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THE HÁJEK ASYMPTOTICS FOR FINITE POPULATION
SAMPLING AND THEIR RAMIFICATIONS

Pranab Kumar Sen

In finite population (equal as well as unequal probability) sampling late Jaroslav Hájek’s
contributions to the general asymptotics are fundamental. In the last two decades more
research work has been accomplished in this area with the basic ideas germinating from
Hájek’s work. A systematic review of such developments with due emphasis on some
martingale formulations is presented here.

1. INTRODUCTION

Finite population sampling (FPS) theory provides the most useful methodology for
drawing statistical conclusions for population characteristics based on a representa-
tive sample from it. The simple random sampling with replacement (SRSWR) is the
precursor of other relatively more complex (and yet useful) sampling designs which
are adopted in FPS. Simple random sampling without replacement (SRSWOR) re-
tains the equal probability sampling (EPS) structure but violates the independence
of the sample observations. There are various unequal probability sampling (UPS)
schemes which may have distinct advantages over SRSWR/SRSWOR. Although the
underlying probability structure for such FPS schemes are well defined, their com-
plexities increase with the increase in the size of the population and sample, so that
asymptotics become indispensible for obtaining simplified (manageable) expressions
for the sample inclusion probabilities and for studying various statistical properties
of sample statistics. In particular, in order to set a confidence interval for a suitable
population characteristic or to test for a plausible hypothesis on the same, we need
to estimate from the sample the mean square error (MSE) of the estimator of this
population characteristic. Then suitable large sample theory (generally leading to
normal laws) can be incorporated to draw the desired statistical conclusions. The
estimation of such MSE’s usually involves estimation or simplification of inclusion
probabilities which may require some nonstandard asymptotics. Moreover, lack of
independence may preclude the use of standard central limit theorems (CLT) for
establishing the asymptotic normality results. In fact, lack of independence, un-
equal probabilities for inclusion and complex sampling designs all add complexities
in the treatment of general asymptotics. Hájek’s ingenuity lies in the general for-
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mulation of FPS asymptotics in a rigorous probabilitistic framework which allows
diverse modern tools to accomplish the needed task.

Hájek [12] contains a novel and basic probabilistic approach to FPS covering both
EPS and UPS schemes in a common vein. While most of these works were accom-
plished in the sixties and published in contemporary journals, the publication of
this impressive monograph was considerably delayed due to Hájek’s serious health
problems in early seventies culminating with his premature and unexpected death
in 1974. Several colleagues and former students of Hájek voluntarily took up the
pending task of putting the finishing touches to the material left behind by him.
Needless to comment that as in nonparametrics, in FPS asymptotics too, under the
pioneering guidance of Jaroslav Hájek, the Czech school of probability and statistics
has made an outstanding contribution, and the flow of research is still on. Jitka
Dupačová, Jan Ámos Vı́̌sek and Zuzana Prášková are all among the other disciples
of Hájek whose contributions to this field are noteworthy, and their efforts have led
to extensions of the basic results of Hájek [5], [8],[11] in various directions. Sampling
theory (for Poisson sampling and rejective sampling) with varying probabilities (in
FPS) developed by Hájek [8] immediately caught the attention of prominant statis-
ticians from all over the world. Rosén [31] – [33], Sampford [34], [35] and Karlin [18]
have significant contributions in this vein. In course of this study, certain generalized
occupancy models cropped up in a natural way, and this led to some further inter-
active research in the area of capture-mark-recapture (CMR) methodology. Some
martingale characterizations in this context have also evolved and led to further
developments of asymptotics in successive (sub-) sampling with varying probability
schemes (viz., Sen [38], [40]). Section 3 is devoted to the exposition of these works
in FPS.

Invariance principles in FPS has been one of the areas of recent research interest.
The main inspiration came from the basic work of Hájek in the mid-sixties, although
most of these developments took place some ten years later on. Section 4 deals with
these developments. The concluding section is devoted to some general remarks.

2. SRSWOR AND PCLT

Consider a finite population ΠN = {a1, . . . , aN} of size N (where the aj need not
be all distinct), and let Xn = {x1, . . . , xn} be a sample of size n drawn from ΠN

according to a probability lawPNn. In SRSWR, this probability law is given by

P{X1 = ai1 , . . . , Xn = ain} = N−n, (1)

for every ij = 1, . . . , N , j = 1, . . . , n, and n ≥ 1. Therefore, the Xi are indepen-
dent and identically distributed random variables (i.i.d.r.v.) with the probability
distribution

P{Xi = ak} = N−1, for 1 ≤ k ≤ N ; i ≥ 1. (2)

In SRSWOR, we have

P{X1 = ai1 , . . . , Xn = ain} = N−[n] = {N . . . (N − n + 1)}−1, (3)
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for every 1 ≤ i1 6= . . . 6= in ≤ N , n ≤ N . Although, marginally each Xi has the
same probability distribution in (2.2), they are no longer independent. The Xi are
interchangeable (or exchangeable) r.v.’s, but their intra-class dependence pattern
depends on {N, n}.

To introduce a permutational (conditional) probability measure (Pn), let us con-
sider a set Y1, . . . , Yn of i.i.d.r.v.’s with a continuous distribution function (d.f) F on
IR. Let Zn = {Yn:1 < · · · < Yn:n} be the collection of the ordered r.v.’s (order statis-
tics) Yn:1, . . . , Yn:n corresponding to Y1, . . . , Yn. Then given Zn, Y n = (Y1, . . . , Yn)
takes on each permutation of the coordinates of Zn with the common (conditional)
probability (n!)−1. This is the genesis of permutational probability laws. To deal
with the case of possibility discrete distributions and to encompass the SRSWOR
schemes as well, by reference to (2.3), we let

Xi = aRi, i ≥ 1, (4)

so that (R1, . . . , Rn) is a sub-vector of (1, . . . , N), such that

1 ≤ R1 6= . . . 6= Rn ≤ N, ∀ 1 ≤ n ≤ N. (5)

Suppose now that our interest lies in the estimation of the population mean
āN = N−1

∑
i≤N ai. The sample mean X̄n = n−1

∑
i≤n Xi is a natural estimator

of āN having some optimal properties (viz., Nandi and Sen [22] covering the more
general case of U-statistics in SRSWOR). We may then write equivalently

X̄n =
∑

i≤N

δiaRi, (6)

where

δi =

{
1/n, 1 ≤ i ≤ n,

0, n < i < N ;
(7)

{Rn+1, . . . , RN} = {1, . . . , N}\{R1, . . . , Rn}. (8)

Recall that RN = (R1, . . . , RN ) takes on each permutation of {1, . . . , N} with the
common probability (N !)−1 (independently of the aj , j ≤ N), so that we have a
completely specified probability measure. We denote this permutation law by PN .
Then, for every n : 1 ≤ n ≤ N , it follows that

EPN
(X̄n) = āN and nVPN

(X̄n) = [(N − n)/(N − 1)]A2
N , (9)

where
A2

N = N−1
∑

i≤N

{ai − āN}2. (10)

Madow [19] used the representation in (2.6) and incorporated the classical Wald–
Wolfowitz [50] PCLT to establish that

n1/2(X̄n − āN )/{AN ((N − n)/(N − 1))1/2} D→ N (0, 1), (11)
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whenever N and n are large. The regularity conditions underlying the Wald–
Wolfowitz PCLT were rather stringent, and later on, these were relaxed by Noether
[23], Hoeffding [16], Motoo [21], and others. The final say in this context is due to
Hájek [6]. We present this evolutionary picture in a proper perspective.

Let ΠN = {aN1, . . . , aNN} and ΓN = {bN1, . . . , bNN} be two sequences of real
numbers, and define āN , b̄N , A2

N and B2
N as in (2.9) and earlier. Then a linear

permutation statistic is defined as

LN =
∑

i≤N

bNiaN Ri
, (12)

where RN = (R1, . . . , RN ) takes on each permutation of (1, . . . , N) with the com-
mon probability (N !)−1. Side by side, we may also introduce a bilinear permutation
statistic as

QN =
∑

i≤N

dN (i, Ri), (13)

where DN = {dN (i, j) : 1 ≤ i, j ≤ N} is a double sequence of real numbers. A
condition, known in the literature as the Noether condition, that arises invariably
with PCLT states that for a sequence, say ΠN , as N →∞,

max
1≤i≤N

(aNi − āN )2 /
∑

j≤N

(aNj − āN )2 → 0. (14)

Noether [23] replaced one of the Wald–Wolfowitz conditions by (2.14) and showed
that the PCLT holds. Hoeffding [16] extended this result for QN . Both the ap-
proaches are based on the so called “method of moments”, and thereby relate to
sufficient (but not necessary) regularity conditions.

Hájek [6] had a completely different approach, and he obtained a necessary and
sufficient condition for the PCLT to hold for LN . For this (without loss of generality),
we let aN1 ≤ · · · ≤ aNN , and introduce a quantile function aN (·) = {aN (λ) : 0 <
λ ≤ 1} by letting

aN (λ) = aNi for (i− 1)/N < λ ≤ i/N, 1 ≤ i ≤ N. (15)

Also, let U1, . . . , UN be i.i.d.r.v.’s having the uniform (0,1) d. f., and let

L0
N =

∑

i≤N

(bNi − b̄N )aN (Ui) + Nb̄N āN . (16)

Then, Hájek [6] succeeded in showing that under minimal regularity conditions, as
N →∞,

E(LN − L0
N )2/V (LN ) → 0. (17)

When ΓN satisfy (2.14) and aN (·) is square integrable, the CLT applies to L0
N , so

that (2.17) and the Slutzky theorem lead to the CLT for LN as well. Some further
simplifications can be made when ΠN (or ΓN ), N ≥ No, are defined in a special
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way (as is usually done in nonparametrics). Let UN :1 < · · · < UN :N be the order
statistics corresponding to U1, . . . , UN , and define

a∗Ni = Eφ(UN :i), 1 ≤ i ≤ N, (18)

where φ : (0, 1) → IR, is assumed to be square integrable and without loss of gener-
ality, we set ā =

∫ 1

0
φ(u) du = 0 (⇒ ā∗N = 0, ∀ N ≥ 1). Also, let

A2 =
∫ 1

0

φ2(u) du (< ∞) and A∗2N =
1

N − 1

N∑

i=1

a∗2Ni. (19)

In (2.12), replacing the aNi by a∗Ni, we define L∗N (in place of LN ). Further let
BN = B(RN ) be the sigma-field generated by the rank vector RN , N ≥ 1. Then,

E(L0
N )|BN ) = L∗N , ∀ N ≥ 1, (20)

so that
E(L∗N − L0

N )2 = E(L02
N )− E(L∗2N ) = NB2

N (A2 −A∗2N ), (21)

and it is easy to verify that A∗2N is ↑ in N with limN→∞A∗2N = A2. Therefore, (2.17)
follows readily from (2.21). Moreover, note that for an arbitrary ΠN , we have

EPN
(LN − L∗N )2/EPN

L∗2N ≤

∑

i≤N

[aNi − a∗Ni]
2




/
∑

i≤N

a∗2Ni


 , (22)

so that for an arbitrary LN , whenever,

N−1
∑

i≤N

(aNi − a∗Ni)
2 → 0, as N →∞, (23)

(2.17) can be verified through (2.22) and (2.23). Hájek [6] has an elegant math-
ematical treatment of this quadratic mean equivalence results in PCLT. In fact, his
treatment goes far beyond this basic result; the genesis of martingale characteriz-
ations in nonparametrics and FPS lies in this treatise.

With our primary focus on the FPS asymptotics, we discuss only briefly some
relevant martingale characterizations for L∗N and some related rank statistics. As in
(2.6), often, the ΓN arise from a single sequence {bn; n ≥ 1} of real numbers (e. g.,
bNi = (bi − b̄N )/BN , 1 ≤ i ≤ N). Also, the Ri depend on N , and hence, we write
them as RNi, 1 ≤ i ≤ N ; N ≥ 1. As such, we write

L∗N =
∑

i≤N

(bi − b̄N )a∗N (RRi), N ≥ 1, (24)

where a∗Ni is written as a∗N (i), 1 ≤ i ≤ N . As in Hájek [12], we may relate the
SRSWR to a superpopulation model, and assume that this superpopulation has a
continuous distribution. Then, along the lines of Sen and Ghosh [46], it is easy to
very that

E{L∗N+1|BN} = L∗N a. e., ∀ N ≥ 1, (25)
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where BN = B(RN ) is nondecreasing in N . Therefore,

{L∗N ,BN ; N ≥ 1} is a zero mean martingale. (26)

A similar martingale characterization holds for signed-rank statistics and some other
related ones. Such martingale characterizations (and approximations for other ΠN )
provide access to general asymptotics, and these are presented in a systematic man-
ner in Sen [41]). In passing, we may remark that in a multivariate setup (i. e., when
the elements of ΠN are themselves p-vectors, for some p ≥ 1), the treatment of PCLT
is a little bit more complex: Chatterjee and Sen [2] formulated the rank-permutation
approach which extends (2.3) in a natural way (to column permutations of a (p×N)
rank collection matrix). In this setup too, the Hájek [6] quadratic mean equivalence
plays a basic role, and a martingale approach to such multivariate PCLT has been
formulated in Sen [44].

Let us return to the SRSWOR asymptotics in a more general setup. The sample
mean X̄n, in (2.6), is a special case of a U-statistic. Based on the sample Xn and a
symmetric kernel g(x1, . . . , xk) of degree k(≥ 1), we define

Un = U(Xn) =
(

n

k

)−1 ∑

1≤i1<··· .<ik≤n

g(Xi1, . . . , Xik), (27)

and by (2.3), we obtain that Un is an unbiased estimator of

ΘN = Θ(ΠN ) = U(ΠN ) (28)

= N−[n]
∑

{1≤i1 6=···6=ik≤N}
g(ai1, . . . , aik).

Nandi and Sen [22] established the minimum variance property of Un (in a nonpar-
ametric setup), obtained a compact expression for the variance of Un, and through
detailed combinatorial arguments showed that as N → ∞, n → ∞ (but n/N need
not go to a positive limit),

n1/2[Un −ΘN ]/(1− n/N)1/2 is asymptotically normal. (29)

If we define g1(x) = EPn{g(X1, . . . , Xk) | X1 = x}, and let

U (1)
n =

1
n

n∑

i=1

g1(Xi), n ≥ 1, (30)

then it follows from Nandi and Sen [22] that as n →∞,

nE[Un −ΘN − k{U (1)
n −ΘN}]2 → 0. (31)

On the other hand, U
(1)
n is a linear statistic for which the Hájek [6] PCLT applies, so

that (2.31) extends the PCLT for general U-statistics. For some related results, we
may refer to Puri and Sen [30], Ch. 3. We may even extend the PCLT for SRSWOR
in a more general setup as follows. Let Tn = T (Xn) be an arbitrary statistic, such
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that ΘN = ETn exists and the second moment of Tn is also finite. Let us define for
n ≤ N − 1,

T̂n =
N − 1
N − n

n∑
n=1

E{Tn | Xi]− N(n− 1)
N − n

ΘN . (32)

Then, it follows by some standard steps that

E(Tn− T̂n)2 =E(Tn−ΘN )2 +E(T̂n−ΘN )2−2E{(Tn−ΘN )(T̂n−ΘN )} (33)

=E(Tn −ΘN )2 − E(T̂n −ΘN )2,

so that whenever

lim
n,N→∞

E(T̂n −ΘN )2/E(Tn −ΘN )2 = 1, (34)

the Hájek [10] projection applies to Tn, and as T̂n is a linear statistic, Hájek’s [6]
PCLT applies to T̂n under minimal regularity conditions, the PCLT holds for general
Tn under (2.34) and the same regularity conditions (on Tn). In particular for U-
statistics, (2.34) follows from Nandi and Sen [22]. It is clear from the above discussion
that the impact of Hájek’s [10] projection and quadratic mean approximation on
PCLT in a SRSWOR setup goes far beyond linear statistics.

If we go back to the superpopulation model introduced just after (2.24) then ΘN

in (2.28) can be regarded as a U-statistic (say, UN ) based on a sample of size N
from this superpopulation. This enables one to incorporate the reverse martingale
property of Un, n ≥ k, for i.i.d. sampling, to conclude that for every N(≥ n ≥ k),

{Un −ΘN ; k ≤ n ≤ N} is a reverse martingale. (35)

Actually, in FPS, SRSWOR schemes, this reverse margingale characterization of U-
statistics (due to Sen [36]) follows directly by using the permutation probability law
PN , without necessarily appealing to any super-population structure. The past two
decades have witnessed the phenomenal growth of research literature on asymptotics
based on martingales and reverse martingales, and (2.35) provides the access to in-
corporating such asymptotics in SRSWOR schemes for a broad class of statistics. In
particular, using the Chow-extension of the celebrated Hájek–Rényi [13] inequality,
we obtain that for a nondecreasing sequence {cn} of positive numbers and for every
(k ≤) n ≤ N, t > 0,

P

{
max

n≤m≤N
cm|Um −ΘN | ≥ t

}
(36)

≤ t−2

{
c2
nE(Un −ΘN )2 +

N∑
m=n+1

(c2
m − c2

m−1)E(Um −ΘN )2
}

,

where we know that

E(Um −ΘN )2 = O
(
(N −m)m−1(N − 1)−1

)
, ∀ m ≥ k. (37)
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In particular, letting cm = c = 1, ∀ m ≥ k and t = ε > 0, we obtain from (2.36) and
(2.37) that for n ∈ [k, N ],

P

{
max

n≤m≤N
|Um −ΘN | ≥ ε

}
≤ ε−2E[Un −ΘN ]2 = O

(
ε−2n−1(1− n/N)

)
. (38)

This Kolmogorov-type maximal inequality (in SRSWOR) implies that whenever
n (< N) increases (without necessarily assuming that n/N converges to a positive
limit),

max
n≤m≤N

|Um − θN | → 0, in probability. (39)

This mode of convergence is stronger than the usual stochastic convergence result
that Un − ΘN → 0, in probability, as n increases, and this result is referred to in
the literature as the strong convergence in FPS (SRSSWOR). In sequential analysis
relating to SRSWOR schemes, (2.39) is quite useful (see, for example, Sen [41]). We
shall consider some allied results in the last section.

Hájek [9] considered an interesting Kolmogorov-type inequality for dependent
summands (relating to FPS), and that is allied to (2.36). This inequality, discussed
in detail in Chapter 5 of Hájek and Šidák [14], plays a vital role in nonparametrics
asymptotics. Let d1, . . . , dN be a set of real numbers. R1, . . . , Rn be defined as in
(2.5) and let d̄N = N−1

∑N
i=1 di, D2

N =
∑N

i=1(di− d̄N )2 and D∗
N =

∑N
i=1(di− d̄N )4.

Then, for every n(< N),

E

[
n∑

i=1

dRi − nd̄N

]4

=
n(N − n)

N [4]
{3(N − n− 1)(n− 1)D4

N (40)

+(N2 − 6nN + 6n2 + N)D∗
N}

Using (2.40), Hájek [9] showed that for every ε > 0, n < N,

P

{
max

1≤k≤n

∣∣∣∣
k∑

i=1

dRi − kd̄N | > εDN

}
(41)

≤ n

N

{
max

1≤i≤N
(di − d̄N )2/D2

N +
3n

N

}
ε−4(1− n

N
)−3(1 + ηN ),

where ηN → 0 as N →∞.

The main utility of (2.41) relates to the case where n/N is small, and for this
the 4th moment in (2.40) is utilized. However, the 4th moment condition may not
be necessary. Recall that n−1

∑n
i=1 dRi is a U-statistic (of degree 1), so that letting
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cn = n, n ≥ 1, we obtain from (2.36) that for every n < N , ε > 0,

P

{
max

1≤k≤n

∣∣∣∣
k∑

i=1

dRi − kd̄N | > εDN

}
(42)

≤
[

n−1∑

k=1

k

k + 1
+

n(N − n)
N

]/
{ε2(N − 1)}

<

[
n− 1
N − 1

+
n(N − n)
N(N − 1)

]
ε−2.

This inequality (Sen [36]) has further been strengthened by incorporating higher
order moments or moment generating function of U-statistics in a FPS setup. With
due emphasis on FPS asymptotics, we may allow N to be large, and, as in Sen [37],
consider the following.

Let us define YN = {YN (t), 0 ≤ t ≤ 1} by letting

YN (t) = D−1
N

∑

i≤[Nt]

(dRi − d̄N ), 0 < t < 1, (43)

where conventionally, YN (t) = 0, ∀ 0 ≤ t < 1/N. Then,

YN
D→ W o, in the J1-topology on D[0,1], (44)

where W o = {W o(t), 0 ≤ t ≤ 1} is a standard Brownian bridge on [0,1]. A direct
consequence of (2.44) is that for every α (0 ≤ α ≤ 1) : limN→∞ n/N = α, and ε > 0,

lim
N→∞

P

{
sup

0≤t≤α
|YN (t)| ≥ ε

}
= P

{
sup

0≤t≤α
|W o(t)| ≥ ε

}
. (45)

Recall that by the Doob [3] construction, {(t+1)W o(t/(t+1)) : t ≥ 0} D= {W (t), t ≥
0}, where W (t) is a standard Wiener process on [0,∞). As such, for every ε > 0,
0 ≤ α ≤ 1, we have

P

{
sup

0≤t≤α
|W o(t)| > ε

}
(46)

= P

{
sup

0≤u≤α/(1−α)

(1 + u)−1|W (u)| > ε

}
.

One may then use the basic results of Anderson [1] to obtain an algebraic expression
for (2.46) (albeit in an infinite series form). Alternatively, as in Sen [37], we may
bound (2.46) from above by

4
[
1− Φ

(
ε(α−1(1− α))1/2

)]
, (47)

where Φ(x) is the standard normal d. f. For small α, (2.47) provides a good approxi-
mation for (2.46). Whenever α is not so small, one may even use the Kolmogorov–
Smirnov bound:

P

{
sup

0≤t≤1
|W o(t)| > ε

}
= 2

∞∑

k=1

(−1)k−1e−2k2ε2 , (48)
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so that the left hand side of (2.45) is bounded from above by (2.48). Since by the
Mills ratio, 1− Φ(x) ≤ x−1φ(x), where φ(x) = Φ′(x), comparing (2.47) and (2.48),
we gather that for small values of α (i. e., ε/

√
α large), (2.47) provides a better

bound that (2.48).
The Hájek-type inequalities in FPS discussed above have found their ways to

mingle with other applications as well. Again, martingale characterizations play a
basic role in this context. Let us define the {dn} and the Ri as in before. Also, let
q = {q(t) : 0 ≤ t ≤ 1} be a continuous, nonnegative, U-shaped and square integrable
function inside (0,1). Then, for every N (≥ 1), λ > 0,

P

{
max

1≤k≤N
q(k/N)

∣∣∣∣
k∑

i=1

(dRi − d̄N )| ≥ DNλ

}
≤ λ−2

∫ 1

0

q2(t) dt. (49)

The proof (Sen [39]) exploits martingale characterizations and the Hájek–Rényi [13]
inequality. Some applications of these probability inequalities will be considered in
the concluding section.

3. UPS ASYMPTOTICS

Hájek ([12], Ch.3) contains an elegant formulation of probability sampling covering
EPS as well as UPS schemes. We define a sample s as an arbitrary subset of the
population S = {1, . . . , N}, so that there are 2N subsets (including the empty set ∅
and the whole set S). A Sampling design is specified by a probability law

P = {P (s); s ∈ S}, (1)

which characteristingly defines the inclusion probabilities:

πi1...il
=

∑

{s : i1,...,il∈s}
P (s), (2)

for 1 ≤ i1 < · · · < il ≤ N ; l ≥ 1. The most important entities relate to the case of
l = 1 and 2.

For SRSWOR, we have P (s) =
(
N
n

)−1
if size of s = n, and 0 otherwise. We define

the inclusion indicators by

Ii(s) = 1 or 0 according as i ∈ s or not, 1 ≤ i ≤ N . (3)

In Poisson Sampling the indicators Ii are taken as independent r.v.’s. For any
sequence of positive numbers p1, . . . , pN :

∑N
i=1 pi = 1, the corresponding Poisson

sampling is defined by
P (s) =

∏

i∈s

pi

∏

i∈S\s
(1− pi). (4)

The sample size of s, denoted by (#s) is therefore a r.v., and

E(#s) =
N∑

i=1

pi, Var(#s) =
N∑

i=1

pi(1− pi); (5)
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πi = pi; πij = pipj , i 6= j = 1, . . . , N. (6)

The Poisson Sampling leads to a unified way of presenting some other sampling
methods including the rejective sampling and successive sampling schemes. Professor
Hájek made outstanding contributions in this field too (see Hájek [8]).

Rejective Sampling (Hájek [8]) may be defined either as conditional Poisson Sam-
pling or as conditional sampling with replacement. We let here

P (s) =

{
c∗

∏
i∈s αi, if #S = n;

0, otherwise,
(7)

where α1, . . . , αN are positive numbers and
∑N

i=1 αi = 1, c∗ > 0. The probability
αi of selecting the unit i in individual draws has been termed by Hájek ([12], p. 67)
the drawing probability. For some unified treatment of rejective sampling, we refer
to Hájek ([12], Ch. 7). In the Sampford–Durbin modification of rejective sampling
there is a two-phase scheme: The first unit is drawn with the drawing probabilities

αi(1) = n−1πi, 1 ≤ i ≤ N, (8)

while the remaining n− 1 units are drawn with drawing probabilities

αi(∗) = λπi(1− πi)−1, 1 ≤ i ≤ N, λ > 0. (9)

In this scheme, the inclusion probabilities are exactly equal to πi if λ is so chosen.
Successive Sampling consists of a sequence of independent draws of one unit with

some constant probabilities α1, . . . , αN :
∑

i≤N αi = 1. If a draw yields an unit
already selected in an earlier draw it is ignored, and the sequence stops as soon as
there are n distinct units in the sample s. The advantage of successive sampling is
that the average number of draws may only moderately exceed the sample size n,
and the disadvantage is the methodological complications that may generally arise
when the sample size is not small. Rosén [33] has made a fundamental contribution
to general asymptotics, and Hájek ([12]; Ch. 9) has a unified treatise of the same.
Some martingale characterizations (viz., Sen [38], [40]) add more flexibilities to such
asymptotic methods. We intend to present a broader review of these asymptotics.
For a population ΠN = (a1, . . . , aN ) with drawing probabilities P N = (p1, . . . , pN ),
in a SSVPWOR (successive sampling with varying probabilities (without replace-
ment)), let ∆(r, n) = P (r ∈ s), the probability that unit r is included in a sample of
size n. Then the well known Horvitz-Thompson estimator of the population total
(t =

∑
i≤N ai) is

HTn =
N∑

r=1

wnrar/∆(r, n) (10)

=
∑
r∈s

ar/∆(r, n),
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where

wnr =

{
1, r ∈ s

0, otherwise, for 1 ≤ r ≤ N.
(11)

The varying probability structure introduces additional complications in the study of
asymptotics for such estimators. Rosén [32], [33] considered an alternative approach
(via the coupon collector’s problem) and presented deeper results. Let {Jk; k ≥ 1}
be a sequence of i.i.d.r.v.’s where

P{Jk = r} = pr, 1 ≤ r ≤ N, ∀ k ≥ 1. (12)

Let then

Ynk =

{
aJk

/∆(Jk, n), if Jk 6∈ {J1, . . . , Jk−1}
0, otherwise, for k ≥ 1;

(13)

νk = inf{m(≥ k) : number of distinct J1, . . . , Jm = k}, k ≥ 1. (14)

Then Rosén showed that for every n ≥ 1,

HTn
D=

n∑

k=1

Ynνk
= Bnνn, (15)

where for each m ≥ 1, Bnm is the bonus sum at the mth stage in a coupon col-
lector’s problem with the set {a∗nr, pr; 1 ≤ r ≤ n}, with a∗nr = ar/∆(r, n), for
r = 1, . . . , N. Thus, the asymptotic behavior of randomly stopped bonus sums pro-
vides the access to the general asymptotics for HTn and other related estimators.
Rosen’s formulation rests on sophisticated nonstandard mathematical analysis, and
some simplifications and generalizations based on martingale approximations are
due to Sen [38]. By reference to a coupon collector’s model, we consider a sequence
{ΩN} where for each N , ΩN = {(aN (1), p1(1)), . . . , (aN (N), pN (N))} and the non-
negative pN (s) add upto 1. Define the JNk as in (3.12) and the YNk as in (3.13)
(with the aJ k/∆(Jk, n) being replaced by aN (JNk)). Let then

ZNn =
∑

k≤n

Ynk, n ≥ 1, ZN0 = 0. (16)

Then ZNn is the bonus sum after n coupons in the collector’s situation ΩN . If the
aN (k) are all nonnegative then ZNn is ↑ in n, so that if we let Un = {UN (t), t ∈ IR+},
where

UN (t) = min{k : ZNk ≥ t}, t ≥ 0, (17)

then UN (t) is the waiting time to obtain the bonus sum t in the coupon collector’s
situation ΩN . Let then

QNn =
∑

s≤N

aN (s) [1− exp (−npN (s))], (18)
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d2
Nn =

∑

s≤N

a2
N (s)e−npN (s)

(
1− e−npN (s)

)
(19)

−

∑

s≤N

aN (s)pN (s)e−npN (s)




2

, n ≥ 1

Rosén [31], [32] and Holst [17], among others, showed that under certain regularity
conditions, as n →∞,

(ZNn −QNn)/dNn
D→ N (0, 1). (20)

Further, using the identity that for every x, t > 0, P{UN (t) > x} = P{ZN [x] < t},
one can derive the asymptotic normality of the normalized version of UN (t), as
t → ∞. Note that the {ZNn, n ≥ 0}, N ≥ No may not generally be a martingale
array, and hence, the proof of (3.20) rests on some sophisticated analysis. Martingale
approximations provide simpler solutions. Let QNk = pN (JNk), k ≥ 1, and let

X
(n)
Nk = YNk(1 + QNk)k−1e−nQNR , k ≥ 1, X

(n)
N0 = 0; (21)

X̃
(n)
Nk = X

(n)
Nk − E(X(n)

Nk |BNk−1) (22)

= X
(n)
Nk − ζ

(n)
Nk +

k−1∑
s=0

X
(n)
Ns QNs(1 + QNs)k−s,

where BNk = B(JNj , j ≤ k), k ≥ 0, and

ζ
(n)
Nk =

∑

s≤N

aN (s)pN (s)exp (−npN (s)) [1 + pN (s)]k−1, k ≥ 1; (23)

and conventionally, we let X̃
(n)
N0 = 0 = ζ

(n)
N0 , ∀ n ≥ 1. Also, let

S̃
(n)
Nk =

∑

j≤k

X̃
(n)
Nn and ζ̃

(n)
Nk =

∑

j≤k

ζ
(n)
Nk , k ≥ 0. (24)

Then, it can be shown that for every ε > 0, as N →∞,

P{d−1
Nn|S̃(n)

Nn − ZNn + QNn| > ε} = 0, (25)

while by construction, for every (N, n), {S̃(n)
Nk , BNk; k ≥ 1} is a martingale array, so

that by martingale CLT,
d−1

NnS̃
(n)
Nn

D→ N (0, 1), (26)

and (3.20) follows directly from (3.25) and (3.26). As a matter of fact, the asymptotic
normality in (3.20) or (3.26) extends directly to suitable weak invariance principles
for bonus sums and waiting times; these are presented in Sen [38]. The coupon
collector’s problem has important application in the generalized occupancy prob-
lems with access to the classical mark-capture-release-recapture methodology. The
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number of catches needed to obtain exactly n distinct units relates essentially to the
waiting time in the coupon collector’s problem. In UPS asymptotics these play a
fundamental role. A renewal theorem in this context is due to Sen [42].

Sub-sampling (or multi-stage sampling) schemes are quite popular in practice.
Here the primary units (say, N) of a population are composed of a number of smaller
(sub-) units. Thus, it is customary to select first a sample of n primary units (out of
N), and then, for each of the selected primary units, to draw a sample of subunits. At
each stage, one may use EPS or UPS, and, as such, rejective sampling and successive
sampling schemes are all relevant. The asymptotic distribution theory of estimators
in successive sub-sampling with varying probabilities without replacement has been
studied by Sen [40]. This was accomplished through an invariance principle for an
extended coupon collector’s problem wherein the basic martingale approach in Sen
[38] has been exploited fully. These results provide a good theoretical justification
for general asymptotics which have occasionally been adopted in survey sampling
without proper motivation or analytical considerations. To conclude this Section,
I may remark that the Hájek asymptotics in UPS opened the doors for rigorous
theoretical treatise (often, in contrast to other heuristics in FPS), and his basic
ideas also paved the way for martingale characterizations which, in turn, provided
simpler proofs of many useful asymptotic results.

4. INVARIANCE PRINCIPLES IN FPS

In FPS, traditionally, the (asymptotic) normality of (the standardized form of) es-
timators is taken for granted and the prime emphasis is laid down on the estimation
of its sampling variance, so that large sample confidence intervals and/or hypothesis
testing can be validly worked out. Nevertheless, this asymptotic normality itself
remains as a vital issue of serious study. The situation may become much more
complex when the sample size may itself be a random variable. For example, in a
stratified sampling scheme (EPS), if the Neyman allocation is based on the sam-
ple estimates of the within stratum variances, the resulting strata sample sizes are
all random variables. Thus, there may be a need for extending the CLT’s in FPS
(EPS/UPS) to the cases where the sample size may not be prefixed. In fact, in
inverse sampling schemes the sample size is typically random and is governed by a
well defined stopping rule. In two (or multi-) stage sampling procedures, and more
generally, in sequential ones, stochastic sample sizes are quite commonly encoun-
tered. In the literature on standard (parametric) asymptotic theory, the classical
Anscombe theorem extends CLT’s to random sample sizes. Another way of dealing
with this problem is to formulating suitable invariance principles (weak as well as
stronger ones) which yield the Anscombe-condition as a by-product, and, in addition,
provide deeper asymptotic results.

Hájek [9] (and later reported in Hájek and Šidák [14]) provided an excellent
introduction to such weak (and almost sure) convergence results for appropriate
rank-processes, and opened the doors for a new approach to the deeper asymptotics
in nonparametrics. Dealing with rank statistics, the situation is more complex than
the case of sums of independent random variables, and Hájek [9] had to import
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some finer probability inequalities to verify the “compactness” (or tightness) part
of the related weak convergence results. In particular, the inequality in (2.41) plays
a key role in this context. Ranks are not stochastically independent, and hence, in
PCLT’s, the “independent increment” clause may not be generally true. The weak
convergence result in (2.44) is based on a reversed martingale characterization of
U-statistics in FPS (Sen [36], [37]), and for such (reversed) martingale sequences,
convergence of finite dimensional distributions implies the tightness condition (Sen
[41], Ch.2)). Similar martingale characterizations have been worked out for various
rank statistics, leading to appropriate invariance principles for then, and these are
presented in a unified manner in Sen [41]. Because of the intrinsic connection between
PCLT’s and FPS asymptotics, explained in Section 2, it is quite intuitive to note
that such invariance principles pertain to FPS as well.

Resampling plans (viz., jackknife and bootstrap methods) have gained a lot of
scope for practical applications during the past fifteen years. Although most of these
developments are related to SRSWR plans, there are some interesting developments
relating to FPS as well. (The genesis of jackknifing lies in FPS). Invariance prin-
ciples for jackknifing U-statistics for finite population sampling were developed by
Majumdar and Sen [20], and applications to FPS schemes were also discussed. In
this context too, reversed martingale characterizations in FPS play the key role. For
bootstrap procedures, in FPS, the weak convergence of the normalized form of the
bootstrap empirical distribution provides the desired key.

Invariance principles have also been developed for UPS schemes. For example,
the asymptotic normality result in (3.25) has been strengthened to an invariance
principle (Sen [38]) through some related developments for the coupon collector’s
bonus sum and waiting time problems. Again, in this context, martingale approx-
imations provide useful tools. Sen [40] contains an invariance principle pertaining
successive subsampling schemes discussed in the preceding section.

5. CONCLUDING REMARKS

Asymptotics in FPS, whether be in EPS or UPS schemes, follow a somewhat different
track than in SRSWR. Complications may arise due to lack of independence and,
probably, unequal drawing probabilities, and also there may be other constraints in
the sampling design contributing more towards this complexity. Hájek’s ingenuity
in providing a sampling design in a deterministic probability modeling has indeed
led to subsequent developments. In this respect, he did not hesitate to borrow tools
from pure probability theory and stochastic processes to nonparametrics and general
asymptotics, and the endproduct in a solid foundation of general asymptotics in FPS.
In this respect, not only he was instrumental in providing the basic research work but
also successfully developed the Prague School which has made genuine contributions
in this field. During the last five years of his life, I had a good opportunity to know
him not only professionally but also as a friend, colleague and mentor as well. With
my dual interest in nonparametrics and FPS, I found in him an ideal person to follow
the footsteps. It’s difficult, but I learnt a lot. In particular, the role of martingale
theory in nonparametrics and FPS, we have tried to explore fully during the past
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two decades, might not have come out in the present form without the foresight of
late Professor Jaroslav Hájek. I therefore take this opportunity to pay my humble
tribute and homage to this most pioneering researcher in asymptotic methods in our
time.

(Received October 26, 1994.)
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