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CHI-SQUARED GOODNESS-OF-FIT TEST
FOR THE FAMILY OF LOGISTIC DISTRIBUTIONS

Neige Aguirre and Mikhail Nikulin

Chi-squared goodness-of-fit test for the family of logistic distributions is proposed. Dif-
ferent methods of estimation of the unknown parameters θ of the family are compared.
The problem of homogeneity is considered.

1. INTRODUCTION

Let X1, . . . , Xn be independent identically distributed random variables and suppose
that according to the hypothesis H0

P{Xi ≤ x} = F (x; θ), θ = (θ1, . . . , θs)T ∈ Θ ⊂ Rs, x ∈ R1, (1)

where Θ is an open set. We divide the real line into k intervals I1, . . . , Ik:

I1 ∪ . . . ∪ Ik = R1, Ii ∩ Ij = ∅, i 6= j.

We shall suppose that

pi(θ) = P{X1 ∈ Ii | H0} > 0, i = 1, . . . , k. (2)

Let ν = (ν1, . . . , νk)T be the vector of frequencies arising as a result of grouping
the random variables X1, . . . , Xn into the classes I1, . . . , Ik. We denote

X2
n(θ) = XT

n (θ)Xn(θ) =
k∑

i=1

(νi − npi(θ))2

npi(θ)
, (3)

where

Xn =

(
ν1 − np1(θ)√

np1(θ)
, . . . ,

νk − npk(θ)√
npk(θ)

)T

. (4)

Following Cramer [5] we suppose that

1. pi(θ) > c > 0, i = 1, . . . , k (k ≥ s+ 2);
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2.
∂2pi(θ)
∂θj∂θ`

are continuous functions;

3. the information matrix of Fisher

J = J(θ) =

[
k∑

`=1

1
p`(θ)

∂p`(θ)
∂θi

∂p`(θ)
∂θj

]

s×s

= BT(θ)B(θ) (5)

exists, and rankJ = s, where

B(θ) =

[
1√
p`(θ)

∂p`(θ)
∂θj

]

k×s

. (6)

In this case nJ is the information matrix of Fisher of the statistic ν = (ν1, . . . , νk)T.
Let θ̃n be the minimum chi-squared estimator for θ,

X2
n(θ̃n) = min

θ∈ Θ
X2

n(θ), (7)

or an estimator asymptotically equivalent to it.

Theorem (Fisher [11], Cramer [5]). If the regularity conditions of Cramer hold
then

lim
n→∞

P{X2
n(θ̃n) ≥ x | H0} = P{χ2

k−s−1 ≥ x}. (8)

The limit distribution χ2
k−s−1 can only be used if θ̃n is the minimum chi-squared

estimator or an asymptotically equivalent estimator. Thus, see Cramer [5], one can
use the root of the system:

k∑

i=1

νi

npi(θ)
∂pi(θ)
∂θj

= 0, j = 1, . . . , s. (9)

The problem of finding the root of (9) is usually difficult, so as an approximation
to the value of θ one often uses the maximum likelihood estimator θ̂n, calculated
to the non-grouped data X1, X2, . . . , Xn. It is important to remark that when θ is
unknown and we have to estimate it, the limit distribution of the Pearson’s statistic
X2

n(θ)∗n changes in accordance with asymptotical properties of an estimator θ∗n.

For example, if θ∗n = θ̂n, then under certain regularity conditions we have the
next
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Theorem (Chernoff and Lehmann [4]).

lim
n→∞

P{X2
n(θ̂n) ≥ x | H0} = P{χ2

k−s−1 +
s∑

i=1

λiξ
2
i ≥ x},

where χ2
r−s−1, ξ1, . . . , ξs are independent, ξi ∼ N(0, 1) and λi = λi(θ), 0 < λi(θ) <

< 1, i = 1, 2, . . . , s, are the roots of the equation

| (1− λ)I(θ)− J(θ) |= 0,

I(θ) – the information matrix of Fisher, corresponding to one observation Xi.

Remark 1. We note here that in continuous case ν = (ν1, . . . , νk)T is not sufficient
statistic, and hence the matrix I(θ)− J(θ) is positively definite.

Remark 2. Let us consider the density family

f(x; θ) = h(x) exp{
s∑

m=1

θmx
m + v(θ)}, x ∈ X ⊆ R1,

X is open in R1, X = {x : f(x; θ) > 0}, θ ∈ Θ.
This family is very rich: it contains Poisson, normal distributions etc. It is evident

that

Un =

(
n∑

i=1

Xi,

n∑

i=1

X2
i , . . . ,

n∑

i=1

Xs
i

)T

is the complete minimal sufficient statistic for θ.
We suppose that
1. the support X does not depend on θ;
2. the matrix of Hessen

Hv(θ) = −
[

∂2

∂θi∂θj
v(θ)

]

s×s

of the function v(θ) is positively definite;
3. the moments as(θ) = EθX

s
1 exist.

In this case, using the results of Zacks [22], it is not difficult to show (see, for example,
[7] – [10]) that the maximum likelihood estimator θ̂n = θ̂n(Un) and the method of
moments estimator θ̄n = θ̄n(Un) of θ coincide, i. e. θ̄n = θ̂n. Let

a(θ) = (a1(θ), . . . , as(θ))T and Tn =
1
n
Un.

One can verify that

a(θ) = − ∂

∂θ
v(θ),
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and hence the likelihood equation is Tn = a(θ), i. e. θ̂n is a root of this equation.
On the other hand we have EθTn ≡ a(θ), and hence from the properties of the
statistic Un it follows that Tn is the MVUE of a(θ), and θ̄n is the root of the same
equation Tn = a(θ), which we used to find θ̂n. Hence θ̂n = θ̄n. We remark that in
general an estimator based on the method of moments is not asymptotically efficient,
and hence does not satisfy the Chernoff–Lehmann theorem. In “Handbook of the
Logistic Distribution” (edited by N. Balakrishnan [2]), Chap. 13, it is reported that
the Dahiya–Gurland [6] extension of the Chernoff–Lehmann theorem is applied by
Massaro and d’Agostino to construct the chi-squared test of Pearson with random in-
tervals for the family of the logistic distributions using θ̄n = (X̄n, s

2
n)T (the moment

method estimator of θ = (EX1,VarX1)T), as it was done by Dahiya and Gurland
[6] for testing the normality (we note that in the normal case the method of mo-
ments and the maximum likelihood method are equivalent). But θ̄n is not efficient
and even not asymptotically efficient for the logistic family, since this family does
not belong to the exponential family and (X̄n, s

2
n)T is not sufficient statistic in this

situation. Hence, the tables of critical points, proposed by Massaro et d’Agostino in
Section 13.9 are not valid. For this reason it is necessary to have a statistic which
limit distribution is well known when we apply the maximum likelihood estimator or
anyone BAN estimator. In the papers of Nikulin [15, 16, 17] (see also, for example,
Rao and Robson [20], Moore and Spruill [14]), is exposed how to construct a chi-
squared test for a continuous distribution, based on the statistic Y2

n(θ∗n), we shall
define it in Section 3. We note that the technique of chi-squared tests for the expo-
nential family of distributions of rank one, s = 1, and some applications of MVUE’s
were exposed by Nikulin and Voinov [18], Voinov and Nikulin [21].

2. LOGISTIC DISTRIBUTION AND THE CHI–SQUARED GOODNESS–OF–
FIT TEST

Let X = (X1, . . . , Xn)T be a random sample, i. e. X1, . . . , Xn are independent
identically distributed random variables. In this section we consider the problem of
testing the hypothesis H0 that the distribution function of X1 belongs to the family
of logistic distributions G

(
x−µ

σ

)
depending on the shift parameter µ and the scale

parameter σ:

P{X1 ≤ x | H0} = G

(
x− µ

σ

)
=

1
1 + exp{− π√

3

(
x−µ

σ

)} , x ∈ R1, (10)

µ = E{X1 | H0}, | µ |<∞, σ2 = VarX1, σ > 0.

Under H0 the density function of Xi is

1
σ
g

(
x− µ

σ

)
= G′

(
x− µ

σ

)
=

π√
3σ

exp
(
− π√

3

x−µ
σ

)

[
1 + exp

(
− π√

3

x−µ
σ

)]2 , x ∈ R1. (11)

We point out that “Handbook of the Logistic Distribution” [1], was published
recently about the theory, the methodology and some applications of the family of
logistic distributions.
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We denote θ = (µ, σ)T, and let θ̂n = (µ̂n, σ̂n)T be the maximum of likelihood
estimator of θ. Since there is no any other sufficient statistic for θ than the trivial
one X = (X1, . . . , Xn)T, the maximum likelihood equation has no explicit root.
Balakrishnan and Cohen [2] proposed an approximate solution of the maximum
likelihood equations based on a “type II censored sample” of Harter and Moore
[12]. They proved that this approximate solution gives an asymptotically efficient
estimator, i. e. asymptotically equivalent to θ̂n.

Let θ̂n be such an estimator. The limit covariance matrix of the random vector√
n(θ̂n−θ) will be I−1, where

I =
1
σ2

[Iij ]2×2 =
1

9σ2

[
π2 0
0 π2 + 3

]
, (12)

I11 =
∫ +∞

−∞

[
g′(x)
g(x)

]2

g(x)) dx =
π2

9
,

I22 =
∫ +∞

−∞
x2

[
g′(x)
g(x)

]2

g(x) dx− 1 =
π2 + 3

9
,

and since g(x) is symmetric

I12 = I21 =
∫ +∞

−∞
x

[
g′(x)
g(x)

]2

g(x) dx = 0.

Let us fix the vector p = (p1, p2, . . . , pk)T of positive probabilities such that

p1 = . . . = pk = 1/k, (13)

and let y0 = −∞, yk = +∞,

yi = G−1(p1 + . . .+ pi) =
√

3
π

ln
(

i

k − i

)
, i = 1, . . . , k − 1. (14)

Further, let ν = (ν1, . . . , νk)T be the frequency vector arising from groupingX1, . . . , Xn

over the intervals with random ends

(−∞, z1], (z1, z2], . . . , (zk−1,+∞), where zi = zi(θ̂n) = µ̂n + σ̂nyi, (15)

and let

a = (a1, . . . , ak)T, b = (b1, . . . , bk)T, WT = − 1
σ

[
a
...b

]
, (16)
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where for i = 1, 2, . . . , k

ai = g(yi)− g(yi−1) =
π

k2
√

3
(k − 2i+ 1),

bi = yig(yi)− yi−1g(yi−1) =

=
1
k2

[
(i− 1)(k − i+ 1) ln

k − i+ 1
i− 1

− i(k − i) ln
k − i

i

]
,

α(ν) = k

k∑

i=1

aiνi =
π√
3k

[
(k + 1)n− 2

k∑

i=1

iνi

]
, (17)

β(ν) = k

k∑

i=1

biνi =
1
k

k−1∑

i=1

(νi+1 − νi)i(k − i) ln
k − i

i
, (18)

λ1 = I11 − k

k∑

i=1

a2
i =

π2

9k2
, λ2 = I22 − k

k∑

i=1

b2i . (19)

Since g is symmetric we have a1 + a2 + . . .+ ak = b1 + b2 + . . .+ bk = 0. Let

B = D− ppT −WTI−1W, (20)

where D is the diagonal matrix with the elements 1/k on the main diagonal. The
matrix B does not depend on θ, and rankB = k − 1, i. e. the matrix B is singular,
while the matrix B̃, obtained as a result of deleting the last row and column in B,
has an inverse

B̃−1 = A + AW̃T(I− W̃AW̃T)−1W̃A, (21)

where A = D̃−1 + 11T/pk, D̃−1 is a diagonal matrix with elements 1
p1
, . . . , 1

pk−1

on the main diagonal, 1 = 1k−1 is the vector of dimension (k − 1), all elements of
which are equal to 1, W̃ is a matrix obtained from W by deleting the last column.
Since the vector ν̃ = (ν1, . . . , νk−1)T is asymptotically normally distributed with
parameters

Eν̃ = np̃ +O(
√
n1s) and E(ν̃ − np̃)T(ν̃ − np̃) = nB̃ +O(

√
n1s×s), (22)

where p̃ = (p1, . . . , pk−1)T, we obtain the next result

Theorem 1. The statistic

Y2
n =

1
n

(ν̃ − np̃)TB̃−1(ν̃ − np̃) = X2
n +

λ1β
2(ν) + λ2α

2(ν)
nλ1λ2

(23)

has, as n→∞, chi-squared limit distribution with (k−1) degrees of freedom, where

X2
n =

k∑

i=1

(νi − npi)2

npi
=
k

n

k∑

i=1

ν2
i − n. (24)
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Remark. We consider the hypothesisHη, according to whichXi followsG(x−µ
σ , η),

where G(x, η) is continuous, | x |<∞, η ∈ H ⊂ R1, G(x, 0) = G(x), and η = 0 is a
limit point of H. Let us assume also, that

∂

∂x
G(x, η) = g(x, η) and

∂

∂η
g(x, η) |η=0= ψ(x) (25)

exist, where g(x, 0) = g(x) = G′(x). In this case if ∂2g(x,η)
∂η2 exists and is continuous

for all x in the neighbourhood of the η = 0, then for zi = yiσ + µ we have

P{zi−1 < Xi ≤ zi | Hη} = pi + ηci + o(η), (26)

where
ci =

∫ yi

yi−1

Ψ(x) dx, i = 1, . . . , k, (27)

and finally, in the limit, as n → ∞, the statistic Y2
n has noncentral chi-squared

distribution with (k − 1) degrees of freedom and with non-centrality parameter λ:

lim
n→∞

P{Y2
n ≥ x | Hη} = P{χ2

k−1(λ) ≥ x}, (28)

where

λ =
k∑

i=1

c2i
pi

+
λ2α

2(c) + λ1β
2(c)

λ1λ2
, c = (c1, c2, . . . , ck)t, (29)

p, α(c), β(c), λ1, λ2 are given by (13), (17), (18), (19) respectively.

3. HOMOGENEITY TEST

Let us consider the problem of homogeneity of two samples in the case of the family
of logistic distributions, following the paper of Bolshev and Nikulin [3].

Let us suppose that X1 = (X11, . . . , X1n1)
T and X2 = (X21, . . . , X2n2) such that

P{X1i ≤ x} = G

(
x− µ1

σ1

)
and P{X2i ≤ x} = G

(
x− µ2

σ2

)
, x ∈ R1, (30)

where | µi |<∞, σi > 0, µi, σi are unknown, i = 1, 2; G
(

x−µ
σ

)
is given by (35). We

wish to test the hypothesis H0 according to which µ1 = µ2 and σ1 = σ2, i. e. under
H0

Xij ∼ G

(
x− µ

σ

)
,

for some µ and σ. Under H0 we can find the maximum likelihood estimator θ̂N =
(µ̂N , σ̂

2
N )T of θ = (µ, σ2)T obtained from allN = n1+n2 observationsX11, . . . , X1n1 ,

X21, . . . , X2n2 .
Further, let p = (p1, . . . , pk)T, pi = 1

k , i = 1, . . . , k and νi = (νi1, . . . , νik)T be
the vector of frequencies obtained by grouping the sample Xi, (i = 1, 2) using the
intervals [zj−1(θ̂N ), zj(θ̂N )], as in (15), where z0 = −∞, zk = +∞, zj = σ̂Nyj + µ̂N ,
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yj = G−1
(

j
k

)
, and let ν = ν1 + ν2, a,b,W, Bi, D, I, α(ν), β(ν), λ1, λ2, ν̃, ν̃1,

ν̃2, p̃, W̃ as in (12) – (22),

B̃i = D̃− p̃p̃T − ni

N
W̃TI−1W̃, ∆i =

1√
ni

(ν̃i − nip̃), i = 1, 2.

Theorem 2. Under H0 the vector ∆ = (∆T
1 ,∆

T
2 )T is asymptotically normally

distributed when min(n1, n2) →∞ with E∆ = 02s and covariance matrix

U =

[
B̃1 −

√
n1n2

N W̃TI−1W̃
−
√

n1n2

N W̃TI−1W̃ B̃2

]
.

Theorem 3. Under H0 the statistic

Y2
n = ∆TU−1∆ =

k∑

i=1

(ν1i − n1pi)2

n1pi
+

k∑

i=1

(ν2i − n2pi)2

n2pi
+

1
Nλ1λ2

{λ1β
2(ν) + λ2α

2(ν)}.

has, in the limit as min(n1, n2) →∞, a chi-squared distribution with 2(k−1) degrees
of freedom:

lim
n→∞

P{Y2
n ≥ x | H0} = P{χ2

2(k−1) ≥ x}.

ACKNOWLEDGEMENT

We would like to thank Professors S. Kotz, A. Rukhin, C. Huber, N. Balakrishnan and
J. Antoch for helpful discussion, advice and encouragement during the writing of the paper.

(Received March 3, 1994.)

REFE REN CES

[1] N. Balakrishnan (ed.): Handbook of the Logistic Distribution. Marcel Dekker, New
York 1992.

[2] N. Balakrishnan and A.C. Cohen: Order Statistics and Inference: Estimation Meth-
ods. Academic Press, Boston 1990.

[3] L.N. Bolshev and M. S. Nikulin: One solution of the problem of homogeneity. Serdica
1 (1975), 104–109.

[4] H. Chernoff and E. L. Lehmann: The use of maximum likelihood estimates in χ2 tests
for goodness of fit. Ann. Math. Statist. 25 (1954), 579–586.

[5] H. Cramer: Mathematical Methods of Statistics. Princeton University Press, Prince-
ton, N. J. 1946.

[6] R.C. Dahiya and J. Gurland: Pearson chi-square test of fit with random intervals.
Biometrika 59 (1972), 1, 147–153.

[7] F.C. Drost: Asymptotics for generalised chi-square goodness-of-fit tests. CWI Tract
48, Centre for Mathematics and Computer Sciences, Amsterdam 1988.

[8] R.M. Dudley: Probabilities and metrics-convergence of laws on metric spaces with a
view to statistical testing. Lecture Notes 45, Aarhus Universitet, Aarhus 1976.



222 N. AGUIRRE AND M. NIKULIN

[9] K.O. Dzhaparidze and M. S. Nikulin: On a modification of the standard statistic of
Pearson. Theory Prob. Appl. 19 (1974), 4, 851–852.

[10] K.O. Dzhaparidze and M. S. Nikulin: On evaluation of statistics of chi-square type
tests. In: Problems of the Theory of Probability Distributions 12 (1992), Nauka, St.
Petersburg, 59–90.

[11] R.A. Fisher: On a property connecting the χ2 measure of discrepancy with the method
of maximum likelihood. Atti de Congresso Internazionale di Mathematici, Bologna,
6 (1928), 94–100.

[12] H. L. Harter and A. H. Moore: Maximum-likelihood estimation, from censored sam-
ples, of the parameters of a logistic distribution. J. Amer. Statist. Assoc. 62 (1967),
675–684.

[13] L. Le Cam, C. Mahan and A. Singh: An extension of a theorem of H. Chernoff and
E. L. Lehmann. In: Recent Advances in Statistics. Academic Press, New York 1983,
pp. 303–332.

[14] D. S. Moore and M. C. Spruill: Unified large-sample theory of general chi-squared
statistics for tests of fit. Ann. of Statist. 3 (1975), 599–616.

[15] M. S. Nikulin: Chi-square test for normality. In: Proceedings of International Vilnius
Conference on Probability Theory and Mathematical Statistics Vol. 2, 1973, pp. 119–
122.

[16] M. S. Nikulin: Chi-square test for continuous distributions with shift and scale param-
eters. Theory Probab. Appl. 18 (1973), 3, 559–568.

[17] M. S. Nikulin: Chi-square test for continuous distributions. Theory Probab. Appl. 18
(1973), 3, 638–639.

[18] M. S. Nikulin and V. G. Voinov: A chi-square goodness-of-fit test for exponential dis-
tribution of the first order. Lecture Notes in Math. 1312, Springer–Verlag, Berlin 1989,
pp. 239–258.

[19] C.R. Rao: Linear Statistical Inference and its Applications. J. Wiley, New York 1965.
[20] K.C. Rao and D. S. Robson: A chi-squared statistic for goodness-of-fit tests within

the exponential family. Commun. Statist. 3 (1974), 1139–1153.
[21] V.G. Voinov and M. S. Nikulin: Unbiased Estimators and their Applications.

Part I: Univariate case. Kluwer Academic Publisher, Dordrecht 1993.
[22] S. Zacks: The Theory of Statistical Inference. Wiley, New York 1979.

Dr. Neige Aguirre, Mathématiques Stochastiques, Université Bordeaux 2, 33076 Bor-

deaux. France.
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