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NUMERICAL STUDIES
OF PARAMETER ESTIMATION TECHNIQUES
FOR NONLINEAR EVOLUTION EQUATIONS

Azmy S. Ackleh, Robert R. Ferdinand and Simeon Reich

We briefly discuss an abstract approximation framework and a convergence theory of
parameter estimation for a general class of nonautonomous nonlinear evolution equations.
A detailed discussion of the above theory has been given earlier by the authors in another
paper. The application of this theory together with numerical results indicating the fea-
sibility of this general least squares approach are presented in the context of quasilinear
reaction diffusion equations.

1. INTRODUCTION

There is a growing literature concerning the development of theoretical and com-
putational methods for inverse problems involving the identification of nonlinear
distributed parameter systems (see [1, 5, 6, 7, 8, 15] and the many references cited
therein). In this paper we report on our recent results in this area with the main
focus being the numerical studies. However, we shall provide a short discussion of
the theoretical basis and convergence results that we obtained in our earlier paper
[3]. In [3] we have extended the results in [8] to a more general class of nonlin-
ear evolution systems that arise in many important applications including nonlinear
reaction diffusion equations.

Our paper is organized as follows. In Section 2, we discuss the identification
problem and review the theoretical results concerning convergence of parameter es-
timates established via Galerkin approximation. Section 3 is devoted to numerical
results concerning the estimation of parameters in nonlinear reaction diffusion equa-
tions. Concluding remarks and future research issues are addressed in Section 4.
Finally, we present in the Appendix an example indicating the convergence of the
Galerkin approximations to the forward problem.

2. OUTLINE OF APPROXIMATION AND CONVERGENCE THEORY

Let D be a metric space with Q (the admissible parameter set) a compact subset of
D. Let Z, the observation space, be a normed linear space with norm |·|Z . Let H be
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a real Hilbert space with inner product 〈·, ·〉 and induced norm |·| , and let V be a
reflexive Banach space with norm ‖·‖ which is densely and continuously embedded
in H. This means that there exists a constant µ > 0 such that |φ| ≤ µ ‖φ‖ for all
φ ∈ V. Letting V ∗ be the space of continuous linear functionals defined on V, we
denote the dual space norm on V ∗ by ‖·‖∗ . Further, H is identified with its dual by
the Riesz Representation Theorem and V ⊂ H = H∗ ⊂ V ∗ where H∗ is the dual
of H which is densely and continuously embedded in V ∗. Since ‖φ‖∗ ≤ µ |φ| for all
φ ∈ H, we get ‖φ‖∗ ≤ µ2 ‖φ‖ for all φ ∈ V. The duality pairing between φ ∈ V ∗ and
ψ ∈ V is denoted by 〈φ, ψ〉 . Thus for φ ∈ H, 〈φ, ψ〉 is the usual inner product of φ
and ψ.

For any fixed T > 0, q ∈ Q and all t ∈ [0, T ] , let A(t; q) be a hemicontinuous (see
[9] for the definition), in general nonlinear operator from V into V ∗ whose domain
is all of V. In our discussion below, it is assumed that A(t; q) and the nonlinear
function F (t, u; q), t ∈ [0, T ] , q ∈ Q, satisfy the following conditions.

(A) (Continuity): For each φ ∈ V , the map q → A(t; q) φ is continuous from
Q ⊂ D into V ∗ for almost every t ∈ [0, T ] .

(B) (Equi–V –Monotonicity): There exist constants ω and α, α > 0, which don’t
depend on q ∈ Q or t ∈ [0, T ] such that

〈A(t; q)φ−A(t; q)ψ, φ− ψ〉+ ω |φ− ψ|2 ≥ α ‖φ− ψ‖2

for all φ, ψ ∈ V and almost every t ∈ [0, T ] .

(C) (Equiboundedness): There exists a constant β > 0, independent of q ∈ Q or
t ∈ [0, T ] , such that

‖A(t; q)φ‖∗ ≤ β (‖φ‖+ 1)

for all φ ∈ V and almost every t ∈ [0, T ] .

(D) (Measurability): For each q ∈ Q, the function A(t; q)u(t) : [0, T ] → V ∗ is
strongly measurable for every u ∈ L2 (0, T ;V ) .

(E) (Lipschitz Continuity): The function F : [0, T ] × H × Q → H is continuous.
Moreover, F is locally Lipschitz continuous in H, uniformly for q ∈ Q and
t ∈ [0, T ] .

For each q ∈ Q, let ξ(q) ∈ H and assume that the mapping q → ξ(q) is continuous
fromQ ⊂ D intoH. For each z ∈ Z, we assume that the mapping Φ (·; z) is defined on
L2 (0, T ;V ) with the non-negative real numbers containing its range. The functional
Φ is assumed to be continuous when its domain is restricted to either one of the spaces
C (0, T ;H) or L2 (0, T ;V ) with their respective usual topologies. The following
abstract parameter identification problem is considered.

(ID) Given observations z ∈ Z, find parameters q ∈ Q which minimize the perfor-
mance index

J(q) = Φ (u (·, q) ; z) ,
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where for each q ∈ Q, u(· , q) is the solution of the initial value problem
{

u̇(t) +A(t; q)u(t) = F (t, u(t); q)

u(0) = ξ(q).
(2.1)

Note that in this general formulation, the initial value ξ is part of the unknown
parameters vector q (as in, for example, [4]). In [3], the following theorem concerning
existence and uniqueness of solutions to equation (2.1) has been established using
theoretical results on monotone operators discussed in [9].

Theorem 2.1. There exists a T ∗ > 0 such that equation (2.1) has a unique solution
in the interval [0, T ∗], i. e., a function u(·; q) which is V ∗-absolutely continuous on
[0, T ∗], and satisfies u(·; q) ∈ L2(0, T ∗;V ) ∩ C(0, T ∗;H), u̇(·; q) ∈ L2(0, T ∗;V ∗) and
(2.1) for almost every t ∈ [0, T ∗].

We now present an abstract Galerkin based approximation theory for the problem
(ID). For each N = 1, 2, . . . , let HN be a finite dimensional subspace of H with
HN ⊂ V. Denoting by PN : H → HN the orthogonal projection of H onto HN with
respect to the inner product 〈·, ·〉, we impose the following standard condition on
our approximation elements.

(F) lim
N→∞

∥∥PNφ− φ
∥∥ = 0 for each φ ∈ V.

We remark that condition (F) is satisfied by many finite elements and spectral
schemes (see [4, 11, 14]). From condition (F) and the fact that

∣∣PN
∣∣ = 1, it follows

that limN→∞
∣∣PNφ− φ

∣∣ = 0 for each φ ∈ H. Thus, the projection operator PN

converges strongly to the identity on H as well. For each q ∈ Q, N = 1, 2, . . . ,
and almost every t ∈ [0, T ∗] , the Galerkin approximation AN (t; q) to A(t; q) is
defined in the following fashion: We let the operator AN (t; q) : HN → HN be the
restriction of the operator A(t; q) to HN with the image in V ∗ of φN ∈ HN being
A(t; q)φN ∈ V ∗, considered to be a linear functional on HN . Identifying HN with
its dual, for φN ∈ HN we have AN (t; q)φN = ψN , where ψN ∈ HN satisfies

〈
A(t; q)φN , χN

〉
=

〈
ψN , χN

〉
for all χN ∈ HN .

For each N = 1, 2, . . . and q ∈ Q, ξN (q) ∈ HN is defined as ξN (q) = PNξ(q). Thus
we consider the following sequence of approximating identification problems:

(IDN) Find parameters qN ∈ Q which minimize the performance index

JN (q) = Φ
(
uN (·; q) ; z

)

using the given observations z ∈ Z, where uN (·, q) is the solution of the
initial value problem

{
u̇N +AN (t; q)uN (t) = PNF (t, uN (t); q)

uN (0) = ξN (q)
(2.2)

corresponding to q ∈ Q.
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The problem (2.2) in HN is the standard Galerkin approximation to problem
(2.1). Note that existence-uniqueness of the solution to equation (2.2) can be proved
by simple modification of the arguments used to prove the existence-uniqueness of
solutions of equation (2.1). We now state the following convergence theorem which
has been proved in [3].

Theorem 2.2. If conditions (A) – (F) are satisfied, then

(i) limN→∞ uN
(·; qN

)
= u (·; q) in C(0, T ∗;H) and L2(0, T ∗;V ) whenever

{
qN

}
is a sequence in Q with limN→∞ qN = q.

(ii) For each fixed N = 1, 2, . . . , limK→∞ uN
(·; qK

)
= uN (·; q) in C(0, T ∗;H)

and L2(0, T ∗;V ) whenever
{
qK

}
is a sequence in Q with limK→∞ qK = q.

It follows from Theorem 2.2 above that the inverse problem (IDN) has a solution.
Indeed, since uN (· ; q) depends continuously on q by (ii) of Theorem 2.2, we know
that the approximate cost functional JN is continuous on Q. Hence, the existence
of such a solution qN ∈ Q follows immediately, since Q is a compact metric space.
The infinite dimensional identification problem (ID) also has a solution which is the
limit of a subsequence of qN . In fact, from the compactness of Q we have that for
any sequence

{
qN

} ⊂ Q, there exists a convergent subsequence
{
qNj

}
of

{
qN

}
.

Denoting the limit of this subsequence by q, we obtain

J(q) = Φ (u (· ; q̄) ; z) = Φ
(

lim
j→∞

uNj
(· ; q̄Nj

)
; z

)

= lim
j→∞

Φ
(
uNj

(· ; q̄Nj
)
; z

)
= lim

j→∞
JNj (q̄Nj )

≤ lim
j→∞

JNj (q) = lim
j→∞

Φ
(
uNj (· ; q) ; z

)

= Φ
(

lim
j→∞

uNj (· ; q) ; z
)

= Φ(u (· ; q) ; z)

= J(q)

for each q ∈ Q. This shows that q is indeed a solution of the problem (ID).
When the parameter set Q is also infinite dimensional, i. e., the parameters to be

estimated are elements in a function space, the parameter set Q has to be discretized
as well. In this case, for each M = 1, 2, . . . let IM : Q ⊂ D → D be a continu-
ous mapping with its range QM = IM (Q) in a finite dimensional space, such that
limM→∞ IM (q) = q, uniformly on Q. In this situation, a doubly indexed sequence of
parameter identification problems, (IDN

M ), where for each N and M, (IDN
M) is the

problem (IDN) with Q replaced by QM , is considered. It can be argued that each of
these problems has a solution qN

M ∈ QM and the sequence
{
qN

M

}
has a D-convergent

subsequence
{
q

Nj

Mi

}
whose limit is in Q. Thus limi,j→∞ q

Nj

Mi
= q ∈ Q, and q can be

shown to be a solution of problem (ID). Note that the approximating identification
problems (IDN

M) involve only the minimization of functionals over compact subsets
of finite dimensional Euclidean spaces.
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3. NUMERICAL RESULTS

We apply our theory to the following partial differential equation which arises in
studying nonlinear reaction diffusion equations and population models (see [16]):





ut − (a(t, x, ux) ux)x = c(t) F (u(t, x))

ux(t, 0) = 0 = ux(t, 1)

u(0, x) = u0(x),

(3.1)

with x ∈ Ω = [0, 1], t ∈ [0, T ∗] and a ∈ CB ([0, T ∗]× Ω× IR) , the space of bounded
continuous functions defined on the given domain and possessing the usual supremum
metric denoted by d∞. In our discussion below, it is assumed here that u0 ∈ L2(0, 1)
and F (u) is locally Lipschitz continuous. The logistic form F (u) = u(k̂ − u) or
the monod form F (u) =

u

k̂ + u
are very commonly used in the literature. Letting

D = CB ([0, T ∗]× Ω× IR) × C [0, T ∗] and q = (a, c) ∈ Q, we choose Q to be a
compact subset of D with q ∈ Q if the following conditions hold.

1. The mapping θ → a(t, x, θ) is C1 for almost every (t, x) ∈ [0, T ∗]× Ω.

2. There exists a constant δ > 0, independent of q ∈ Q, for which

(a(t, x, θ) θ − a(t, x, η) η) · (θ − η) ≥ δ |θ − η|2

for almost every (t, x) ∈ [0, T ∗]× Ω and every θ, η ∈ IR.
3. c(t) is Lipschitz continuous.

In this example, we take H = L2 (0, 1), V = H1 (0, 1) and the observation space
Z = C

(
0, T ∗;L2 (0, 1)

)
. For each q ∈ Q and almost every t ∈ [0, T ∗] we define the

operator A(t; q) : V → V ∗ by

〈A(t; q)φ, ψ〉 =
∫

Ω

a(t, x, φx(x))φx(x)ψx(x) dx for all φ, ψ ∈ V.

In [8] conditions (A) – (D) have been verified for the operator A and condition (E)
easily follows. Hence, all the results in Section 2 of this paper apply to equation
(3.1). Now, let {ti}κ

i=1 with 0 ≤ t1 ≤ t2 ≤ . . . ≤ tκ ≤ T ∗ be given, and for each
z ∈ Z define the least squares cost functional by

Φ(u; z) =
κ∑

i=1

∫ 1

0

|u(ti, x)− z(ti, x)|2 dx.

For N = 1, 2, . . . , let HN= span
{
φN

j

}N

j=0
where φN

j is the jth linear B-spline on

[0, 1] defined on the uniform mesh
{
0, 1

N ,
2
N , . . . , 1

}
. In other words,

φN
j (x) =





0 0 ≤ x ≤ j−1
N

Nx− j + 1 j−1
N ≤ x ≤ j

N

j + 1−Nx j
N ≤ x ≤ j+1

N

0 j+1
N ≤ x ≤ 1
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where j = 0, 1, 2, . . . , N. Clearly, HN ⊂ V = H1(0, 1) for N = 1, 2, . . . . Let PN :
H → HN denote the orthogonal projection of L2 (0, 1) onto HN with respect to
the usual L2 inner product. Using standard approximation results for interpolatory
splines as in [18] we can argue that condition (F) is satisfied. In our computational
efforts we consider the following two parameter identification problems.

3.1. 1–D estimation problem

In this problem, we estimate the function a as a one-dimensional function of θ,
independent of t and x. We also estimate c as a one-dimensional function of t. The
following parameter values are used by us to generate the observed data z ∈ Z.

c(t) = 2 + sin(100t) u0(x) = x(1− x)

F (u) = u(1− u) a(t, x, θ) = 1− 0.5 exp(−0.1θ2)

For our least-squares method we generate data from the solution of our forward
problem using the above fixed parameters and collect the data z(ti, ·) at points ti,
i = 0, . . . , 250, where ti = 0.0002 · i.

Define D = CB (IR)×C[0, T ∗]. For given fixed values of α0, ρ0, σ0,K0 and θ0 > 0,
we choose Q = A× Ĉ, where A is the D-closure of

{a ∈ CB (IR) : |a(θ)| ≤ ρ0,

∣∣∣∣
da
dθ

(θ)
∣∣∣∣ ≤ σ0,

da
dθ

(θ) θ + a(θ) ≥ α0 for θ ∈ IR and a(θ) is constant

for θ ≤ θa and θ ≥ θ̂a,where θa,θ̂a satisfy − θ0 ≤ θa ≤ θ̂a ≤ θ0}

and

Ĉ = {c ∈ C [0, T ∗] : |c(t)| ≤ K0, |c(t)− c(r)| ≤ K0 |t− r| ∀ t, r ∈ [0, T ∗]} .

Hence, a straightforward application of the Arzelà–Ascoli theorem shows Q to be a
compact subset of D. We approximate the infinite dimensional parameter space as
follows: For M1, a positive integer, and a ∈ A, we set

(IM1a) (θ) =
M1∑

j=0

a

(
θa + j

(
θ̂a − θa

M1

))
ψj

M1

(
θ ; θa, θ̂a

)

where θ ∈ IR. In this formula, ψj
M1

(
θ ; θa, θ̂a

)
, j = 0, . . . ,M1, are the linear B-

splines defined on the uniform partition
{
θa, θa +

( bθa−θa

M1

)
, . . . , θ̂a

}
of the interval[

θa, θ̂a

]
. We then extend our approximation on the interval [ θa, θ̂a] to a continuous
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function on the entire real line via ψj
M1

(
θ ; θa, θ̂a

)
= ψj

M1

(
θa; θa, θ̂a

)
for θ ≤ θa

and ψj
M1

(
θ ; θa, θ̂a

)
= ψj

M1

(
θ̂a ; θa, θ̂a

)
for θ ≥ θ̂a. Then, using the Peano Kernel

Theorem given in [17] we get

lim
M1→∞

IM1a = a in CB(IR),

uniformly in a, for a ∈ A. Similarly, for c ∈ Ĉ we have

(IM2c) (t) =
M2∑

j=0

c

(
j

M2
T ∗

)
λj

M2
(t ;T ∗) ,

where, the functions λj
M2

(t ;T ∗) , j = 0, . . . ,M2, represent the linear B-splines

defined on the uniform mesh
{

0, T∗
M2
, 2T∗

M2
, . . . , T ∗

}
of the interval [0, T ∗]. Clearly

limM2→∞ IM2c = c, in C[0, T ∗], uniformly in c, for c ∈ Ĉ. Thus defining M =
(M1,M2), setting qM = (aM1 , cM2) ∈ QM = IM (Q) (where IM (Q) = IM1(A) ×
IM2(Ĉ)) and approximating uN (t, x) by

uN (t, x) =
N∑

i=0

wN
i (t)φN

i (x),

we have the following form for the finite dimensional initial value problem (2.2):





ΛN ẇN (t) +GN
(
wN (t) ; aM1

)
= ΥN

(
t, wN (t)

)

ΛNwN (0) =
(
wN

)0
,

(3.2)

where t ∈ [0, T ∗] and wN (t) =
(
wN

0 , w
N
1 , . . . , w

N
N

) ∈ IRN+1. The matrix ΛN is an
(N + 1) × (N + 1) Gram matrix whose (i, j)th entry is given as ΛN

i,j =
〈
φN

i , φ
N
j

〉

and
(
wN

)0 is an (N + 1) dimensional vector whose ith element is given by
(
wN

)0

i
=〈

ξ, φN
i

〉
. Further, using the definition of φN

j (x), j = 0, 1, . . . , N , the inner product
〈a, b〉 =

∫ 1

0
a · b dx and the following integral approximation

∫ 1

0

f(x) dx =
N∑

i=1

f(
i

N
)∆x,

where ∆x = 1
N , we evaluate ΥN

(
t, wN (t)

)
, an (N + 1)-dimensional vector, as fol-

lows:

ΥN
0

(
t, wN (t)

)
= 0

ΥN
i

(
t, wN (t)

)
= ∆x cM2(t)F (wN

i (t)) for i = 1, . . . , N.
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Similarly, as described in [5], GN (· ; aM1) : IRN+1 → IRN+1 can be expressed as

GN
0 (γ ; aM1) = aM1

(
γ1 − γ0

∆x

)(
γ0 − γ1

∆x

)

GN
N (γ ; aM1) = aM1

(
γN − γN−1

∆x

)(
γN − γN−1

∆x

)

and

GN
i (γ ; aM1) = aM1

(
γi − γi−1

∆x

)(
γi − γi−1

∆x

)
− aM1

(
γi+1 − γi

∆x

)(
γi+1 − γi

∆x

)

for i = 1, . . . , N − 1,

where γ ∈ IRN+1. Hence, if qM = (aM1 , cM2) ∈ QM is given by

aM1(θ)=
M1∑

j=0

νj
M1
ψj

M1

(
θ ; θaM1

, θ̂aM1

)

and

cM2 (t)=
M2∑

j=0

F j
M2
λj

M2
(t ;T ∗) ,

then solving (IDN
M ) involves the identification of the (M1+3) coefficients

{
νj

M1

}M1

j=0
,

θaM1
and θ̂aM1

and the (M2 + 1) coefficients
{

F j
M2

}M2

j=0
from a compact subset of

IRM1+M2+4 so as to minimize the functional JN (qM ) = Φ
(
uN (·; qM ) ; z

)
. Figures 1

and 2 show the estimates of a and c with N = 9 and M = (M1,M2) = (5, 5),
respectively. Figures 3 and 4 do the same for N = 9 and M = (7, 7) while in
Figures 5 and 6, N = 9 and M = (9, 9). Clearly the numerical results obtained in
these figures corroborate the convergence results of the previous section. To test our
scheme against measurement error, we added noise with mean µ = 0 and standard
deviation σ = 0.03 to our observed data z ∈ Z. We present the corresponding
estimates of a and c in Figures 7 and 8 using N = 9 and M = (5, 5). For convenience,
we give in Table 1 the values of ‖aM1 − a‖∞ and ‖cM2 − c‖∞ for the numerical
results presented in Figures 1 – 8. To conclude this numerical experiment we tested
our inverse method when less data points are collected. That is, we now generate the
data z(ti, ·) at points ti, i = 0, . . . , 10, where ti = 0.005 · i. Our results, presented in
Figures 9 and 10, indicate that our estimates of a and c remain essentially unchanged.
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Fig. 1. This figure represents the true versus the estimated function a (θ) with

N = 9, M1 = 5 and no noise added to the computationally generated data.
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Fig. 2. This figure represents the true versus the estimated function c (t) with

N = 9, M2 = 5 and no noise added to the computationally generated data.
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Fig. 3. This figure is the same as Figure 1, with N = 9, M1 = 7.
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Fig. 4. This figure is the same as Figure 2, with N = 9, M2 = 7.
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Fig. 5. This figure is the same as Figure 1, with N = 9, M1 = 9.
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Fig. 6. This figure is the same as Figure 2, with N = 9, M2 = 9.



Numerical Studies of Parameter Estimation Techniques for Nonlinear Evolution Equations 707

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

U_x

a(
U

_x
)

−− => Estimated a

− => Exact a

Fig. 7. This figure represents the true versus the estimated function a (θ) with

N = 9, M1 = 5 and noise with mean µ = 0 and standard deviation σ = 0.03 added to the

computationally generated data.
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Fig. 8. This figure represents the true versus the estimated function c (t) with

N = 9, M2 = 5 and noise with mean µ = 0 and standard deviation σ = 0.03 added to the

computationally generated data.
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Fig. 9. This figure is the same as Figure 1, with N = 9, M1 = 5 and less data points

provided.
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Fig. 10. This figure is the same as Figure 2, with N = 9, M2 = 5 and less data points

provided.

Table 1. This table gives the values of ‖aM1 − a‖∞ and ‖cM2 − c‖∞ for
Mi = 5, 7 and 9, i = 1, 2, with no noise added to the computationally generated

data and the same values for Mi = 5, i = 1, 2, when noise with mean µ = 0 and

standard deviation σ = 0.03 is added to the computationally generated data.

Mi, i = 1, 2 ‖aM1 − a‖∞ ‖cM2 − c‖∞
Data without noise 5 0.0037 0.1818
Data without noise 7 0.0030 0.0802
Data without noise 9 0.0025 0.0530
Noisy data with σ = 0.03 5 0.0088 0.3618

3.2. 2–D estimation problem

This problem involves the estimation of a as a two-dimensional function of θ and
t, while c is regarded as a known function in our computations. We use the same
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parameter values as in the 1-D problem above with the following exception:

a(t, θ) = 1− 0.5 exp
[−0.1(t+ 0.5) θ2

]
.

For our least-squares method we generate data from the solution of our forward
problem using the above fixed parameters and collect the data z(ti, ·) at points ti,
i = 0, . . . , 50 where ti = 0.0002 · i.

For given fixed values of α0, ρ0, σ0 and θ0 > 0, we let Q be the D-closure of the
following set:

{a ∈ CB ([0, T ∗]× IR) : |a(t, θ)| ≤ ρ0, |aθ(t, θ)| , |at(t, θ)| ≤ σ0,

aθ(t, θ) θ + a(t, θ) ≥ α0 for t ∈ [0, T ∗], θ ∈ IR and a(t, θ) = a(t)

for θ ≤ θa(t) and θ ≥ θ̂a(t) where θa, θ̂a satisfies −θ0 ≤ θa(t) ≤ θ̂a(t) ≤ θ0}.

Again, a straightforward application of the Arzelà–Ascoli theorem shows that Q is
a compact subset of D. Here we approximate our parameter set as follows:

(IM1,M2a) (t, θ) =
M2∑

i=0

M1∑

j=0

a

(
iT ∗

M2
, θa(

iT ∗

M2
) + j

(
θ̂a( iT∗

M2
)− θa( iT∗

M2
)

M1

))

ψj
M1

(
θ ; θa(

iT ∗

M2
), θ̂a(

iT ∗

M2
)
)
λi

M2
(t ;T ∗)

where ψ and λ have similar definitions as in the 1-D experiment and again the
function (IM1,M2a) (t, θ) is extended to a continuous function over the entire real
line in a similar manner as in the 1-D case above. The Peano Kernel Theorem is
used here once again to yield

lim
M1,M2→∞

IM1,M2a = a in CB ([0,T∗]× IR)

uniformly in a, for a ∈ Q.Using the compact notation M = (M1,M2), with qM =
aM1,M2 ∈ QM = IM (Q) and approximating uN (t, x) as in the 1-D case above, we
can derive a finite dimensional initial value problem similar to the one given in (3.2).

Once again, if aM1,M2 ∈ QM is given by

aM1,M2 (t, θ) =
M2∑

i=0

M1∑

j=0

Θi,j
M1,M2

ψj
M1

(
θ ; θi

M2
, θ̂i

M2

)
λi

M2
(t ;T ∗) ,

then the solution of the identification problem (IDN
M ) involves identifying the (M1 + 3)

(M2 + 1) coefficients
{

Θi,j
M1,M2

, θi
M2
, θ̂i

M2

}M2,M1

i,j=0
from a compact subset of

IRM1M2+M1+3M2+3 so as to minimize the least squares cost functional JN (qM ) =
Φ

(
uN (·; qM ) ; z

)
. Figures 11 and 12 show the exact and estimated two-dimensional

plots of a, respectively, while in Figure 13 we present the difference between the
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exact and estimated plots of a. We use N = 9 and M = (5, 5) in the calculations
presented in Figures 11, 12 and 13.
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Fig. 11. This figure represents the exact function a (t, θ) .
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Fig. 12. This figure represents the estimated function a (t, θ) with N = 9, M = (5, 5)

and no noise added to the computationally generated data.
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Fig. 13. This figure represents the difference between the exact and estimated function

a (t, θ).

3.3. Comments on our computations

In our computations involving the estimation of parameters we solved the initial
value problem (3.2) for a given choice qN

M of parameters, by using a modification of
the Runge–Kutta method. All the integrals were computed using the Riemann sum
representation of integrals on the interval [0, 1] . We used the subroutine LIMDIF1
from NETLIB, an application of the Levenberg–Marquardt algorithm, to solve the
finite dimensional nonlinear least squares minimization problem (IDN

M). We set the
positive constant defined in the admissible parameter space θ0 = 1, and chose the
initial guesses for a and c to be 0.5 and 2, respectively. For simplicity and to shorten
the computational time required for each experiment, rather than identifying the
numbers θa and θ̂a we set θa = −θ0 and θ̂a = θ0, that is, we assume that every a ∈ Q
is constant outside the interval [−θ0, θ0] = [−1, 1].Hence, in our computations we

only identified the coefficients
{
νj

M1

}M1

j=0
of ψj

M1
(θ ;−1, 1) , j = 0, . . . ,M1, the linear

B-splines defined on the uniform partition
{
−1,−1 +

(
2

M1

)
, . . . , 1

}
of the interval

[−1, 1] . Similarly in the 2–D experiments we set θi
M2

= −θ0 and θ̂i
M2

= θ0 and

identified only
{

Θi,j
M1,M2

}M2,M1

i,j=0
.All the computations for estimating a and c were
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executed on a Pentium 166 machine at the University of Southwestern Louisiana
Computational Research Laboratory. The two-dimensional estimation of a as a
function of t and θ was also carried out on an Ultra-Sparc 2000 machine at the same
location. It was observed that the Ultra-Sparc 2000 took about 36 % of the time
that the Pentium took to perform the same calculations. For the one-dimensional
case, the CPU times taken by the Pentium ranged between 22 – 47 hours in all of
our numerical experiments. The final least squares value at the end of our programs
ranged from 10−10 for data without noise to 10−3 for data with noise. We point
out that for the case M = (5, 5) without noise, the Levenberg–Marquardt algorithm
required the solution of equation (3.1) 725 times for convergence to a minimizer and
921 times for the case M = (9, 9) without noise.

4. CONCLUDING REMARKS

In this paper we have presented an abstract approximation framework for parameter
estimation in a class of nonautonomous nonlinear evolution equations, and more im-
portantly, have for the first time provided numerical evidence supporting our theory.
The numerical results presented in this paper indicate that the general least-squares
approach is indeed very promising. To date, all our experiments have dealt with
computationally generated data with one dimensional reaction diffusion equations.
Our near future efforts will focus on testing these techniques using experimental
data as well as efficient implementation in two and three dimensional transport
problems arising from modeling bioremediation of contaminated groundwater (see
[10, 12, 13]). Furthermore, we hope to extend the current nonlinear theory to allow
the identification of discontinuous parameters as was established in [2] for the linear
case.

APPENDIX

To test the accuracy of our algorithm which numerically computes the solution of
(3.1) we considered the following partial differential equation.





ut − (a(t, x, ux) ux)x = c(t) F (u(t, x)) + y(t, x)

ux(t, 0) = 0 = ux(t, 1)

u(0, x) = u0(x).

(A)

Choosing u(t, x) = exp(−t)
(
x2 − 2x3

3

)
to be the solution of equation (A) with

t ∈ [0, 0.05], x ∈ [0, 1], u0(x) =
(
x2 − 2x3

3

)
, c(t) = 1, F (u(t, x)) = u(1 − u) and

a(t, x, θ) = 1− 0.5 exp(−0.1θ2), one can easily find the forcing term y(t, x) from the
differential equation as follows:

y(t, x) = ut − (a(t, x, ux) ux)x − u(1− u).
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Thus, solving (A) numerically, using the Galerkin approximation scheme discussed
in this paper, we compared our solution uN (t, x) to the exact solution u,with N = 9,
N = 18 and N = 36 and presented the L2 norm of the errors in Figure 14. The
results indicate a linear convergence rate as expected.
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Fig. 14. This figure shows the linear order of convergence of our Galerkin approximation

scheme used to solve the forward problem.
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