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SEPARATION OF CONVEX POLYHEDRAL SETS
WITH COLUMN PARAMETERS

MILAN HLADIK

Separation is a famous principle and separation properties are important for optimiza-
tion theory and various applications. In practice, input data are rarely known exactly and
it is advisable to deal with parameters. In this article, we are concerned with the basic
characteristics (existence, description, stability etc.) of separating hyperplanes of two con-
vex polyhedral sets depending on parameters. We study the case, when parameters are
situated in one column of the constraint matrix from the description of the given convex
polyhedral set. We provide also a lot of examples carried out on PC.

Keywords: separating hyperplane, parameters, convex polyhedra, solution set, stability set
AMS Subject Classification: 90C31, 39B82, 52B99

1. INTRODUCTION

There are several kinds of separability of convex sets (cf. [8]). For the purpose of
this paper it is convenient to introduce the following one.

Definition 1. Convex sets X,)Y C R" are called strongly separable if dim X =
dim) = n and there exists a hyperplane R = {z € R" | rTx = s} such that
XCR ={zcR"|rTz<s},and Y CRT = {x € R" | rTx > s} hold. R is
called the separating hyperplane of the sets X', ).

We will use the following well known separation theorem (see e.g. [3, 7, 10]):

Theorem 1. Convex sets X', ) C R™ are strongly separable if and only if dim A =
dimY = n, and int X Nint Y = (.

_In this paper we study the strong separability of two convex polyhedral sets
(AeR™" C eR>*" beR™, dcRY:

M, = {z € R" | Az < b}, (1)
My ={z eR"|Cz < d}. (2)
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The first attempt to systematically study separation under uncertainty was done
in [6], where we derived the basic separation properties of the sets (1), (2) with
parameters on the right-hand side of inequalities. Some of there obtained results,
which we need in this paper, will be presented in this section. In the following
sections we study separation for the case when there are parameters in one column
of the matrix A. Parameters in one line (column or row) is the most general case
which still leads to quite strong results. In dealing with parameters, we are inspired
by [1, 2, 9]. We will define so called solution set (Section 2) and in the sequel the so
called stability sets (Section 4) and derive their description. The terms “solution”
and “stability set” are taken over from [9], but the meaning is a bit different (we
do not work with an objective function). Many examples of stability sets that were
carried out on PC are presented in tables at the end of the paper. The Section 6
gives an application in the field of multiobjective programming.

Let us introduce some notation. Given a matrix M, the expressions M; ., M. ;
denote the ith row and the jth column of the matrix M, respectively. Vector ey
denotes the kth unit vector. For given vectors a, b € R*, the expression a < b means
a; < b; Vi. For any set X let us denote by X, int X, dim X', and conv X the closure,
the interior, the dimension, and the convex hull of X', respectively. A sign of a real
number r € R is defined as

0 r=0,
sgn(r) = 1 r>0,
-1 r<O.

Definition 2. A basis of a convex polyhedral set described by Mx = v, * > 0
(M eR™ " veR™ m<n) is any vector B€{1,...,n}" for which rank(M g)=m
holds (where M p means the restriction of the matrix M to the basic columns).
A basis B is feasible if Mz'v > 0.

A sub-basis of the convex polyhedral set described by Mz < v (M € R™*"
v € R™) is any vector S € {1,...,m}", 1 <k < n, for which rank(Mg) = k holds
(where Mg in this case means the restriction of the matrix M to the sub-basic
rows). A sub-basis S is called feasible if {x € R" | Mgz = vg, Myz <vn} # 0
for N ={1,...,m}\ S. A basis of Mx < v is any n-elemental sub-basis.

Let us introduce

~T ~T
A C 0 u 0 u

QF = {(u,v,vl“) e R+ 'I;T ET 1 v | =(0], v > 0}.
17 1T o V41 1 V41

With the help of the convex polytope Q" we can describe all separating hyperplanes
of M; and Msy. Theorem 2 and Theorem 3 come from [6], but they have origin
in [4, 5.

Theorem 2. Suppose that dim M; = dim My = n, int My Nint My = 0. Let
(w,v,v141) € O, uT A # 07, and € (0,v;41) is arbitrary. Then

R={xcR"|u(Az — b) =1} (3)
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represents a separating hyperplane of the convex polyhedral sets M 1 and MVQ. Con-
versely, any separating hyperplane R of M; and Mp can be expressed in the form
of (3) for a certain (u,v,v41) € @*, uT A # 0%, and n € (0,v141).

Theorem 3. Let dim le = dim MQ = n. Then the convex sets le and Mvz are
strongly separable if and only if Q* # ().

2. SOLUTION SET

From now on, we study the situation, when there are parameters in one column
of the matrix A from (1) instead of fixed values. We can assume without loss of
generality that parameters are situated in the last column of ;l, i.e., A= (A §) for
fixed matrix A € R™* (=1 and vector of parameters § € R™. The problem will
not be more complicated if there are parameters in the last column of the matrix C
from (2) as well, i.e., C = (C p) for fixed C € R~ and vector of parameters
p € Rl Let us introduce the family of convex polyhedral sets

M;(0) ={(xz,x,) e R" | Ax + dx,, < b}, (4)
Ma(p) ={(z,2,) € R" | Cz + pa, < dj, (5)

where b € R™, d € R!. Assume that matrices (A b), (C d) do not contain the zero
TOW.
Furthermore let us introduce

My ={xeR" | Az < b}, (6)
My={xcR" | Cx <d}. (7)

The following statements hold trivially.
If My # 0, then M1(8) # 0V € R™ (since when © € My, then (x,0) € M;(4)).

If dimM; = n — 1, then dimM;(d) = n YV € R™ (since when x € int M1, then
(z,0) € int M;(6)). Analogously for the set M.

Definition 3. The solution set (for the strong separability of the convex polyhedral
sets M (d) from (4) and My () from (5)) is the set of all (§, u) € R™*+ such that
the convex polyhedral sets M (d), Ma(p) are strongly separable.

Let us introduce
Py ={d € R" | dim M, (§) = n}, (8
Py = {pu € R' | dim My(p) = n}. (9
P =P xPy={(8,p) € R | dimM;(X) = dimMa(p) = n}, (10
U={(8,p) € R |int M;(8) Nint My (p) # 0}. (11

—_ — —

From Theorem 1, Theorem 3, and from definition of the sets P and U we get the
following assertion.
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Assertion 1.
(i) The solution set for M;(d), Ma(p) is equal to P\ U.
(ii) We have Y C P.

Assertion 2. If dimM; = dim My = n — 1 and the convex polyhedral sets Mj
and My are not strongly separable, then the solution set for Mi(d), Mao(p) is
empty.

Proof. From the assumptions of the assertion it follows that there exists a point
2? € R"! such that 2° € int M; Nint M,. Hence for all § € Py, u € Py the
inclusion (z°,0) € int My (8) Nint Ma(p) holds and therefore the convex polyhedral
sets M1 (d), Ma(p) are not strongly separable. O

Now we will be concerned with the description of the set P;. The description of
P2 and P will be analogous.

Theorem 4. The set P; has the description
Pr=Vi U=V, (12)

where

Vi={0eR™|hld>0Viel} (13)

and h;, i € I, are extremal directions (vectors in directions of unbounded edges) of
the convex polyhedral cone

Nap={ycR" | ATy =0, b"y <0, y >0} (14)

Proof. Py is the set of all § € R™ for which int M;(8) # () or equivalently
{(z,z,) eER" | Ax + 0z, <b—€} #0 (15)

for an infinitesimal vector € > 0. The situation (15) holds for a vector ¢ if and only
if the problem
P max {072 + 0z, | Az + 6z, <b— €}

has an optimal solution. It follows from the theory of duality in linear programming
that this is equivalent to the condition, that the problem

min {(b—¢)'y | ATy =0, 6"y =0, y >0} (16)

has an optimal solution. The set of feasible solutions to the problem (16) forms a
convex polyhedral cone. Therefore the problem (16) has an optimal solution if and
only if

{yeR™|ATy=0,68"y=0,y>0, (b—e)Ty<0}=0,
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or, equivalently
{yeR™|ATy=0,6"y=0,y>0, by <0, y+0}=0.
Hence P; is the set of all 6 € R™ for which
{y € Nap | 6"y =0} = {0} (17)

holds. We claim that P, = V; U —V;.

Let 8° € V. Then hiTJO > (0 Vi € I. Each nontrivial vector y € Nap can be
expressed as a linear combination y = >, _; a;h; for certain a; > 0, >, ; a; > 0.
Therefore

yTo% = Zaihdeo >0
iel
and the condition (17) holds. Analogously for 6° € —V).

Conversely, let 8° € R™ and suppose that the condition (17) holds. Then either

yT8° > 0 for all nontrivial y € Nap or yT8° < 0 for all nontrivial y € Nap. In

the first case we specially have h] 8° > 0 Vi € I and thus 6° € V;. In the second
case we analogously have 8° € —V;. ]

Theorem 5. The set U has the description
U=t u-iU

where
Uy ={(8,p) e R" |hIs5+ g7 >0 Viel} (18)

and (hz-T, g7l), i € I, are extremal directions of the convex polyhedral cone

{(y,2) eR™ | ATy + CT2z =0, bTy+d"2<0, y,z > 0}. (19)

Proof. Theset U can be rewritten asif = { (&, u) € R™T! | dim (M (8) N Ma ()
=n}. When we apply Theorem 4 to the family of convex polyhedral sets M1(d) N
M (p), we obtain the resulting description of the set . O

Let us introduce

P1={6 € R™ | My(9) # 0},
Ph={pmeR" | My(p) # 0}

Now we will derive the description of the set P;. The description of Pj will be
analogous.
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Theorem 6. Let us consider the convex polyhedral cone Nap from (14). Let
g;, i € I1, be extremal directions of NMap with the property g7b < 0 and let
h;j, j € I, be extremal directions of Nap with the property hj b = 0. If I; = 0,
then P; = R™. Otherwise the set P; has the description

Py =V, U=V,

where , T ) T )
Vi={0eR"|g;0>0Viel,, hj6>0Vje L}

Proof. Py is the set of all § € R™ for which M;(§) # 0, i.e., the problem
max {072 + 0z, | Az + dx, < b}

has an optimal solution. It follows from the theory of duality in linear programming
that this is equivalent to the condition, that the problem

min {b"y | ATy =0, 6"y =0, y > 0} (20)

has an optimal solution. The set of feasible solutions to the problem (20) forms a
convex polyhedral cone. Therefore that the problem (20) has an optimal solution if
and only if

{yeR™ | ATy =0, 6"y=0, y >0, bTy <0} =0. (21)

Hence Pj is the set of all § € R™ for which (21) holds. If I; = 0, then "y = 0 for
all y € Nap and thus P; = R™. Otherwise we assert that P| = V| U —V.

Let 6° € V. Then g76° > 0 Vi € I and h]8° > 0 Vj € I. Each point
ye{yeR™| ATy=0,bly<0, y> 0} can be expressed as a linear combination
Y= cr, ¥ig; + Zjeh Bjh; for certain oy, B; > 0, >, i > 0. Therefore

yT8% = Z gl + Z ﬂjth(SO >0
i€l jel
and the condition (21) holds. Analogously for 6° € —V).

Conversely assume, that 6° € R™ and the condition (21) holds. Then either
yT6% > 0 for all {y € R™ | ATy =0, b'y <0, y > 0} or y786° < 0 for all
{y e R™ | ATy=0,b"y<0, y> 0}. In the first case we specially have gZT(SO >0
Vi € I) and for infinitesimal & > 0 also (1 — €)hj 6° + 77 ,c;, 97 6° >0V € I,
Hence (1 — s)h]T(SO > 0 for infinitesimal € > 0, and thus hf(so >0Vjel It
follows that 6° € V{. In the second case we analogously have 6° € —V). g

3. DESCRIPTION OF SEPARATING HYPERPLANES

Let us introduce

u

Q*((s,p,) = {(uavvvl+1) € R ‘ Z(57H)< v > =z, (u’v7vl+1) > 0}7 (22)

Vi41
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where

AT cT o 0
8T T 0 0
Z(o,p) = b7 ZT 2=
1T 1T o 1

For the explicit description of all separating hyperplanes of the convex polyhedral
sets M1(9), Ma(p) with 6 € Py, p € Py and int M;(d) Nint Mo(p) = 0 we can
directly use Theorem 2.

Assertion 3. Letd € Py, p € Pa, (u,v,v41) € Q*(8, ). Suppose that (u” A, u’'é)
#(07,0), and 7 € (0,v;41) is arbitrary. Then

R ={(z,z,) € R" | ul (Azx + éz,, — b) =1} (23)
(

represents a separating hyperplane of the convex polyhedral sets M; ()
Conversely, any separating hyperplane R of convex polyhedral sets M; (

can be expressed in the form of (23) for a certain (u, v, v;41) € Q*(, u), (u” A, u”6)
# (07,0), and 1 € (0,v141).

4. STABILITY SETS

In this section we deal with the so called stability sets. Stability sets are defined in
a similar way as in [6, 9]. It is natural to define stability sets as sets of all (4, )
such that all the sets Q*(d, u) from (22) have the same system of feasible bases.

Definition 4. Let an arbitrary vector (6°, u°) from the solution set P \ U be given
and suppose that the set Q* (60, u°) is nonempty. Denote by S the system of all fea-
sible bases of the convex polyhedral set Q*((SO, u®). The stability set corresponding
to the system & is the closure of the set of all (§, u) € P\ U under which all feasible
bases from S remain feasible for Q*(d, u).

Note that stability sets are defined as closed sets only for computational purposes.
We will see later (Remark 1) that an additional point lies only on the border of the
stability set.

Without loss of generality let us assume that

AT cT
rank (1T 1T> =n.

Otherwise it would occur one of the following possibilities:
(i) If rank (‘i‘TT fTT) = rank (AT ¢7), then Q*(§, u) = 00 V&, u and the solution
set is empty.
(ii) If rank (‘i‘TT ?:) > rank (A7 ¢7), then rank (A7 ¢”) < n — 1 and in the
description of Q*(d,u) there are linear dependent equations, which we can
remove.
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Now we will derive the description of stability sets. Let (8°, u°) be from the
solution set and B a feasible basis of the convex polytope Q*(Jo,uo). Denote
D, pn) = Zp(d,p), D = D(8°, u®). The basis B remains feasible for all val-
ues of parameters §, p satisfying the relation

D_1(67 N)Z 2 0. (24)
Define vectors p € R**2, q,q € Rm++1:
(1) 5—6° 5
p=e.= || a=|p-n"), a={p
0 0 0

From the assumption 1 + EigD_lp % 0 and the well known Sherman—Morrison
formula it follows

_ D 'pg D!
D8, 1) = (D +pgp) ' =D~ - —LIB

1+qpD7'p
Since for the choice 8 = 8°, p = u° the denominator 1+6£D71p =1 (i.e. positive),
assume moreover the following constraint

1+q5D p>0. (25)

Let us rearrange the expression (24):
D (6,pu)z >0,

., D le,g5D7!
D™ - | eni2 2 0,
1+qgpD e,
—1~T -1
D',anD',n+2

D! . —
gD

> 0.

From the assumption (25) is this inequality equivalent to
DZyo + Do (@pD7) = D(@pDo,0,) 2 0. (26)
Since ag =q% — D,, ., the expression (26) is equivalent to
Do+ Dot (95 = D)D) = D (g5 — Do) Do) 20,
D. . 15(q5D7,) = Do(gpDo, ) 20, (27)

The expression (27) represents a system of linear inequalities with respect to the
variables 9§, p.

Remark 1. Let us investigate the expression (25). It is equivalent to
1+ (q5 — D,.)D7) >0, or, to q5D7, >0. (28)
When we multiply the system (27) by the vector D,,1o. > 0, then we obtain
(Drs2,D7,15)(a5 D7) = (Doy2 - D73) (5D ,05) 20, gpDT, > 0.

Since the stability set is defined as a closed set, the constraint (28) is redundant.
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Remark 2. (Description of stability sets) Given 0%, pu® from the solution set
P \U. The stability set (corresponding to 8°, u°) is the set of all (8, u) € P\U
satisfying the following systems of inequalities

D, (gD ) — D (qED7) ) >0

for all feasible bases B of the convex polytope Q* (607 u10) from (22). There is always
a finite number of stability sets.

Example 1. Let

a= () o=(1) e= (v a2,

We will provide the description of the solution set and all stability sets.

T2

A
1 4

/

Fig. 1. Tllustration to Example 1 for values 6 = (1,1)7, p = (-1).

Since the convex polyhedral cone N4 p from (14) contains only one extremal
direction hy = (1,1)T, the set P; (according to Theorem 4) is described as follows

Pr={6cR?* |6+, >0}U{6 €R? |5 +dy <O}

The set Ps is equal to R, since the convex cone Ng g = {y € R! | CTy=o0,dy
<0, y > 0} = {0} has no edge. The convex polyhedral set (19) has the description

{(1,92,21) ER® | y1 —yoa — 21 =0, —y2 — 221 <0, y1,92,21 > 0}

and has two edges in direction of (h}, hi, g1) = (1,1,0,1)T and (h2, h3, ¢?)
= (1,0,1,2)T. Hence the convex polyhedral set U, from (18) is described as follows

U = {(61,02,p11) €R? | 81+ 65 >0, 61 + p1 > 0}
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The solution set is (according to Theorem 1) described by

P\Ll Z{((51752,,U,1) e R? | 01+ >0, 61 +p < O}U
{(01,02, 1) €R3 | &1 + 82 <0, 6y + g >0}

Now we will compute all stability sets according to Remark 2.

1. Choose (0},03,ut) from the solution set, e.g. in this way: (01,03, u}) =
(1,1,—1). The convex polytope Q*(6+,03,ut) has only one feasible basis,
B = (1,2,3,4), and the first stability set is described by the following sys-
tem of inequalities

01 +62 >0, 6y +p1 <O0.

2. Choose (02,02, u?) from the solution set, but not from the first stability set, e. g.
in this way: (67,05, u?) = (—1,—1,1). The convex polytope Q* (67,63, u?) has
only one feasible basis, B = (1,2,3,4), and the first stability set is described
by the following system of inequalities

01+ 682 <0, 6y +p1 > 0.

We have obtained two stability sets (except degenerated stability sets, which have
a dimension less than n) the solution set consists of.

Tables 1—2 contain further results obtained on PC (x86), Pentium 4, 2.6 GHz,
512 MB RAM, Gentoo Linux. Our source code was written in MATLAB 6.5. In each
of the mentioned tables, the number of stability sets and the computing time (in
minutes and seconds) is written down for given matrix A, vector b, matrix C and
vector d. The input data of A, C, b, d were generated pseudorandomly. With the
increase of m, I, n the number of stability sets and the computing time increases
very rapidly.

5. A PERMANENT SEPARATING HYPERPLANE

Let us consider the convex polyhedral sets My (d), May(p) from (4), (5) with the
property & € 21, p € 25, where Z; C R™, Z, C R! are convex polytopes. Let
us assume that Z; C P and Z; C Pj. Moreover, we will assume for the sake of
simplicity, that all the convex polyhedral sets M;(d), § € Z;, Ma(u), p € 25
contain at least one vertex. The question is, whether there exists a fixed hyperplane
‘R such that:

Ml(é) Q F Vé e Z1, MQ(H) Q FVM S ZQ.

Such a hyperplane R is called a permanent separating hyperplane. Note that a
permanent separating hyperplane need not exist even if M;(8), Ma(p) are sep-
arable for all § € Z;, p € Z5 (see Example 2). We will check the existence of
a permanent separating hyperplane by the following process: Compute the convex
hulls conv (Usez, M1(6)) and conv (Upez, Ma(p)) and check separability of these
convex hulls.
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Table 1. Examples in R?, pseudorandom data.

number of

matrix A | vector b | matrix C | vector d | stability sets | computing time
-1 -1
(7 1) <7 1) 12 15
-5
(_4) ( 9) 44 15s
12
1
-1 8 8
9 1 —6 90 1 min 19 s
—4 -5 2

—8 11

! —6 3
—1 206 4 min 8 s

( 0) -9 -5

—2 12

0 —4 —6 3

8 0 0 6 .

6 _3 9 10 968 29 min 51 s

-9 9 —1 -5

Lemma 1. Let B; be a sub-basis of the convex polyhedral set M;(d). Let us
consider the following convex polyhedral cone

NBI = {(y,z) e R™ ‘ Agly+A%12 =0, bgly + bﬁlz < 0, z > O}a (29)

where Ny = {1,...,m} \ By. Let us denote by (97, 97), i € I1, extremal directions
of N, with the property (g¥,97)7 (bs,,bn,) < 0 and denote by (h¥,h%), j € Iy,
extremal directions of N, with the property (hY,h3)"(bp,,by,) = 0. The set S,
of all § € R™ for which the sub-basis B is feasible for M;(d) has the following
description:

If I; = 0, then Sp, = R™. Otherwise

Sp, = Sp, U85,
where
Sp, ={0€R™ | (¢¢,97)" (65,,6n,) >0 Vie L,
(hY,h%)"(8p,,0Nn,) 20V j € I}

Proof. Feasibility of the sub-basis B; preserves for the values § € R™ for which
the set

{:c e R"” | ABICL' + 6Blmn = bB17 Ale + 5]\{1.%'” < le}
= {CB e R" | A31$+631xn < bBl, 7A31$7531(£n < 71)31, AN1:13+5N1(£“ < le}
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Table 2. Examples in R?, R?, pseudorandom data.
number of computing
matrix A vector b matrix C vector d | stability sets time
5 5 5 -8 9 —6
7 1 -5 4 8 6 41 25 s
-6 —6 -5 2 2 11
-7 8 —6 :g ’13 _74
3 7 6 429 10 min 45 s
8 -9 6 78 0
1 7 -3
0 -3 7
5 =3 6 7T -1 4
0 8 11 —4 5 -5 608 29 min 56 s
9 9 0 -5 6 6
-7 =7 -2
IS AR R I
-7 1 1 —4 44 27 s
9 8 4 - -4 -7 =2 —6
2 6 -2
7 6 -2 -3 4 5 =7 3
—6 3 3 2 -4 -1 -4 1 .
_9 0 —2 _3 9 5 _4 12 131 3 min 56 s
8§ —4 7 3 -7 =3 —1
is non-empty. Consider the convex polyhedral cone
{(y',y%, z) e R™HP AL o' — AT o° + Az =0, (30)

bhy' —bp y?+by,z<0, ¥y’ z >0}

Denote by (gi,g?,g7), i € I;, the extremal directions of the convex polyhedral cone
(30) with the property (g}, g?,9%)7 (bp,, b, by,) < 0and by (h}, h3,h?), j € I},
the extremal directions of (30) with the property (hjl-7 h?, h3)"(bp,,~bp,,by,) = 0.
After substitution y = y' —y°, g¥ = g; —g7, hY = h} - h? we obtain the statement
of Lemma 1 according to Theorem 6: If a vector (g}, g?, g7) represents an extremal
direction of (30), then the vector (g7, g7) is zero or represents an extremal direction

of (29), and vice versa. Likewise for vectors (hjl, h?, h%) and (h¥, h%).

O

Let 6° € R™ and B; be any feasible sub-basis of M1 (8°). Let us introduce

80 _
Sp, =

Rm
Sy, if 8% e Sy,
-8z, if 8% € =Sy,

if I; =0 (from Lemma 1),
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Lemma 2. Let 8° € R™ and S be an arbitrary (n — 1)-elemental sub-basis of the
convex polyhedral set Ml(éo). Let us assume that the basis S determines an edge
of M;(8°) unbounded in the direction of (h°, h%) # (0,0) and this edge originates
from the vertex corresponding to the basis S U {i} for a certain i € {1,...,m}\ S.
Then the set H% of all § € R™ for which the edge, corresponding to the sub-basis
S, represents an unbounded edge of M, (d) originating from the vertex determined
by the basis S U {i}, has the following description:
If hY =0, then HY = ng{i}. Otherwise

My = {0 €85,y | (6;—AT.AG 8s)sgn(hd) <O Vje{1,...,m}\ (SU{i})}. (31)

Proof. Any unbounded edge of the convex polyhedral set M1 (d) corresponding
to the sub-basis S and originating from the vertex determined by the basis S U {i}
is described by the system

Agx +0szy, =bg, A;.x+ 0z, <b;

and is unbounded in direction which represents (according to [11]) a nontrivial so-
lution to

Asx +905x, =0, A; .x+ 0z, <0, (32)

whereas the inequalities A; .@ +J,2, <0 with j € {1,...,m}\ (SU{:}) if added to
(32) are redundant. For the special case when (z,z,) = (h°,h0), § = 6" we have

Agh® 4+ 6%h8 =0, A;.h" + 6210 <0.
If h% = 0, then the vector (h°, h0) is obviously an extremal direction of M (8) for all
NS ng{i}. Otherwise, the matrix Ag must be nonsingular (since rank (AS 6%) =
n —1). From (32) we have & = —Ag'dsz,, and consequently
(6, — A;.Ag'6s) z, <O0.
The equation

5 — Ay A5'6s = det (A1) - det (j“? ‘;?)

i

holds. The determinant det ( ;35. (ZS ) has a constant sign for all d € ng {iy» Since

if for certain 8',8% € Sgou{i}

Ag ot Ag 62

hold, then for the convex combination §° = mﬂdgwl + |d1\62) € ng{i} we

Ag 68
det (AZS 5§) =0,

have
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which contradicts the feasibility of the basis S U {i}. Hence an element z,, from
(32) has a constant sign for all § € ng{i}, namely sgn(hl). A vector (x,z,)
belongs to the unbounded edge of M;(d) provided A;.x + d;z, < 0 for all j €
{1,...,m}\ (SU{i}). Hence

—AT AG' 65w, + 0w, <OV E{L ... om}\ (SU{i}),
or, equivalently

(5j - Af.A;las) sgn(h®) <0 Vje {1,....m}\ (SU{i}). O

Let 8 € Z;. Denote by & a family of all feasible bases of the convex polyhedral
set M1(8°) and by 9 a family of pairs (S,4), where S is a feasible sub-basis of M (6°)
to which it corresponds an unbounded edge originating from a vertex determined by
the basis S U {i}. Let us introduce

Z1 (G,f_)) =Zi1N (mBEG 820) N (m(S,i)eﬁ HZQ) .

The set Z1(6, $) represents a set of all § € Z; such that all bases from & are (accord-
ing to Lemma 1) feasible for M;(§) and the family of unbounded edges is preserved
(Lemma 2). In this way we can divide the set Z; into the sets Z1 (G, Hi), k € K,
where K is a finite index set. Each set Z1(6g, Hr), k € K, represents a convex set,
a closure of which is a convex polytope.

Assertion 4. Let k € K and &) # (. Let us assume that the set Z1(Gy, H%)
is closed and denote by d;, i € V4, all vertices of the convex polytope Z1 (S, Hi).
Then the set conv (U5€ Z1(61,9 k)./\/ll(é)) represents a convex polyhedral set and the

equation
conv U Mi(d) | = COHV( U Ml(&))

0€Z1 (6, k) 1€V
holds.

Proof. We will prove that for an arbitrary 6*, 8% € Z1(6k, Hr) and an arbitrary
convex combination 8° = (1 — ¢)&" + ¢6?, ¢ € (0,1) we have

M;(8°) C conv (M;(6") UM;(67)).

To prove this it is sufficient to show that all vertices of the convex polyhedral set
M (8°) can be expressed as a convex combination of vertices of M (8%), M1 (6?)
and all extremal directions of M (d°) can be expressed as non-negative linear com-
binations of extremal directions of M;j(8%), M;(8%). Let B € &; be a basis of
M (8) and denote by v!, v2, and v¢ the vertex corresponding to the basis B of
the convex polyhedral set M1 ('), M1(8?), and M (8°), respectively. Next denote
M = (A B 5}3). According to the well-known Sherman—Morrison formula, we get

cM (6% —dp)el Mt
14 cel M~ (6% — 8%)

V¢ — (M + c(6% — 5}3)e£)_1b3 = (M—1 - ) bg. (33)
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Since B is a feasible basis of M;(d¢) for all ¢ € (0,1), the denominator of expression
(33) has a constant sign for all ¢ € (0,1). Hence the expression (33) represents a
monotone function of a variable ¢ with ¢ € (0,1) and, therefore, the vertex v° is a
convex combination of v!, v2.

Let (S,4) € Hi, where S is an (n—1)-elemental sub-basis determining unbounded
edge of M1(6°). Let us denote a vector in direction of this unbounded edge for
M (8Y), M1(8?), and M;(6) as (h', L), (h*,h2), and (h°, hS), respectively. From
the proof of Lemma 2 we have sgn(hl) = sgn(h2) = sgn(h¢). Consider the following
three cases.

L. If hl = h2 = h$ = —1, then
6" = Ash!, 6> = Agh®, 6= Agh”.
Hence we obtain 0 = Ag(h® — (1 — ch — ch2). From the nonsingularity of
the matrix Ag it follows that (h° hS) = (1 — ¢)(h*, hL) + c¢(h?, h2).
2. The case h), = h? = h¢ =1 is analogous to the previous one.

3. In the case hl = h2 = h¢ = 0 all the vectors h', h?, h® determine the same
direction. O

According to the Assertion 4 we can, under certain assumption, reduce the com-
putation of the convex hull of an infinite number of convex polyhedral sets to finite
number (for an explicit description of convex hulls see [5]). In this way we can reduce
the whole computation of conv (Uscz, M;1(d)) to a computation of a convex hull
of finitely many convex polyhedral sets, since

conv( U M1(6)> = conv< U U Ml(éi)> .

dcz; keK i€eVy

Example 2. Given

-3 0
A= ( 3), b= (12), Z={6eR®|6=(1,1,2)" +¢(1,-1,2)", t € (0,6) }

-3 15
and Ms(p) = {zc € R? | (711 7‘32>w < (71142) } is fixed. We will compute the
convex hull conv( Usez, M1(6)) and check the existence of a permanent separating

hyperplane.

1. Choose 8' € 2, e.g. as 8" = (1,1,2)T. The family of all feasible bases of
the convex polyhedral set M;(8') is &; = {(1,2)}. The convex polyhedral
cone N1 2) from (29) has two extremal directions g, = (—1,—-1,0)" and hy =
(—9,—5,4)T. Hence

Sy ={8 €R® | —61 — 65 < 0, —98; — 50, + 405 < 0}.
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Mi(6')  Mi(8?)

4 +

Fig. 2. Illustration to Example 2.

The convex polyhedral set M;(8') has two extremal directions (—1,—3) (it
corresponds to the sub-basis (1) originating from a vertex determined by the
basis (1,2)) and (1, —3) (it corresponds to the sub-basis (2) originating from
a vertex determined by the basis (1,2)). Hence 91 = {((1),2),((2),1)}. Sets
H?I), H(12) have according to (31) the description

My ={8 €S, | =01+ 85 > 0},

Hly =18 € 8%, | 62+ 05 > 0}
The convex polytope Z1(61, 91) is equal to

Z1(61,91) = 21N 32511,2) NHGy NHE)
={6eR¥|6=(1,1,2)" +¢(1,-1,2)7, t €(0,2)}

and consists of two vertices 8 and 8% = (2,-3.,5)7.

2. Choose 8° € 2, \ 21(61,91), e.g. as §° = (7,—5,14)T. The family of all
feasible bases of the convex polyhedral set M;(8%) is &y = {(1,3),(2,3)}.
The convex polyhedral cone ./\/(1’3) from (29) has two extremal directions g, =
(1,-1,0)7, hy = (9, —4,5)”. Hence

S5 ={6 €R® |8y — 65 > 0, 98, + 585 — 465 > 0}.

The convex polyhedral cone N, (2,3) has two extremal directions g3 = (-1, -1, 0)7,

hs = (5,—4,9)" and hence

Shg ={8 €R® | —85 — 85 > 0, 95, + 555 — 405 > 0}.



Separation of Convex Polyhedral Sets with Column Parameters 129

The convex polyhedral set M (8°) has two extremal directions: (—7,—3) (it
corresponds to the sub-basis (1) originating from a vertex determined by the
basis (1, 3)) and (=5, —3) (it corresponds to the sub-basis (2) originating from
a vertex determined by the basis (2,3)). Hence 92 = {((1),3),((2),3)}. Sets
H?l), H?Q) have, according to (31), the description

3
MYy = {8 €S 3 | 61462 > 0},
3
HYyy = {6 € 8q) | 614 62 > 0}
The convex polytope Z1(82, H2) is equal to

3 3
21(62,.62) = Zl N 8873) N 8(6273) N H?I) N H?z) -
={6eR?|6=(1,1,2)" +¢(1,-1,2)", t € (2,6)}

and consists of two vertices 82 a &°.

Altogether we obtain

conv ( U M1(5)> = conv(/\/ll(dl) UM, (6%) U M1(53))

€2y
7 36
:{meR" i x < 3(; }
1

30
There is no permanent separating hyperplane (since the sets conv( Uscz, M1 (d))
and My () are not separable), even though M;(d), My(p) are strongly separable
for all § € Z;.

-3
0
3
3

6. APPLICATION IN MULTIOBJECTIVE PROGRAMMING

In this section we show an application of the proposed theory in multiobjective
programming. Let us consider a multiobjective program

max {Czx | x € M},

where M = {z € R" | Ax < b}, A € R™*" C € R*" b c R™. Let 2° € M be
a weakly efficient solution, i.e., there is no & € M with Cx > Cz". Alternatively,
weak efficiency of x° can be characterized as separability by a hyperplane of two
convex polyhedral sets, M and {x | Cx > Cx"}, or after transation,

{x | Ax <b— Ax’} and {x | Cx > 0}.

As long as there are uncertainties or measurement errors in one column coefficients
of the cost matrix C, they can be modelled by column parameters and the theory
derived in previous sections is applicable.
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7. CONCLUSION

In this article, we were concerned with separation properties of two convex polyhe-
dral sets M; and My depending on parameters. Parameters arise in one column
of the constraint matrix from the description of these convex polyhedral sets. The
situation, when there are parameters on the right-hand side of inequalities was dealt
with in [6]. The situation, when parameters arise in one row of the constraint ma-
trix, is the subject of further research. We defined the so called solution set (a set of
parameters for which M 1 and Mvz are strongly separable) and stability sets (sets of
parameters for which separability of Mv 1 and MQ has the same characteristics). To
stability sets, one could apply various kinds of postoptimality analysis (parametric
analysis, sensitivity analysis or tolerance analysis — see e. g. [2]), but it goes outside
the scope of this paper. We provided also several examples which were carried out
on a computer. One section was devoted to determining the so called permanent
separating hyperplane which separates M (d) and Ms(p) for all values of param-
eters &, p from a given convex polytope. Eventually, we showed how this theory is
applicable in multiobjective programming.

(Received September 20, 2006.)
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