
and E (

1
2 , 1

)
can be found in the Ap-

pendix. Formula for interpolation in linear AR(1) model is well known but for
convenience it is remembered in Lemma A.1. Let X0

t be interpolation of Xt given
{. . . , Xt−2, Xt−1, Xt+1, Xt+2, . . . }. We denote by Z∗it and Z+i

t interpolations in pro-
cesses (2.2) and (2.4), respectively, when we deal with R (

1
2 , 1

)
. If we consider

E (
1
2 , 1

)
then Z∗it and Z+i

t are interpolations in processes (2.5) and (2.6), respec-
tively. A simulation of R (

1
2 , 1

)
of the length n = 10 000 was calculated and the

averages of (Xt −X0
t )2, (Xt − Z∗it )2 and (Xt − Z+i

t )2 denoted by σ̂2
i , σ∗2i and σ+2

i ,
respectively, are given in Table 3. A similar simulation was carried out also for
E (

1
2 , 1

)
.

Table 3. Results of interpolations.

Model σ̂2
i σ∗2i σ+2

i

R (
1
2 , 1

)
0.069 0.075 0.075

E (
1
2 , 1

)
0.882 1.018 1.016
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We can conclude that σ∗2i and σ+2
i are also close to σ̂2

i , but the differences are
larger than in the case of extrapolation.

APPENDIX

Lemma A.1. Let {Zt} be the AR(1) process defined by

Zt = ν + ρZt−1 + εt (A.12)

where ρ ∈ (−1, 1) and {εt} is a white noise with Eεt = 0, Eε2
t = σ2 < ∞. Then

EZt =
ν

1− ρ
, varZt =

σ2

1− ρ2
, corr(Zt, Zt−1) = ρ.

The best linear extrapolation Ẑt of Zt given {Zt−s, s ≥ 1} is Ẑt = ν + ρZt−1. The
residual variance of extrapolation is E(Zt− Ẑt)2 = σ2. The best linear interpolation
Z0

t of Zt given {Zt−s, s 6= 0} is

Z0
t =

ρ

1 + ρ2
(Zt−1 + Zt+1) + ν

1− ρ

1 + ρ2

and its residual variance is E(Z − Z0
t )2 = σ2

1+ρ2 .

P r o o f . The assertion is well known. 2

Lemma A.2. Let −∞ < α < β < ∞. Let f be a continuous function on [α, β].
Let y = u + vx be the least squares approximation of f on [α, β]. Then there exist
x1, x2 such that α < x1 < x2 < β and that u + vx1 = f(x1), u + vx2 = f(x2).

P r o o f . Since u, v are such that
∫ β

α
[f(x)− U − V x]2 dx attains its minimum at

U = u, V = v, the equations
∫ β

α

[f(x)− u− vx] dx = 0, (A.13)

∫ β

α

x[f(x)− u− vx] dx = 0 (A.14)

are satisfied. It follows from (A.2) that there exists x1 ∈ (α, β) such that f(x1) −
u−vx1 = 0. In the remaining part of the proof we assume without loss of generality
that α ≥ 0. If f(x)− u− vx 6= 0 for all x ∈ (α, β), x 6= x1, the we have either

f(x)− u− vx > 0 for α < x < x1,

f(x)− u− vx < 0 for x1 < x < β
(A.15)

or
f(x)− u− vx < 0 for α < x < x1,

f(x)− u− vx > 0 for x1 < x < β
(A.16)
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because f is continuous and other cases such as f(x) − u − vx > 0 for x 6= x1

etc. would be in contradiction with (A.2). Assume that (A.4) holds. Then we can
see that

∫ β

α

x

x1
[f(x)− u− vx] dx <

∫ x1

α

[f(x)− u− vx] dx +
∫ β

x1

[f(x)− u− vx] dx

=
∫ β

α

[f(x)− u− vx] dx = 0

which contradicts (A.3). The case (A.5) is similar. 2

Corollary A.3. Let the assumptions of Lemma A.2 be fulfilled. Moreover, let
f ′(x) exist for all x ∈ (α, β). Then there exists ξ ∈ (α, β) such that v = f ′(ξ).

Lemma A.4. In the model R(q, ω, a, b) we have ωqβq−1 < 1.

P r o o f . Remember that β satisfies β = ωβq + b. Then 1 = ωβq−1 + b/β, which
gives ωβq−1 ≤ 1. Since q ∈ (0, 1), the assertion follows. 2

Let the model (1.1) hold and let X0, . . . , Xt be known. The näıve extrapolation
of the variable Xt+m (m ≥ 1) is given by

X∗
t+1 = λ(Xt) + γ, X∗

t+m = λ(X∗
t+m−1) + γ.

Obviously, there exists a function Hm such that Xt+m = Hm(Xt). The functions
Hm, m ≥ 1, satisfy

H1(x) = λ(x) + γ, Hm+1(x) = λ[Hm(x)] + γ for m ≥ 1.

The least squares extrapolation of Xt+m is

X̂t+m = Km(Xt)

where

K1(x) = λ(x) + γ, Km+1(x) =
∫ ∞

−∞
Km(y)h[y − λ(x)] dy (A.17)

for m ≥ 1 (see [5], p. 346, and [2]). We can see that K1(x) ≡ H1(x) but for m ≥ 2
we have generally that Hm(x) 6≡ Km(x).

Assume that variables X0, . . . , Xj−1, Xj+1, . . . , Xn are known. Let X\j = {x0, x1,
. . . , xj−1, xj+1, . . . , xn} where xj (1 ≤ j ≤ n − 1) is excluded. Then conditional
densities p(.|.) satisfy

p(xj |X\j) =
1
K

p(xj |xj−1)p(xj+1|xj) (A.18)

where
K = p(xj+1|xj−1) =

∫
p(xj |xj−1)p(xj+1|xj) dxj
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[see [5], p. 319, formulas (5.222) and (5.223)]. Since et has the density h, we have
p(xj |xj−1) = h[xj − λ(xj−1)]. The least squares interpolation of Xj is

X0
j = E(Xj |X\j) =

∫
xjp(xj |X\j) dxj .

Now, we specify the general formulas to the two cases of the model (1.2) mentioned
in Introduction.

A. Rectangular distribution of the white noise. In the model R(q, ω, a, b) it
is clear that

K1(x) = H1(x) =
a + b

2
+ ωxq,

H2(x) =
a + b

2
+ ω

(
a + b

2
+ ωxq

)q

and simple calculations give

K2(x) =
a + b

2
+

ω

(b− a)(1 + q)
[
(b + ωxq)1+q − (a + ωxq)1+q

]
.

If m ≥ 3 then expressions for Km(x) are complicated even for such values of q which
admit derivation of explicit formulas. In our paper we consider only the case a = 0
so that et ∼ R(0, b). Then h(x) = 1/b for 0 < x < b and h(x) = 0 otherwise.
Formula (A.7) gives

p(xj |X\j) =
1

min{x2
j+1, b +√

xj−1} −max{√xj−1, (xj+1 − b)2}

for
max{√xj−1, (xj+1 − b)2} < xj < min{x2

j+1, b +
√

xj−1}
and 0 otherwise. From here it is clear that the least squares interpolation X0

j of Xj

given X\j is

X0
j = E(Xj |X\j) =

1
2
[min{x2

j+1, b +
√

xj−1}+ max{√xj−1, (xj+1 − b)2}].

B. Exponential distribution of the white noise. Here we consider the model
E( 1

2 , ω). First we have

K1(x) = H1(x) = ω
√

x + 1,

H2(x) = 1 + ω

√
ω
√

x + 1.

Further computations lead to

K2(x) = 1 + ω3/2 4
√

x +
√

π ωeω
√

x[1− Φ(
√

2ω 4
√

x)]
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where Φ is the distribution function of N(0, 1). Further we have H1(x) = K1(x).
To find explicit formulas for interpolation we need integrals

∫
e−x+ω

√
x dx = −e−x+ω

√
x + ω

√
πeω2/4Φ

(√
2x− ω√

2

)
,

∫
xe−x+ω

√
x dx =

ω

2

(
3 +

ω2

2

)√
πeω2/4Φ

(√
2x− ω√

2

)

−
(

1 +
ω2

4
+

ω

2
√

x + x

)
e−x+ω

√
x

which can be obtained by direct calculation. The conditional density of Xj given
X\j is

q(xj) = p(xj |X\j) = Ke−xj+ω
√

xj

for
ω
√

xj−1 < xj < x2
j+1/ω2

and zero otherwise where

K−1 = exp{−ω
√

xj−1 + ω3/2 4
√

xj−1} − exp

{
−x2

j+1

ω2
+ xj+1

}

+ω
√

πeω2/4

[
Φ

(√
2 xj+1

ω
− ω√

2

)
− Φ

(√
2ω 4
√

xj−1 − ω√
2

)]
.

The least squares interpolation of the random variable Xj is

X0
j = K−1

(
ω

2

(
3+

ω2

2

)√
πeω2/4

[
Φ

(√
2 xj+1

ω
− ω√

2

)
−Φ

(√
2ω 4
√

xj−1− ω√
2

)]

+
(

1 +
ω2

4
+

ω3/2

2
4
√

xj−1 + ω
√

xj−1

)
exp{−ω

√
xj−1 + ω3/2 4

√
xj−1}

−
(

1 +
ω2

4
+

xj+1

2
+

x2
j+1

ω2

)
exp

{
−x2

j+1

ω2
+ xj+1

})
.
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