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A COMPARISON OF ALGORITHMS TO FILTER
NOISY OBSERVATIONS OF A LINEAR DIFFERENTIAL
SYSTEM DRIVEN BY BROWNIAN MOTION
AND A SIMPLE MARKOV SWITCHING PROCESS

P. J. Browne

The problem under consideration is the filtering of Gaussian noise observations of a
linear differential system driven by both Brownian motion and a Markov process switching
in continuous time at a constant rate λ with state space (−1, +1) usually referred to as a
random telegraph process.

The algorithms compared are:
(1) The Interacting Multiple Model (IMM) algorithm.
(2) Differential equations driven by the innovation process for the mean and variance of

the state and switching level derived from a representation for the posterior density
of the joint process, which is in turn obtained from the fundamental filtering theorem
for semi-martingales with Gaussian observation noise.

(3) A filter obtained by replacing the Markov switching process by a Gaussian process
with equivalent second order properties. This gives rise to a Kalman–Bucy filter.

1. INTRODUCTION

The problem under consideration is to filter noisy observations of a linear differ-
ential system driven by Brownian motion and a simple Markov switching process.
A.H. Jazwinski [4, Chapter 5], shows that for a wide class of loss functions optimal
filtering implies computing the posterior distribution of the state, and the optimal
estimate is the posterior mean. Consequently in this paper attention is restricted to
the goal of finding the posterior distribution of the state, given a realisation of the
observation process to the time in question.

The state Xt ∈ R is generated by the stochastic differential equation:

dXt = Mt dt + ρ dWt,

where Wt ∼ N(0, t); {Wt} is standard Brownian motion independent of {Mt}. The
process {Mt} is a stationary Markov process with states {−1, +1)} and switching
at rate λ. The observation process {Yt} is defined by the stochastic differential
equation:

dYt = Xt dt + d Zt.
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Here {Zt} is Brownian motion independent of {Wt} and {Mt} with Zt ∼ N(0, σ2t).
The problem is to construct the posterior distribution of the joint process (Mt, Xt)

from the observed path ys, 0 ≤ x ≤ t, and prior on (M0, X0). It is assumed that
P (M0 = −1) = P (M0 = +1) = 1/2 and X0 ∼ N(0, 1) = 1

2 and X0 ∼ N(0, 1).
The generator of the continuous time Markov chain Mt is:

G =
[ −λ λ

λ −λ

]
.

The associated transition matrix is:

Rt =

[
1
2 + 1

2e−2λt 1
2 − 1

2e−2λt

1
2 − 1

2e−2λt 1
2 + 1

2e−2λt

]
.

Let Pt be a Poisson counting process; then the Markov chain may be represented as:

d Mt = −2Mt dPt,

where {Pt} is a Poisson counting process with rate λ. So the problem is described
by a pair of stochastic differential equations:

dXt = Mt dt + ρ dWt (1)
dMt = −2Mt dPt, (2)

with {Wt} standard Brownian motion and {Pt} a Poisson counting process with rate
λ independent of {Wt}.

The observation equation is unchanged:

dYt = Xt dt + dZt (3)

{Zt} is Brownian motion independent of both {Wt} and {Pt}. Zt ∼ N(0, σ2t).
Equation (1) is formally equivalent to the integral expression:

Xt = x0 +
∫ t

0

Mt dt + ρ

∫ t

0

dWt, (4)

where the first integral is a M. S. Riemann integral and the second integral is an Itô
integral. In a like manner equations (2) and (3) can be represented as:

Mt = m0 − 2
∫ t

0

Mt dPt, (5)

Yt = y0 +
∫ t

0

Xd dt +
∫ t

0

dZt. (6)

There is no explicit solution, so some kind of approximation needs to be undertaken.
Three different ways of attacking this problem are considered.

1. Interacting Multiple Model (IMM) algorithm
This is a discrete filtering approach originated by H. A. P. Blom from a method of
reducing mixtures of Gaussian distributions to single Gaussian components.
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2. Continuous Filtering Approach
This approach is the most mathematically sophisticated undertaken in this paper.
It is an application of the fundamental filtering theorem for noisy observations of
semimartingales with white Gaussian observation noise.

3. Second order equivalent filter
In this approach the Markov switching process is replaced by a Gaussian process
with the same mean and auto covariance structure. As will be seen the simplified
filter becomes a Kalman–Bucy filter.

Sections 2, 3 and 4 discuss these algorithms. A more detailed description is
contained in a Technical report available from the author. Section 5 compares the
three algorithms by Monte Carlo simulation. Section 6 gives the conclusions.

2. ALGORITHM 1

The IMM algorithm is a development of the generalised pseudo Bayes (GPB) method
originated in 1971 by Jaffer & Gupta. Jaffer & Gupta’s method is an attempt to
control the problem of the exponentially increasing number of hypotheses that beset
the full Bayesian approach in discrete time. Consider the problem here for example,
and consider the chain history in terms of all possible Markov states. At time t = 0
there are two possibilities for the state; M0 = +1 or −1. At time t = ∆t the possible
histories are:

{−1,−1} {−1, +1}, {+1,−1}, {+1,+1}
a total of four possibilities. At time t = 2∆t there are eight possibilities and so
on. GPB(k) employs a bank of Nk Kalman filters matched to the Nk most recent
possible paths, where N is the number of states in the Markov chain.

The IMM algorithm was first mentioned in the literature by H. A. P. Blom in
1984, but we refer to Blom [1] (1986) which explains both the IMM method and the
GPB approach very clearly and discusses their relative merits.

The idea of the IMM algorithm is to alter the sequence of steps of the GPB(2)
method into the following sequence: Markov switching; merge, time extrapolation,
measurement update; MMSE estimate. Blom claims that the IMM method offers
near GPB(2) performance at GPB(1) computational cost. The principal reason for
the cost reduction is the reduction in the number of Kalman filters from four to two
when N is 2. Space reasons preclude further consideration of the IMM algorithm
except to say that a simplification of it has been devised to reduce the amount of
computation involved in the merge operation. This simplification is termed algo-
rithm Als in the simulation Section 5.

3. ALGORITHM 2

This approach is based on a continuous time model and the fundamental filtering
theorem for noisy observations on semimartingales with white Gaussian observation
noise. This theorem is presented as Theorem 18.4 on p.2̇80 of Elliott [3], and can be
referred to in Kwakernaak [5] and Blom [2].
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In 1975 H. Kwakernaak employed this theorem to obtain a representation for
the evolution of the posterior probability density function of a stochastic differential
equation driven by a Poisson process, a problem similar in nature to the one con-
sidered here. From the representation he was able to derive differential equations
for the evolution of the posterior mean, and all central moments. Each evolution
equation for an individual posterior central moment involves the next higher cen-
tral moment, and so one is faced with an infinite set of simultaneous differential
equations. He dealt with this problem in two ways. The first method he adopted
was to employ a Ritz–Galerkin method for approximately solving the conditional
Fokker–Planck equation, while for the second method he truncated the stochastic
differential equations satisfied by the cumulants of the posterior density function.
He found that best results were achieved by considering the first seven central mo-
ments, and that his sophisticated approach offered at best only a small improvement
over the Kalman filter. He also noted that if the time step chosen for the discrete
approximation to the differential evolution expression is too large then instability
results.

Blom in [2] employed the results in Kwakernaak’s seminal paper to derive an
expression for the evolution of the joint posterior probability density function of the
state and switching state of a vector valued process which is a generalisation of the
pair of equations presented as eqns (1) and (2). He, like Kwakernaak, derived a
set of coupled differential equations describing the evolution of the posterior central
moments, each equation involving the next higher central moment. However, he at-
tacked this problem in a different way from Kwakernaak. He factorised the evolution
equation for the posterior joint probability density function into an expression for
the marginal distribution of the Markov switching process, and an expression for the
posterior evolution of the state conditional on the Markov switching level. He argued
that by this approach he could ignore third and higher order central moments. It is
his approach that I have adopted in this paper.

Space considerations preclude a full presentation of the working associated with
the following results. Suppose f is a complete right continuous filtration, and both
the joint Markov process (Xt, Mt) defined by eqns (1) and (2), and the observation
process Yt from eqn (3) are adapted to ft. Let yt = σ{ys; s ≤ t} be an increas-
ing sequence of sigma algebras generated by the observation process. Note that
yt ⊆ ft. The notation x̂t is defined as being the mean of the conditional probability
density function of Xt given a realisation of yt. Similarly P̂Xt,Mt(x,m) denotes the
conditional joint pdf of (Xt,Mt) given a realisation of yt. Employment of the funda-
mental filtering algorithm results in the following evolution equation for p̂Xt,Mt(x,m)

d p̂Xt,Mt(x,m) = L p̂Xt,Mt(x,m) dt + p̂Xt,Mt(x,m) [x− X̂t]
dνt

dσ2

where d νt = d yt − X̂t dt is the innovation processs, L is the forward diffusion
operator for the joint process and

L p̂Xt,Mt(x,m) = −m
∂pXt,Mt(x,m)

∂x
+

ρ2

2
∂2

∂x2
p̂Xt,Mt(x,m)

−λ p̂Xt,Mt(x,m) + λ p̂Xt,Mt(x,−m).
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This equation can be factorised into a differential equation using the marginal pos-
terior probability distribution of the Markov switching level, and the posterior pdf
of the state given the Markov switching level. These results are:

d p̂Xt,Mt
(x,m) =

[
p̂Mt

(m)Lm p̂Xt|Mt
(x|m) + M p̂Xt,Mt

(x,m)
]

dt

+ p̂Xt,Mt [x− X̂t]
dνt

dσ2

where:

Lm p̂Xt|Mt
(x|m) = −m

∂

∂x
p̂Xt|Mt

(x|m) +
ρ2

2
∂2

∂x2
p̂Xt|Mt

(x|m)

M p̂Xt,Mt
(x,m) = −λ p̂Xt,Mt

(x,m) + λ p̂Xt,Mt
(x,−m).

Use of the Itô differential rule enables the following five equations to be obtained.
Let q̂t = P (Mt=+1)

P (Mt=−1) . So ln q̂t is the log likelihood ratio for Markov switching level
+1 vs. Markov switching level −1. Then:

d ln q̂t =
(

λ

q̂t
− λq̂t

)
dt +

(
X̂t(+1)− X̂t(−1)

) dyt

σ2
+

(
X̂2

t (−1)− X̂2
t (+1)

) dt

2σ2

where yt is the observation made at time t from equation (3).
A pair of equations for the evolution of the posterior state mean given the Markov

switching level are:

dX̂t(+1) = dt +
λ

q̂t

(
X̂t(−1)− X̂t(+1)

)
dt +

Q̂t(+1) dνt(+1)
σ2

where dνt(+1) = dyt − X̂t(+1) dt

dX̂t(−1) = −dt + λ q̂t

(
X̂t(+1)− X̂t(−1)

)
dt +

Q̂t(−1) dνt(−1)
σ2

where dνt(−1) = dyt − X̂t(−1) dt.
If third and higher order central moments are neglected, this simplification enables

a pair of equations for the evolution of the posterior state variance given the Markov
switching level to be calculated:

dQ̂t(+1) = ρ2 dt +
λ

q̂t

(
Q̂t(−1)− Q̂t(+1) + (X̂t(−1)− X̂t(+1))2

)
dt− Q̂2

t (+1)
σ2

dt

dQ̂t(−1) = ρ2 dt + λ q̂t

(
Q̂t(+1)− Q̂t(−1) + (X̂t(+1)− X̂t(−1))2

)
dt− Q̂2

t (−1)
σ2

dt.

The above systems of five differential equations represents another approximate sol-
ution to the optimal filtering problem.
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4. ALGORITHM 3

Let the time interval step be ∆. The state equation (1) can be rewritten as a first
order approximation:

Xt+∆ = Xt + Mt ∆ + Wt+∆ −Wt

where Wt+∆ −Wt ∼ N(0, ρ2, ∆).
It is possible to replace the discrete Markov chain Mt by a Gaussian process with

an equivalent covariance structure. The autocovariance function for the Markov
chain Mt, cov(Mt, Mτ ) = e−2|t−τ |λ.

References to p. 123 of Jazwinski [4] shows that the linear stochastic differential
equation:

dMt = −2λMt dt + 2
√

λ dβt

with {βt} standard Brownian motion generates a stationary exponentially correlated
Gaussian process with zero mean, and the desired autocovariance function.

This stochastic differential equation can be modelled by the first order approxi-
mation:

Mt+∆ = Mt(1− 2λ∆) + 2
√

λ(βt+∆ − βt)

where βt+∆ − βt ∼ N(0, ∆).
The observation equation, equation (3) can be rewritten as a first order approxi-

mation:

Bt = Xt + ηt, {ηt} ∼ iid N

(
0,

σ2

∆

)
.

The state and observation equations can be represented by the system of three
equations:




Xt+∆

Mt+∆

Bt+∆


 =




1 ∆ 0
0 (1− 2λ∆) 0
1 ∆ 0







Xt

Mt

Bt


 +




Wt+∆ −Wt

2
√

λ(βt+∆ − βt)
Wt+∆ −Wt + ηt+∆.




Under the above assumption the posterior distribution of (Xt, Mt) is joint normal.
It is possible to compute the mean vector and variance covariance matrix of the
posterior distribution of (Xt,Mt) which characterises the distribution completely.
It is also possible to check that the evolution equations for the mean vector and
variance covariance matrix match that for the discrete Kalman Bucy filter.

5. COMPARISON OF ALGORITHMS BY SIMULATION

The algorithms discussed above were investigated by a wide range of simulations.
The four figures presented here are typical.

Symbol used in plots
A1 Algorithm 1 ∆
Als Simplified version of algorithm 1 ∇
A2 Algorithm 2 ×
A3 Algorithm 3 2
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Comparison of the various algorithms is achieved by Monte Carlo simulation. The
simulator is based on a discrete first order approximation to the system equations
(1 ,2, 3). A congruential random number generator is used in association with the
Box–Muller algorithm to generate variates from a normal distribution. A random
number seed is chosen for the first of a sequence of simulator runs and the operation
of the random number generator ensures that each run of a sequence represents
a suitably realistic random realisation of the simulation. Of course when one is
comparing the four algorithms it is important to use the same sequence of random
number seeds for each sequence of runs for the different algorithms, so that one is
comparing likewith like.

Turning now to the initial conditions for the simulator, it is assumed that at
the outset each filter algorithm knows the value of the state perfectly at time step
t = 0, but is subsequently supplied with noisy observations of the state. The initial
value of the simulator state is drawn from a N(0, 1) distribution. Each run of
the simulator lasts for 300 time steps for the four figures presented here. In order
to discover the effectiveness of the algorithms A1 and A2 at tracking changes in
the Markov switching level it was decided to introduce fixed jumps of the Markov
process. The initial state of the Markov switching process for the simulator is set to
+1, and there are fixed jumps of this process at t = 50, 150, 250. This corresponds
roughly to a simulator value of λ of 10, since this would give three expected jumps in
300 time steps with a time interval of .001. The time step interval value is set to .001
throughout. For all four runs the simulator data is the same, namely ρ simulator
= .1, σ simulator = .01.

Considering the initial conditions for A1 and A2, the variance of the state given
the Markov switching state is set initially to zero, while the mean is set to the
simulator state. The weights for the Markov switching process are set to 1/2.

For A3, the variance of the state is set to zero, and the mean is set to the simulator
state. The covariance between the state and the Gaussian process that is equivalent
to the Markov switching process is set to zero; the variance of this process is set
to 1, and the mean is drawn from a N(0, 1) distribution.

In order to detect track loss for each run the difference between the actual position
of the simulated target and the merged posterior mean (note that A3 finds this
mean directly, but for A1 and A2 a merge operation is required) obtained by each
algorithm is used. The difference is scaled by the posterior merged MMSE estimate

standard deviation
√

Q̂t, and tested at a nominal significance level of .1 . Track loss
is considered to have occurred when five consecutive estimates fail the test. Note
that even though track loss is considered to have occurred the filters still continue
to track, and thus a contribution is still made to the Rms plot discussed in the next
section.

5.1. RMS Plot

This plot is presented as Fig. 1 and it portrays the Rms errors between the simulated
target and the target position estimate for all three algorithms over 100 runs of 300
time steps each. Note that the filter values of ρ and σ are matched to the simulator
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values, i. e. ρ filter = .1, σ filter = .01. This is also roughly true for the λ parameter
since the filter λ is set to 10.

Track loss statistics are calculated. A1 has lost 2 tracks out of 100, while Als has
lost 10 tracks. A2 and A3 perform better with losses of just 1 track and 0 tracks
respectively.

Having dealt with the preliminaries it is possible to turn to an examination of
the plot. Note that the Rms error builds up from an initial zero value for all the
algorithms because each filter knows the position of the simulated target exactly
at the outset. The effect of the simulator jumps at steps 50, 150 and 250 can be
seen. The worst performer is Als. A3 has poorer Rms performance initially but after
approximately step 50 it settles down to perform well, and after step 50 there is
little to choose between A1, A2 and A3. Examination of the computer loading for
the various algorithms (not included here) gives a ranking of A3, A2, Als, Al with
A3 using only 2/3 of the compute time required for Al.

Fig. 1.
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5.2. Examination of Mismatch

The remaining three plots, Figs 2, 3, 4, form a group and are designed to show
how well the various algorithms perform in a mismatch situation. That is to say
where the value of a filter parameter ρ, σ, λ is not matched to the same simulator
parameter. As before the data is printed on each plot, and the plots are:

1. Average steps to track loss. Fig. 2
2. RMS errors at step 270. Fig. 3
3. Percentace trask losses Fig. 4

These three plots explore simulator/filter mismatch in a single parameter; in this
case the ρ parameter. The σ value for both simulator and filter is set to .01. The
λ value for the filter algorithms is set at 10 to match the three fixed jumps of the
simulator, as for Fig. 1. However the ρ value for the filter algorithms is set to vary
from .01 to .2 in steps of .01, this range of values being evenly disposed about the
simulator ρ value of .1. The abscissa of each plot represents the filter value for ρ
with the simulator value of ρ being in the centre of the x axis. Each symbol on each
plot represents the net result of 100 runs of 300 steps each with the simulator value
of ρ determined by the intercept on the abscissa.

Considering the plots in detail, and examining Fig. 2, it can be seen that Als has
initially a poor performance but that this improves rapidly as the filter ρ increases,
while A1, A2 and A3 all have good performance. The best performer is A2.

Fig. 2.
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Turning to Fig. 3, step 270 was chosen for computing the Rms errors because it
occurs soon after the final simulator switching process jump at step 250. Als has
the worst performance initially but this steadily improves as the filter ρ increases.
Note that the best performance for Als occurs when the filter value for ρ is greater
than the simulator value for ρ. The other three algorithms have similar performance
for Rms error with A3 being the best performer. Note that the Rms error is not
affected by filter/simulator ρ mismatch.

Fig. 3.

Finally Fig. 4 confirms the picture that has emerged from study of Figs 2 & 3.
Als has initially a very poor performance that improves rapidly with increasing
simulator ρ, while the other three algorithms enjoy similar good performance that
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is unaffected by ρ mismatch, with A2 being the best performer.

Fig. 4.

6. CONCLUSIONS

Examination of very many runs like Figs 1 – 4 with varying data has enabled the
following conclusions to be made:

1. If the time step interval is too large A2 often becomes unstable. Kwakernaak
[5] noted the same problem. A time step interval has been chosen here of .001,
and for the data dealt with in this study it seems to be a reasonable choice.

2. A1 and A2 have an in built advantage over A3 for they compute the marginal
distribution of the switching level, and the conditional distribution of the state
given the switching level rather than the joint normal distribution of the state
and Gaussian process in the case of A3. Extensive simulation has shown that
A1 and A2 are most successful at predicting the Markov switching level with
small values of σ for both simulator and filter.



244 P. J. BROWNE

3. Considering the situation where the simulator and algorithm have matched
parameters, the discrimination between the various algorithms is least when
ρ À σ, and at high levels of λ for both simulator and filter. There is little to
choose between A2 and A3, and A1 is perhaps the worst performer. Als, the
IMM simplification, performs best at low levels of λ.

When a mismatch exists between the simulator parameters and the algorithm
parameters, there is little to choose between the algorithms. The algorithms
are most sensitive to mismatch in the parameters ρ and σ, and least in par-
ameter λ. Again there is little to choose between A2 and A3, and A1 is perhaps
the worst performer.

4. In terms of computing power A3 has the lightest load and A1 the heaviest load,
and A2 is between as expected. Als, the IMM simplification, offers significant
saving in compute time for the IMM algorithm.

(Received March 3, 1994.)
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