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OPTIMAL CONTROL OF NONLINEAR DELAY
SYSTEMS WITH IMPLICIT DERIVATIVE
AND QUADRATIC PERFORMANCE

K. Balachandran and N. Rajagopal

The existence of optimal control for nonlinear delay systems having an implicit derivative
with quadratic performance criteria is proved. The results are established by an iterative
technique and using the Darbo fixed point theorem.

1. INTRODUCTION

The problem of optimal control of nonlinear systems with quadratic performance
criteria has been studied by many authors [2, 3, 4, 5, 6, 8, 11] by means of fixed point
principles. Malek–Zavarei [9] has established an iterative approach for obtaining the
suboptimal control for linear systems with multiple state and control delays and with
quadratic cost while Balachandran and Ramaswamy [5] have extended the iterative
technique to nonlinear multiple-delay systems.

Dacka [7] has introduced a new method of analysis to study the controllabil-
ity of nonlinear systems with an implicit derivative, based on the measure of non-
compactness of a set and the Darbo fixed point theorem. This method has been
extended to a larger class of nonlinear dynamical systems by Balachandran [2, 3].
In [3] he has proved the existence theorems for the optimal control of nonlinear
multiple-delay systems by suitably adopting the techniques of Dacka [7] and Malek–
Zavarei [9]. In this paper we shall extend the procedure of [3] to prove the existence
of optimal control for nonlinear delay systems having an implicit derivative with
quadratic performance criteria.

2. MATHEMATICAL PRELIMINARIES

Let (X, ‖ · ‖) be a Banach space and E a bounded subset of X. In this work,
the following definition of the measure of the non-compactness of a set E is used
(Sadovskii [10]).

µ(E) = inf{r > 0 : E can be covered by a finite number of balls
whose radii are smaller than r}
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The following version of the Darbo fixed point theorem being a generalization of
the Schauder fixed point theorem shows the usefulness of the measure of non-
compactness.

Theorem 1. If S is a non-empty bounded closed convex subset of X and P : S → S
is a continuous mapping, such that for any set E ⊂ S we have

µ(PE) ≤ bµ(E),

where b is a constant, 0 ≤ b < 1, then P has a fixed point.

For the space of continuous functions C(I; Rn) with norm

‖x‖ = {|xi(t)| : i = 1, 2, . . . , n : t ∈ [t0, T ] = I}

the measure of non-compactness of a set E is given by

µ(E) = 1
2 w0(E) =

1
2

lim
h→0+

w(E, h),

where w(E, h) is the common modulus of continuity of the functions which belong
to the set E, that is

w(E, h) = sup
x∈E

[sup |x(t)− x(s)| : |t− s| ≤ h]

and for the space of continuously differentiable functions C1(I; Rn) with norm

‖x‖C(I;Rn) = ‖x‖C(I;Rn) + ‖Dx‖C(I;Rn)

we have
µ(E) = 1

2 w0(DE),

where
DE = {ẋ : x ∈ E} .

3. STATEMENT OF PROBLEM

Consider the nonliner delay system of the form

ẋ(t) = A(t)x(t) +
M∑

i=1

fi(x(t− δi)) + C(t) u(t)

+
N∑

j=1

gj(u(t− τj)) + σ(x(t), ẋ(t), t), t ≥ t0 (1a)

x(t) = θ(t), t0 −∆ ≤ t ≤ t0 (1b)
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u(t) = α(t), t0 − Γ ≤ t ≤ t0, (1c)

where x(t) and u(t) are respectively, state and control vectors. Here A(t) and C(t)
are real continuous matrices of appropriate dimensions defined on the appropriate
interval; fi, i = 1, 2, 3, . . . ,M, gj , j = 1, 2, . . . , N are continuous functions defined
on appropriate intervals; σ is a continuous function; t0 is the initial process time; θ(t)
and α(t) are specified initial functions; δi, i = 1, 2, . . . , M , and τj , j = 1, 2, . . . , N
are given positive scalars, and

∆ = max
i

δi and Γ = max
j

τj .

Assume that the matrices A(t) and C(t) and the functions fi and gi are bounded
on I and N∗ = sup ‖C(t)‖. Moreover, the continuous function σ is bounded and for
each z, z ∈ Rn, and t ∈ I we have

|σ(t, x, z)− σ(t, x, z)| ≤ b1|x− z| (2)

where b1 is a non-negative constant such that 0 ≤ b1 < 1
2 .

The cost functional to be minimized is

J = 1
2 x′(T )F x(T ) +

1
2

∫ T

t0

[x′(t) Q(t)x(t) + u′(t)R(t)u(t)] dt, (3)

where the prime denotes transposition; the matrix F is symmetric positive semi-
definite; the matrix Q(t) is symmetric positive semi-definite and continuous; and
the matrix R(t) is symmetric, positive definite and continuous. The problem is to
find a control u(t), t0 ≤ t ≤ T , which for fixed final time T and free final state x(T )
minimizes the cost functional J in equation (3).

4. EXISTENCE THEOREMS

The following theorem is important in obtaining an optimal control scheme for the
problem under consideration.

Theorem 2. Consider the sequence of nonlinear state equations

ẋk(t) = A(t)xk(t) +
M∑

i=1

fi (xk−1(t− δi)) + C(t)uk(t)

+
N∑

j=1

gj (uk−1(t− τj)) + σ(xk(t), ẋk(t), t), k = 1, 2, 3, . . . (4a)

with

x0(t) = φ(t, t0) θ(t0), t ≥ t0 (4b)
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u0(t) = β(t), t ≥ t0 (4c)

xk(t) = θ(t), t0 −∆ ≤ t ≤ t0, k = 0, 1, 2, 3, . . . (4d)

uk(t) = α(t), t0 − Γ ≤ t ≤ t0, k = 0, 1, 2, 3, . . . (4e)

and the sequence of associated cost functionals

Jk = 1
2 x′k(T )F xk(T ) +

1
2

∫ T

t0

[x′k(t)Q(t)xk(t) + u′k(t) R(t) uk(t)] dt, (5)

k = 0, 1, 2, . . . ,

where β(t) is an arbitrary continuous function and φ(t, s) is the state transition
matrix corresponding to the matrix

A(t)− S(t) K(t), where S(t) = C(t) R−1(t)C ′(t) (6)

and K(t) is a symmetric positive definite solution of the matrix Riccati equation

K̇(t) + K(t) A(t) + A′(t)K(t)−K(t)S(t)K(t) + Q(t) = 0 (7a)

with the terminal condition K(T ) = F. (7b)

Suppose that for the kth optimization problem the optimal state trajectory is
x∗k(t) and the optimal control is u∗k(t). If the sequences {x∗k(t)} and {u∗k(t)} converge
uniformly to x∗(t) and u∗(t) respectively, then these are the optimal state and control
for the optimal control problem given by equations (1) and (3).

Since the system is nonlinear we can not obtain the results directly from (4).
Hence for each fixed k, {zk} ⊂ C1(I; Rn), we shall consider the following fixed
sequence of linear delay systems

ẋk(t) = A(t)xk(t) +
M∑

i=1

fi(xk−1(t− δi)) + C(t)uk(t)

+
N∑

j=1

gj(uk−1(t− τj)) + σ(zk(t), żk(t), t). (8)

For the linear optimal control problem (8) and (5) we have from [11]

uk(zk, t) = −K∗(t)xk(t)− q∗k(zk, żk, t)

= −R−1(t)C ′(t)K(t)xk(t)−R−1(t)C ′(t) qk(zk, żk, t) (9a)
where

K̇(t) + K(t)A′(t) + A(t)K(t)−K(t)S(t)K(t) + Q(t) = 0 (9b)
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with the terminal condition

K(t) = F (9c)

q̇k(zk, żk, t) = −[A(t)− S(t) K(t)]′ qk(zk, żk, t)−K(t) hk−1(zk, żk, t) (9d)

qk(zk, żk, T ) = 0 (9e)

here

hk−1(zk, żk, t) =
M∑

i=1

fi(xk−1(t− δi)) +
N∑

j=1

gj(uk−1(t− τj)) + σ(zk, żk, t). (9f)

For this linear optimal regulator problem, if there exists a solution xk(t) which
agrees with a predetermined function zk(t), then this function is also recognized as
a solution for the problem in Theorem 2. From this point of view, the controllability
problem for nonlinear systems has been studied by several authors (see survey article
by Balachandran and Dauer [4]).

Next we shall prove the following main theorem. For this we fix k.

Theorem 3. If the nonlinear delay systems (4a) with quadratic performance (5)
satisfied the condition (2), then the optimal control exists and is given by

uk(xk, t) = −K∗(t)xk(t)− q∗k(xk, ẋk, t)

= −R−1(t)C ′(t) K(t)xk(t)−R−1(t) C ′(t) qk(xk, ẋk, t) (10a)

where K(t) satisfies (9b), (9c) and

q̇k(xk, ẋk, t) = −[A′(t)− S(t)K(t)]′qk(xk, ẋk, t)−K(t)hk−1(xk, ẋk, t) (10b)

qk(xk, ẋk, T ) = 0. (10c)

P r o o f . The solution of (8) with condition (4d) is given by

xk(t) = Φ(t, t0) θ(t0) +
∫ t

t0

Φ(t, s)C(s)uk(s) ds +
∫ t

t0

Φ(t, s)hk−1(zk, żk, s) ds, (11)

where Φ(t, s) is the fundamental matrix solution for the homogeneous linear equation
of (8). If we substitute (9a) into (11), we get

xk(t) = Φ(t, t0) θ(t0)−
∫ t

t0

Φ(t, s)C(s) K∗(s)xk(s) ds

−
∫ t

t0

Φ(t, s)C(s) q∗k(zk, żk, s) ds +
∫ t

t0

Φ(t, s) hk−1(zk, żk, s) ds.(12)
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As (12) represents a nonlinear relation between zk(s) and xk(s) on I, it is sufficient
for the existence of optimal control (10a) that at least one fixed point exists for the
nonlinear map. Hence (12) is equivalent to (13) for the existence of fixed points

xk(t) = Φ(t, t0) θ(t0)−
∫ t

t0

Φ(t, s)C(s) K∗(s) zk(s) ds (13)

−
∫ t

t0

Φ(t, s)C(s) q∗k(zk, żk, s) ds +
∫ t

t0

Φ(t, s) hk−1(zk, żk, s) ds.

If the nonlinear function σ(zk, żk, t) satisfies the condition (2) then from (9d),
qk(zk, żk, t) also satisfies the same condition (Balachandran and Somasundaram
[6]) and there exists some positive constant b2 such that

|q∗k(yk, zk, t)− q∗k(yk, zk, t)| ≤ (b2/N
∗) |yk − yk|, (14)

where the positive constant N∗ is already defined and 0 ≤ b2 < 1
2 . Now the equation

(13) can be written in the operator form

xk(t) = P (zk) (t), (15)

where P is a nonlinear operator on C1(I; Rn). This operator is continuous, since all
the functions involved in the operator are continuous. Consider the closed convex
subset

H =
{
zk ∈ C1(I;Rn) : ‖zk‖ ≤ N1, ‖Dzk‖ ≤ N2

}
,

where N1 and N2 are certain positive constants depending on the bounds of A, fi, C,
gj , σ, K∗ and q∗. The operator P maps H into itself. As can easily be seen, all
the functions P (zk) (t) with zk ∈ H are equicontinuous, since they have uniformly
bounded derivatives. We shall now find an estimate for the modulus of continuity
of the functions DP (zk) (t) for t, s ∈ I. Observe that

d
dt

(P (zk) (t)) = A(t)Φ(t, t0) θ(t0)−
∫ t

t0

A(t)Φ(t, s) C(s)K∗(s) zk(s) ds

−C(t)K∗(t) zk(t)−
∫ t

t0

Φ(t, s)C(s) q∗k(zk, żk, s) ds

−C(t) q∗k(zk(t), żk(t), t) +
∫ t

t0

Φ(t, s)hk−1(zk, żk, s) ds + hk−1(zk, żk, t)

= A(t) P (zk) (t)− C(t)K∗(t) zk(t)− C(t) q∗k(zk(t), żk(t), t) + hk−1(zk(t), żk(t), t).

Now,

|DP (zk) (t)−DP (zk)(s)| ≤ |A(t) P (zk) (t)−A(s)P (zk) (s)|
+ |C(t)K∗(t) zk(t)− C(s)K∗(s) zk(s)|
+ |C(t) q∗k(zk(t), żk(t), t)− C(s) q∗k(zk(s), żk(s), s)|
+ |hk−1(zk(t), żk(t), t)− hk−1(zk(s), żk(s), s)| . (16)
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Following Balachandran [2], for the first two terms of the right-hand side of (16)
we may give the upper estimate as β0(|t − s|), where β0 is a non-negative function
such that limh→0+ β0(h) = 0. Similarly, for the last two terms we have the upper
estimate as

b2|żk(t)− żk(s)|+ β1|(t− s)| and b1|żk(t)− żk(s)|+ β2(|t− s|)

respectively. Letting β = β0 + β1 + β2 and b = b1 + b2, then

|DP (zk) (t)−DP (zk) (s)| ≤ b |żk(t)− żk(s)|+ β(|t− s|)

and we infer that
w(DP (zk), h) ≤ bw(Dzk, h) + β(h).

Hence we conclude that for any set E ⊂ H

µ(PE) ≤ bµ(E).

Thus, by the Darbo fixed point theorem the operator P has at least one fixed point:
therefore there exists a function z∗k ∈ C1(I; Rn) such that

x∗k(t) = z∗k(t) = P (z∗k(t)). (17)

This x∗k(t) satisfies the condition given in (10). 2

P r o o f o f T h e o r e m 2 . Thus from (10) for the kth optimization problem,
the optimal control is

u∗k(x∗k, t) = −R−1(t)C ′(t)K(t) x∗k(t)−R−1(t)C ′(t) qk(x∗k, ẋ∗k, t) (18a)

q̇k(x∗k, ẋ∗k, t) = − [A′(t)− S(t)K(t)]′ qk(x∗k, ẋ∗k, t)−K(t)hk−1(x∗k, ẋ∗k, t). (18b)

The optimal state trajectory x∗k(t) is the solution to

ẋ∗k(t) = [A(t)− S(t)K(t)] x∗k(t)− S(t) qk(x∗k, ẋ∗k, t) + hk−1(x∗k, ẋ∗k, t), (18c)

t0 ≤ t ≤ T.

From (18b) we observe that qk(x∗k, ẋ∗k, t) depends on a known function and
hk−1(x∗k, ẋ∗k, t). Also observe that the homogeneous parts of equations (18b) and
(18c) are adjoint. The solution to equation (18c) with boundary condition (4d) is

x∗k(t) = φ(t, t0) θ(t0) =
∫ t

t0

φ(t, t0) [−S(s) qk(x∗k, ẋ∗k, s) + hk−1(x∗k, ẋ∗k, s)] ds, (18d)

t0 ≤ t ≤ T, k = 1, 2, 3, . . . ,

where φ(t, s) is the state transition matrix corresponding to the matrix A(t) −
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S(t)K(t). By observing the equation (4b) and (18d) with the hypothesis of The-
orem 2, we find the sequences {u∗k(t)} and {qk(x∗k, ẋ∗k, t)} converge, because these
sequences are related to {x∗k(t)} and {ẋ∗k(t)} by continuous transformations. Hence
the limit of the sequence {x∗k(t)} is the solution to

ẋ∗(t) = [A(t)− S(t) K(t)] x∗(t)− S(t) q(x∗(t), ẋ∗(t), t) +
m∑

i=1

fi(x∗(t− δi))

+
N∑

j=1

gj(u∗(t− τj)) + σ(x∗(t), ẋ∗(t), t), t ≥ t0 (19a)

x∗(t) = θ(t), t0 −∆ ≤ t ≤ t0 (19b)

u∗(t) = α(t), t0 − Γ ≤ t ≤ t0, (19c)

where x∗(t), u∗(t) and q(x∗, ẋ∗, t) are respectively the limits of the sequence {x∗k(t)},
{u∗k(t)} and {qk(x∗k, ẋ∗k, t)}. From (18a),

u∗(x∗, t) = −R−1(t) C ′(t)K(t)x∗(t)−R−1(t)C ′(t) q(x∗, ẋ∗, t), t ≥ t0. (20)

Substituting u∗(x∗, t) in (20), for u(t) in equation (1a) and comparing the result
with equation (19a) shows that x∗(t) and u∗(x∗, t) are the optimal state trajectory
and the optimal control respectively for the optimization problem given by equations
(1) and (3). This completes the proof of Theorem 2. 2

5. COMPUTATIONAL PROCEDURE

The Riccati differential equation (7) must first be solved. Using the terminal condi-
tion (7b), equation (7a) may be solved backward in time to obtain K(t). Choosing
an arbitrary function β(t) in equation (4c), h0(t) can then be determined from equa-
tion (9f). As equation (10b) for q1 is a differential equation with a final time end
condition, a future value of the state x1 is required for the numerical value of q1.
This can be obtained from equation (13). Now by using the boundary condition
(4d), x∗1(t) can be calculated. The optimal control u∗1 can be determined from (18a).
This procedure is repeated for consecutive integral values of k. An m1th order opti-
mal state trajectory x∗m1

(t) and optimal control u∗m1
(x∗m1

; t) can be obtained if the
procedure is continued up to k = m1.

Remark. The optimal control scheme obtained in the above theorems is not easy
to implement and hence further research is required in this direction.

(Received June 17, 1996.)
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