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ROBUST CONTINUOUS-TIME TRACKING AND REGU-
LATION FOR MULTIRATE SAMPLED-DATA SYSTEMS

Osvaldo M. Grasselli, Sauro Longhi and Antonio Tornambè

In this paper, the robust ripple-free tracking and disturbance rejection problem is solved
for multirate sampled-data systems whose matrices are assumed to depend on some “phys-
ical” parameters. Making use of a hybrid control system structure, including a continuous-
time internal model of the exogenous signals and a periodic discrete-time subcompensator,
a ripple-free null steady-state error response is obtained in a neighbourhood of the nomi-
nal “physical” parameters of the plant, and a ripple-free dead-beat error response at the
nominal ones.

1. INTRODUCTION

The problem of the asymptotic tracking and disturbance rejection of a linear multi-
variable system subject to unmeasurable disturbances was studied by many authors
— see, e. g., [2, 3, 5, 7, 8, 9], [19, 20]), and the references therein. In most of these
contributions it is required the compensator to maintain stability, asymptotic track-
ing and output regulation in spite of independent perturbations of the elements of
matrices describing the system. In [14, 16, 17] such a problem was solved for un-
certainties or perturbations of “physical” parameters affecting the description of the
system.

If the problem of the asymptotic tracking is faced for a continuous-time plant
making use of a multirate digital control system, the undesirable ripple which may
arise between sampling instants may become unacceptable, especially if the sampling
rates are small, and should be avoided [4, 10, 21, 24, 25]. For the single-rate case
this can be robustly obtained if a continuous-time internal model of reference signals
is included in the forward path of the feedback control system [4, 10].

Here a method for deriving such a continuous-time internal model of both ref-
erence signals and disturbance functions is presented for a multirate hybrid control
system structure, including a periodic discrete-time subcompensator as in [6]. For
the case when the only uncertainties about the description of the plant concern
the values of some “physical” parameters, such a control system allows the control
requirements to be robustly satisfied, at least in a neighbourhood of the nominal
physical parameters of the plant to be controlled, and, in particular, a continuous-
time null (i. e., ripple-free) steady-state error response to be guaranteed for all the
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values of the physical parameters in such a neighbourhood of the nominal ones.
Making use of the hybrid control system structure here presented, a continuous-
time dead-beat (i. e., ripple-free) convergence of the error response is also obtained
at the nominal parameters.

2. PRELIMINARIES

Consider the linear time-invariant plant P described by

ẋ(t) = A(β)x(t) + B(β)u(t) + M(β) d(t), (1)
y(t) = C(β) x(t) + N(β) d(t), (2)

where t ∈ IR is time, x(t) ∈ IRn is the state, u(t) ∈ IRp is the control input,
d(t) ∈ IRm, is the unmeasurable disturbance input, y(t) ∈ IRq is the output to be
controlled — which is assumed to be measurable — and A(β), B(β), C(β), M(β),
N(β), are matrices with real entries depending on a vector β of parameters, which
are subject to variations and/or uncertain, β ∈ Ω ⊆ IRh, and play the role of the
“physical” parameters of the plant. The nominal value β0 of β is assumed to be
an interior point of the set Ω. It is assumed that each of the first q components
y1(t), . . . , yq(t) of y(t) must track the corresponding component of the reference
vector r(t) ∈ IRq, q ≤ q. Therefore, the error signal e(t) ∈ IRq for P is defined by

e(t) := y(t)− V r(t), V := [Iq̄ 0]T, (3)

where Iq̄ is the identity matrix of dimension q̄.
It is also assumed that the reference signals r(·) to be asymptotically tracked

and the disturbance functions d(·) to be asymptotically rejected are the free output
responses of the following exosystem E , whose initial state z(0) is unknown:

ż(t) = F z(t), z(t) ∈ IR` (4)
r(t) = Gz(t), d(t) = H z(t). (5)

Denote by αi, i = 1, . . . , µ, the µ distinct eigenvalues of matrix F , and by ki ∈ ∠Z+

the multiplicity of αi in the minimal polynomial of F , i = 1, . . . , µ,where ∠Z+ is the
set of positive integers. It is assumed that the αi, i = 1, . . . , µ, are all real and
non-negative.

It is also stressed that (4), (5) do not imply that r(t) and d(t) are restricted to
contain the same modes; e. g., this is not true for F = diag{α1Iq̄, α2Im}, ` = q̄ + m,
G = [Iq̄ 0], H = [0 Im], and α1 6= α2.

When a multirate digital control system is used for plant P, it seems to be
reasonable to require for the error e(t) at the nominal parameter β = β0 not only
the dead-beat convergence to zero at the sampling times, but the stronger ripple-free
dead-beat convergence, i. e.

e(t) = 0, ∀ t ≥ t̄, t ∈ IR (6)
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for some t̄ ∈ IR, t̄ > 0. Since it seems to be unrealistic to maintain such a property
despite of parameter perturbations, for β different from β0 and belonging to a suit-
able neighbourhood of β0 this requirement is weakened to the ripple-free convergence
to zero, i. e.,

lim
t→+∞

e(t) = 0 (7)

(which is much more than the convergence to zero at the sampling times). It is known
that a continuous-time internal model of reference signals is needed in the forward
path of the feedback control system for such ripple-free requirements to be satisfied
(see [10] for the single-rate case). Therefore, if such an internal model is not entirely
contained in the plant P for β = β0 and for all β in some neighbourhood of β0, a
continuous-time precompensator KC to be connected in series with P should provide
the missing part of the internal model. This justifies the use of the control scheme
reported in Fig. 1, where KC is a continuous-time time-invariant subcompensator
described by

Fig. 1. Structure of the hybrid multirate sampled-data control system Σ.

ẇC(t) = QCwC(t) + RCuC(t), uC(t) ∈ IRp, (8)
u(t) = JCwC(t) + UCuC(t), (9)

KD is a discrete-time periodic subcompensator described by

wD(k + 1) = QD(k) wD(k) + RD(k) eD(k), eD(k) ∈ IRq, (10)
uD(k) = JD(k) wD(k), uD(k) ∈ IRp, (11)

and the block Hi, i = 1, . . . , p, represents a zeroth-order holder, whose hold interval
is NiT , Ni ∈ ∠Z+, which connects the ith component uC,i(t) of uC(t) with the ith
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component uD,i(k) of uD(k). It is assumed that for each component yi(·) of y(·),
i = 1, . . . , q (or, respectively, ri(·) of r(·), i = 1, . . . , q̄), a discrete-time signal yD,i(·)
(or, respectively, rD,i(·)) is obtained by sampling yi(·) (or, respectively ri(·)) with
sampling period ZiT , Zi ∈ ∠Z+, i. e.,

yD,i(jZi) = yi(jZiT ), j = 0, 1, 2, . . . , (12)
yD,i(k) = 0, k 6= jZi, ∀ j ∈ ∠Z+, (13)

(or, respectively,

rD,i(jZi) = ri(jZiT ), j = 0, 1, 2, . . . , (14)
rD,i(k) = 0, k 6= jZi, ∀ j ∈ ∠Z+). (15)

Denoting by yD(·) and rD(·) the discrete-time vector functions whose components
are yD,i(k), i = 1, . . . , q and rD,i(k), i = 1, . . . , q̄, respectively, eD(k) in (10) is
expressed by

eD(k) := yD(k)− V rD(k), (16)

and coincides with the multirate sampling of e(t). It is also assumed that the integers
Ni, i = 1, . . . , p and Zi, i = 1, . . . , q have 1 as their greatest common divisor, and
that all the hold devices and samplers are synchronized at time t = 0. The period ω
characterizing the periodic matrices QD(·), RD(·), JD(·) in (10), (11) is chosen equal
to the least common multiple of the integers Ni, i = 1, . . . , p and Zi, i = 1, . . . , q.

In view of requirement (6), to be considered for β = β0, it is natural to require
also, for β = β0, a dead-beat convergence of the free state response of the over-all
hybrid control system Σ represented in Fig. 1, instead of the mere exponential decay.

Therefore, the following control problem will be studied here.

Problem 1. (Robust ripple-free tracking and regulation problem) Find, if any,
linear dynamic compensators KD and KC , described by (10), (11) and (8), (9),
respectively, with the matrices QD(·), RD(·) and JD(·) being periodic of period ω
(briefly, ω-periodic), such that the following requirements are satisfied by the overall
hybrid control system Σ represented in Fig. 1:

(a) at the nominal parameters of the plant P, i. e., for β = β0, for all the initial
states of Σ at the initial time t = 0, the free state response of Σ (i. e., the state
response of Σ for z(0) = 0) is identically zero for all times t ≥ t̃, for some t̃ > 0;

(b) for all the initial states z(0) of E and for all the initial states of Σ, relation
(6) is satisfied for some t̄ > 0, t̄ ∈ IR, at the nominal parameters of the plant P, i. e.,
for β = β0;

(c) there exists a neighbourhood Ψ ⊆ Ω of β0 such that, for all β ∈ Ψ, Σ is
exponentially stable and relation (7) is satisfied for all the initial states z(0) of E
and for all the initial states of Σ.

By the periodicity of all the time-varying subsystems appearing in Fig. 1, a so-
lution of Problem 1 guarantees requirements (a), (b) and (c) to be satisfied for any
(nonzero) initial time. Such a problem will be studied under the following technical
assumptions.
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Assumption 1. There exists a closed neighbourhood Ψa ⊆ Ω of β0 such that all
the entries of A(β), B(β), C(β) are continuous functions of β in Ψa.

In order to state the second technical assumption, denote by σ(E) the set of the
eigenvalues of a square matrix E, and define

Γ(β) := σ(A(β)) ∪ σ(F ). (17)

Assumption 2. For each element γ of Γ(β0), none of the values γ + 2πi/ωT ,
i 6= 0, i ∈ ∠Z, is an element of Γ(β0), where  is the imaginary unit.

Remark 1. A proper choice of T trivially allows Assumption 2 to be satisfied. In
addition, Assumption 2 implies that none of the values 2πi/T , i 6= 0, i ∈ ∠Z, is an
element of Γ(β0).

Before giving conditions for the existence of a solution of the above stated control
problem — together with a design procedure of it — call SC the series connection of
KC and P (see Fig. 1), rewrite its equations (1), (2), (8), (9) in the following more
compact form:

ẋC(t)=AC(β) xC(t)+BC(β)uC(t)+MC(β) d(t), xC(t) := [xT(t) wT
C(t)]T, (18)

y(t)=CC(β) xC(t) + NC(β) d(t), (19)

and notice that, if Assumption 1 holds, then the elements of matrices AC(β), BC(β)
and CC(β) are continuous functions of β in Ψa. Then, denote by SD the discrete-
time state-space model, having uD(k) as control input and eD(k) as output, of
the multirate sampled-data system obtained by connecting the hold devices Hi,
i = 1, . . . , p, the continuous-time system SC , the q samplers of the scalar components
yi(t), i = 1, . . . , q, of y(t) and the q̄ comparators (see Fig. 1). The following lemma
can be deduced directly from [22], [23] (see also [18]).

Lemma 1. For each β ∈ Ω, the discrete-time system SD is described by equations
of the following form:

xD(k+1)=AD(β, k) xD(k)+BD(β, k)uD(k)+MD(β) zD(k), xD(k)∈ IRnD (20)
eD(k)=CD(β, k) xD(k) + ND(β, k) zD(k)− V rD(k), (21)

where zD(k) = z(kT ) and rD(k) satisfy the equations:

zD(k + 1) = eFT zD(k), (22)
rD(k) = Θ(k)zD(k), (23)

with
Θ(k) := diag{τ1(k), . . . , τq̄(k)}, (24)

τi(jZi) := 1, j = 0, 1, 2, . . . , i = 1, . . . , q̄ (25)
τi(k) := 0 k 6= jZi, ∀ j ∈ ∠Z+, i = 1, . . . , q̄, (26)
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the matrices AD(β, k), BD(β, k), CD(β, k) and ND(β, k) are periodic of period ω for
each β ∈ Ω, and, if Assumption 1 holds, all the elements of AD(β, k), BD(β, k) and
CD(β, k) are continuous functions of β in Ψa for all k ∈ ∠Z.

3. MAIN RESULT

A solution of Problem 1 is given by the following theorem, whose proof provides a
design procedure of KC and KD.

Theorem 1. There exist an ω-periodic discrete-time compensator KD and a time-
invariant continuous-time compensator KC which constitute a solution of Problem 1,
under Assumptions 1 and 2, if the following conditions are satisfied:

(i) the triplet (A(β0), B(β0), C(β0)) is reachable and observable;

(ii) rank
[
A(β0)− αiIn B(β0)

C(β0) 0

]
= n + q, i = 1, 2, . . . , µ.

P r o o f . It will now be shown the existence of µ continuous-time sub-compensators
K1, K2, . . . , Kµ of KC such that, for each j = 1, . . . , µ, the series connection Sj of
Kj , Kj−1, . . . , K1 and P, having the input uj(t) of Kj as input and y(t) as output
(see Fig. 2), and described by:

Fig. 2. Structure of system SC .

ẋj(t)=Aj(β) xj(t)+Bj(β)uj(t)+Mj(β) d(t), xj(t)∈ IRnj , uj(t)∈ IRp, (1)
y(t)=Cj(β)xj(t) + Nj(β) d(t), (2)

satisfies the following conditions:

Condition 1: Assumptions 1 and 2 and conditions (i) and (ii) of the theorem, rewrit-
ten for system Sj and the matrices describing it, hold;

Condition 2: there exists a neighbourhood Ψj ⊆ Ω of β0 such that, for each β ∈ Ψj ,
the pair (Aj(β), Cj(β)) is observable.

The proof of the existence of K1, . . . , Kµ with the above stated properties –
whose series connection will constitute the over-all compensator KC (see Fig. 2) –
will be carried out constructively by induction. Then, assume that Sj−1 satisfies
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Condition 1 written for Sj−1 (for j = 1 this is true if P is denoted with S0). Let Kj

be described by

ẇj(t)=Qjwj(t) + Rjuj(t), wj(t) ∈ IRkjq, uj(t) ∈ IRp, uC(t) = uµ(t), (3)
uj−1(k)=Jjwj(t) + Ujuj(t), uj−1(t) ∈ IRp, u0(t) = u(t), (4)

where

Qj :=

2
66666666666666666664

αjIq Iq 0 0 · · · 0 0
0 αjIq Iq 0 · · · 0 0
0 0 αjIq Iq · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · αjIq Iq

0 0 0 0 · · · 0 αjIq

3
77777777777777777775

, Rj :=

2
66666666666666666664

0 0
0 0
0 0
...

...
0 0
0 Iq

3
77777777777777777775

, (5)

Jj :=
»

Ej 0 0 0 · · · 0 0
–
, Uj :=

"
Ẽj 0

#
, (6)

with Ej ∈ IRp×q and Ẽj ∈ IRp×(p−q) being such that

det
[
Aj−1(β0)− αjInj−1 Bj−1(β0)Ej

Cj−1(β0) 0

]
6= 0, (7)

det
[
Ej Ẽj

]
6= 0, (8)

whose existence is guaranteed by the assumption that Sj−1 satisfies Condition 1
rewritten for Sj−1. Thus it is readily seen that (3) – (8) and Condition 1 rewritten
for Sj−1, imply that Condition 1 holds and, in addition, that Condition 2 too holds.

Define Ψb :=
⋂µ

j=1 Ψj . Notice that, following the above procedure for the design
of KC , the Jordan form of Qj has q Jordan blocks of dimensions kj corresponding to
the eigenvalue αj . Notice also that α1, α2, . . . , αµ are the only eigenvalues of KC ,
and that SC = Sµ is reachable and observable at β = β0, and satisfies the whole
Condition 1 rewritten for SC .

Therefore, by Corollaries 3.1 and 3.2 in [23] (see also [22]) and Assumption 2,
system SD is reachable at all times and reconstructible for β = β0. Then, call ΣD

the feedback connection of KD and SD, as in Fig. 1, and choose KD so that, for
β = β0 and for all the initial states [xT

D(0) wT
D(0)]T of ΣD, the free state response

of ΣD (i. e., the state response of ΣD for zD(0) = 0) is zero for all integers k ≥ k̂,
for some k̂ ∈ ∠Z+ (see, e. g., [11] or [12], [13] for algorithms for the design of KD).
This ensures that requirement (a) is satisfied.

Since, by Assumption 1 and Lemma 1, all the entries of AD(β, k), BD(β, k) and
CD(β, k) are continuous functions of β in Ψa for all k ∈ ∠Z, such a compensator KD

guarantees also the exponential stability of ΣD for all β within some neighbourhood
Ψc ⊆ Ω of β0.

Notice that all the eigenvalues of AC(β) belong to Γ(β) and that, by the continuity
of A(β) in Ψa, there exists a neighbourhood Ψd ⊆ Ω of β0 such that Assumption 2
rewritten with β instead of β0 holds for each β ∈ Ψd. Since, for zD(0) = 0, SD can
be seen as the series connection [22], [23] of three subsystems, namely an ω-periodic
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discrete-time system, the single-rate sampled-data system corresponding to P with
both hold interval and sampling period equal to T , and a non-dynamic ω-periodic
system, by Theorem 4 in [6] the exponential stability of ΣD for all β ∈ Ψc implies
the exponential stability of the overall hybrid control system Σ for all β ∈ Ψc ∩Ψd

(see also Remark 1), thus ensuring the first part of requirement (c).
Now, denote by ηSC

(t, β, xC(0), uC(·), d(·)) the output response y(t) of the continu-
ous-time system SC from the initial state xC(0) to the control function uC(·) and
to the disturbance function d(·) for the actual value of vector β, and denote by
ηSD (k, β, xD(0), uD(·), zD(0)) the output response eD(k) of the discrete-time system
SD, from the initial state xD(0), to the control function uD(·), for the initial state
zD(0) = z(0) of the exogenous system E , for the actual value of β. Then, by the
application of Lemma 4 of the Appendix with αj , kj , q, Sj , Kj , Sj−1 and Qj instead
of α, i, q, S, S1, S2 and A1, respectively, Condition 2 for j = 1, 2, . . . , µ, and the
above mentioned Jordan structure of Qj imply that, for each β ∈ Ψb and for each
z(0) ∈ IR` in (4), (5), there exists xC ∈ IRnµ (with nµ = n + q

∑µ
i=1 ki) such that

V r(t)− ηSC
(t, β, xC , 0, d(·)) = 0, ∀ t ≥ 0, t ∈ IR. (9)

Therefore, taking into account Fig. 1 and how system SD is obtained from system
SC , the hold devices and the samplers [22], [23], it is readily seen that:
(α) for each β ∈ Ψb and for each zD(0) ∈ IR`, there exists xD ∈ IRnD such that the
state of the hold devices in xD is zero and

ηSD
(k, β, xD, 0, zD(0)) = 0, ∀ k ≥ 0, k ∈ ∠Z. (10)

Since the discrete-time feedback connection ΣD of KD and SD is ω-periodic, its
response from the initial time k = 0 can be obtained through the feedback connection
of the time-invariant “associated systems of KD and SD at time 0” [15], whose input
is the ”stacked form” of zD(·) which has a proper rational z-transform. Since such
a time-invariant system is exponentially stable for all β ∈ Ψc as ΣD is, then for
each β ∈ Ψc, for each z(0) = zD(0) ∈ IR`, and for each initial state of the over-all
hybrid control system Σ, the corresponding responses of ΣD in the [xT

D(k) wT
D(k)]T,

eD(k), uD(k) variables can be uniquely decomposed as the sum of the transient and
steady-state responses, which will be denoted henceforth by the superscripts t and
ss, respectively; hence, the corresponding uC(t) and e(t) responses in the hybrid
control system Σ can be decomposed as the sum of the corresponding responses
ũt

C(t) and ũss
C and, respectively, ẽt(t) and ẽss(t).

Therefore, for each β ∈ Ψb∩Ψc∩Ψd, consider for the discrete-time system ΣD its
steady-state response to zD(0); by Lemma 3 of the Appendix and the above stated
property (α), such a unique steady-state response is characterized by ess

D (k) = 0,
uss

D (k) = 0, wss
D (k) = 0, for all k ≥ 0, and, by Lemma 2 of the Appendix, it coincides

for SD with the full response from some initial state xD(0) for which a zero state
in the hold devices is maintained, thus implying ũss

C (t) = 0 for all t ≥ 0. Therefore,
since Assumption 2 holds in Ψd, the application to the series connection of E and P
of a direct extension of Corollary 3.2 in [23] proves that

ẽss(t) = 0, ∀ t ≥ 0, t ∈ IR, (11)
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for each β ∈ Ψb ∩Ψc ∩Ψd and for all zD(0) ∈ IR`.
On the other hand, for each β ∈ Ψb ∩Ψc ∩Ψd and for all zD(0) ∈ IR`, the corre-

sponding transient response of ΣD coincides with a free response of ΣD from some
initial state (see Lemma 2 of the Appendix). Hence, ẽt(t) and ũt(t) are exponen-
tially convergent to zero by the exponential stability of Σ in Ψc∩Ψd. This, together
with (11), since e(t) = ẽt(t) + ẽss(t), proves that the second part of requirement (c)
is satisfied too with Ψ := Ψb ∩ Ψc ∩ Ψd, and, taking further into account that ΣD

and Σ have dead-beat free responses for β = β0, proves that also requirement (b) is
guaranteed. 2

Remark 2. The design procedure contained in the proof of Theorem 1 consists of:
(1) choosing KC as the series connection of K1, . . . , Kµ, with Kj , j = 1, . . . , µ, being
described by equations (3) – (8); and
(2) designing a dead-beat feedback ω-periodic discrete-time controller KD for the
discrete-time ω-periodic system SD corresponding to SC (see Fig. 1).

Since, by the choice of KC , SC contains an internal model of the exogenous
continuous-time signals for all β in some neighbourhood Ψb of β0 (see Lemmas 3
and 4 of the Appendix), then SD contains an internal model of the corresponding
discrete-time exogenous signals, thus guaranteeing eD(k) = 0 in the steady-state,
for each value of β ∈ Ψb ∩Ψc. This, since Assumption 2 is preserved for all β ∈ Ψd,
and u(t) = 0 in the steady-state, guarantees a continuous-time null (i. e., ripple-free)
error response in the steady state for all β ∈ Ψb ∩Ψc ∩Ψd.

Notice that condition (ii) implies that p ≥ q (i. e., dimu(t) ≥ dim y(t)). If, in
particular, p = q, the construction of the continuous-time precompensator KC can
be simplified, since it can be chosen as a minimal realization of φ−1(s)Ip, where φ(s)
is the minimal polynomial of F . If, on the contrary, p > q, such a simpler precom-
pensator KC is not compatible with the detectability of SC and SD, whence with the
asymptotic stability of Σ, while the use of a continuous-time postcompensator hav-
ing the transfer matrix φ−1(s)Iq (see, e. g., Theorem 9 – 22 in [1]) is prevented by the
hybrid control system structure of Figure 1. If p > q, however, the precompensator
KC here proposed still allows to satisfy the robustness requirement (c) in addition
to (a) and (b), and has the same structure as a simi lar precompensator proposed in
[18] for single-rate sampled-data control systems and for ki = 1, i = 1, . . . , µ. Notice
that the design of KC needs merely the nominal description of the plant P, i. e., its
description for β = β0.

Notice also that the case αj 6∈ IR for some j ∈ {1, . . . , µ} could be similarly taken
into account in the design procedure of KC , under the same conditions.

It seems useful to clarify the application of Theorem 1 and the above mentioned
design procedure by a numerical example. Then, consider the linear time-invariant
plant P described by (1), (2) with

A(β)=

2
666664

1 0 0
βa 0.5+βb 0
1 1 −1+βb

3
777775
, B(β)=

2
666664

1 0 1.5+βa

−1 0 0
0 1+βb −1

3
777775
, M(β)=

2
666664

0
0
1

3
777775
,

(12)
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C(β) =
[
0 1 0
1 0 −1

]
, N(β) =

[
0
0

]
, (13)

where the nominal value of β = [βa βb]′ is β0 = [0.5 0]′, and assume that the
first component y1(t) of y(t) must track a scalar reference signal r(t) ∈ IR, and the
second component y2(t) must be regulated to zero under the action of a disturbance
d(t) ∈ IR, with the exosystem E being described by equation (4), (5) with

F =
[
0 1
0 0

]
, G =

[−1 0
]
, H =

[
0 1

]
. (14)

Moreover, suppose T = 1, N1 = 1, N2 = 2, N3 = 1, Z1 = 1 and Z2 = 2.
Thus, ω = 2, and it is trivial to check that Assumptions 1 and 2 and conditions
(i) and (ii) of Theorem 1 hold. Therefore, according to the step (1) in the above
remark, the continuous-time time-invariant precompensator KC described by (8).
(9) is characterized by

QC =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 , RC =




0 0 0
0 0 0
0 1 0
0 0 1


 , (15)

JC =




1 0 0 0
0 1 0 0
0 0 0 0


 , UC =




0 0 0
0 0 0
1 0 0


 . (16)

Lastly, a 2-periodic discrete-time dead-beat controller KD is easily found with the
help of the design procedure contained in [12], [13] in form of a dead-beat observer
based controller; namely, KD is described by equation (10), (11), where

QD(k)=AD(β0, k)−V (k)CD(β0, k)−BD(β0, k) K(k), RD(k)=V (k), JD(k)=−K(k)
(17)

with

AD(β0, 0)=

2
6666666666666666666666664

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 1.7183 0 0.7183 0 2.7183 0 0
0 0 0 −0.8766 0 −0.4715 0 1.0696 1.6487 0
0 0 0 0.199 0.6321 0.0477 0.3679 1.4965 0.8539 0.3679

3
7777777777777777777777775

AD(β0, 1) =

2
6666666666666666666666664

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0.5 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0.2183 0 1.7183 0 0.7183 0 2.7183 0 0
0 −0.1612 0 −0.8766 0 −0.4715 0 1.0696 1.6487 0
0 0.0093 0 0.199 0.6321 0.0477 0.3679 1.4965 0.8539 0.3679

3
7777777777777777777777775
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BD(β0, 0) =

2
6666666666666666666666664

1 0 0
0 1 0
0 0 1
0 0.5 0
0 0 0.5
0 1 0
0 0 1

3.4365 0.2183 0
0.8417 −0.1612 0
0.6531 0.0093 0.1321

3
7777777777777777777777775

BD(β0, 1) =

2
6666666666666666666666664

1 0 0
0 0 0
0 0 1
0 0 0
0 0 0.5
0 0 0
0 0 1

3.4365 0 0
0.8417 0 0
0.6531 0 0.1321

3
7777777777777777777777775

CD(β0, 0) =
2
40 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 −1

3
5

CD(β0, 1) =

2
40 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0

3
5

K(0) =

2
6664

0 0 0 0.1465 −0.0341 0.4990 −0.0132 1.0738 1.3041 −0.0175
0 0 0 0.25 0 0.75 0 0 0 0
0 0 0 −0.1187 0.9565 0.1187 1.4831 0.0547 0.4136 −0.0222

3
7775

K(1) =

2
6664

0 0.4945 0 −0.4271 −0.0320 0.3493 −0.0124 1.0711 1.2839 −0.0164
0 0 0 0 0 0 0 0 0 0
0 −0.0104 0 −0.0052 0.9832 0.01037 1.4935 0.0210 0.1594 −0.0086

3
7775

V (0) =

2
6666666666666666666666664

0 0
0 0
0 0
0 −1.5518

−2.1320 −0.4686
0 −0.6633

−0.5782 −0.0766
0 −0.9651
0 3.1487

−1.5627 1.0812

3
7777777777777777777777775

V (1) =

2
6666666666666666666666664

0 0
0 0
0 0
0 1.1334
0 −4.1200
0 0.2990
0 −1.9212
0 15.8571
0 6.3670
0 7.5125

3
7777777777777777777777775

This solution has been found making use of an easy MATLAB implementation of
the above quoted algorithm. The entries of K(k) and V (k) (as well as those of the
other matrices) have been written above with only five digits. With the synthesized
solution KC and KD the requirements (a), (b) and (c) of Problem 1 are satisfied.
This is shown by the results of the simulation tests, which are represented by the
experimental diagrams reported in Figures 3, 4, 5 and 6 showing the response of Σ
for β = β0, z(0) = 0 (i. e., the free response of Σ) and z(0) = [0 − 2]′, as well as its
error responses for some perturbation of vector β from its nominal value β0.

4. CONCLUSIONS

For a given time-invariant plant whose description has a known and continuous
dependence on some “physical” parameters, sufficient conditions and a design pro-
cedure have been given for obtaining (under Assumption 2) a ripple-free regulation
and tracking by means of a multirate sampled-data control system, at least in a
neighbourhood of the nominal physical parameters of the plant, and a ripple-free
dead-beat error convergence at the nominal ones. “Large” regions Ψ ∈ Ω of conver-
gence could be obtained by making use of robust stabilization design procedures for
the choice of the discrete-time controller KD.
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Fig. 3. The components of the continuous-time state response x(t) of the plant P for

β = β0, z(0) = 0, x(0) = [1 − 0.5 2]′, wC(0) = 0 and wD(0) = 0.
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Obviously, the same sufficient conditions and the same design procedure hold
for the case when there is no knowledge about the dependence on the physical
parameters of the matrices describing the plant P, and independent perturbations
of their entries are considered.

However, it is stressed that condition (ii) of Theorem 1 is not necessary in general
for the parameter dependence in (1), (2) (see, e. g., the weaker sufficient conditions
given in [18] for a similar problem and for the case of single-rate sampled-data control
systems and ki = 1, i = 1, . . . , µ).

Fig. 4. The components of the continuous-time error response for β = β0,

z(0) = [0 − 2]′, x(0) = [1 − 0.5 2]′, wC(0) = 0 and wD(0) = 0.



738 O.M. GRASSELLI, S. LONGHI AND A. TORNAMBÈ

Fig. 5. The components of the continuous-time control input response uC(t) of SC for

β = β0, z(0) = [0 − 2]′, x(0) = [1 − 0.5 2]′, wC(0) = 0 and wD(0) = 0.



Robust Continuous-Time Tracking and Regulation for Multirate Sampled-Data Systems 739

Fig. 6. The components of the continuous-time error response for

β = [0.5003 − 0.0008]′, z(0) = [0 − 2]′, x(0) = [1 − 0.5 2]′, wC(0) = 0 and wD(0) = 0.

A. APPENDIX

Consider the linear time-invariant system Σ described by

∆x(t) = AΣx(t) + BΣu(t), (A.1)
y(t) = CΣx(t) + DΣu(t), (A.2)

where t ∈ T is time, ∆ denotes either the differentiation operator (if T = IR) or the
one-step forward shift operator (if T = ∠Z), x(t) ∈ IRn, u(t) ∈ IRp, y(t) ∈ IRq and
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AΣ, BΣ, CΣ, DΣ are constant matrices with real elements. Denote by ϕΣ(t, x0, u(·))
and ηΣ(t, x0, u(·)) the state and output responses, respectively, at time t of system
Σ to the initial state x(0) = x0 and to the input function u(·), and denote by U
the class of input functions u(·) having a proper rational Laplace transform with all
the poles in the closed right half-plane (if T = IR) or a proper rational z-transform
with all the poles outside the open disk of unit radius (if T = ∠Z). Lastly, when-
ever system Σ is asymptotically stable, assuming that u(·) ∈ U , consider the unique
decomposition of ϕΣ(t, x0, u(·)) [ ηΣ(t, x0, u(·))] into the sum of the steady-state re-
sponse ϕss

Σ
(t, u(·)) [ηss

Σ
(t, u(·))] and transient response ϕt

Σ
(t, x0, u(·)) [ηt

Σ
(t, x0, u(·))],

consisting, respectively, of the modes of u(·) and of the modes of system Σ. The
following lemma can be proved directly.

Lemma 2. If system Σ is asymptotically stable, then for each u(·) ∈ U there exists
a unique x1 ∈ IRn such that

ϕΣ(t, x1, u(·)) = ϕss
Σ

(t, u(·)), ∀ t ≥ 0, (A.3)
ηΣ(t, x1, u(·)) = ηss

Σ
(t, u(·)), ∀ t ≥ 0, (A.4)

ϕΣ(t, x0 − x1, 0) = ϕt
Σ
(t, x0, u(·)), ∀ t ≥ 0, ∀x0 ∈ IRn, (A.5)

ηΣ(t, x0 − x1, 0) = ηt
Σ
(t, x0, u(·)), ∀ t ≥ 0,∀x0 ∈ IRn. (A.6)

Now, assume that u(t) =
[
rT(t) d

T
(t)

]T

, with r(t) ∈ IR`, d(t) ∈ IRm and

`+m = p, and that system Σ has the feedback structure depicted in Figure 7, where
the block denoted by V is a linear static link represented by the constant matrix V ,
S is a linear time-invariant system described by

∆x(t) = ASx(t) + BSe(t) + MSd(t), (A.7)
y(t) = CSx(t) + DSe(t) + NSd(t), (A.8)

with (I + DS) nonsingular, and r(t), d(t) and e(t) can have the meaning of the
reference, disturbance and error vector, respectively. Denote by θΣ(t, x0, r(·), d(·))
the e(t) variable response at time t of system Σ to the initial state x(0) = x0, and to
the input functions r(·) and d(·); denote by ηS(t, x0, e(·), d(·)) the output response
y(t) at time t of system S to the initial state x(0) = x0, and to the input functions
e(·) and d(·); denote by R and D the classes of functions r(·) and d(·), respectively,
having a proper rational Laplace transform with all the poles in the closed right
half-plane (if T = IR) or a proper rational z-transform with all the poles outside the
open disk of unit radius (if T = ∠Z); and, whenever Σ is asymptotically stable, for
r(·) ∈ R and d(·) ∈ D denote by θ

ss

Σ (t, r(·), d(·)) the steady-state response of Σ in
the e(t) variable.

The following lemma can be easily deduced from Lemma 2 (see also [19]), and
states a simple form of the internal model principle.
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Lemma 3. For each pair of functions d(·) ∈ D and r(·) ∈ R, if the system Σ
represented in Figure 7 is asymptotically stable, then

θ
ss

Σ (t, r(·), d(·)) = 0 (A.9)
m

∃x1 ∈ IRn : θΣ(t, x1, r(·), d(·)) = 0, ∀ t ≥ 0, (A.10)

θΣ(t, x1, r(·), d(·)) = 0, ∀ t ≥ 0, (A.11)
m

V r(t)− ηS(t, x1, 0, d(·)) = 0, ∀ t ≥ 0. (A.12)

Fig. 7. The feedback system Σ.

Now, consider system S in the block diagram depicted in Fig. 8, where the block
denoted by V has the same meaning as it has in Fig. 7 and S is assumed to be the
series connection of two subsystems S1 and S2, which are described by equations
similar to (A.7), (A.8), S1 being not affected by disturbance d(t) (i. e., the matrices
corresponding to MS and NS for S1 are zero). In addition, denote by A1 the matrix
corresponding to AS for S1, and, assuming T = IR, for some non-negative α ∈ IR
and some i ∈ ∠Z+ denote by R̄i

α the subclass of R̄ defined by:

R̄i
α := {r̄(·) : r̄(t) =

i∑

j=1

δj
tj−1

(j − 1)!
eαt, ∀ t ≥ 0, δj ∈ IR

¯̀}, (A.13)

and denote by D̄i
α the subclass of D̄ which is similarly defined. The proof of the

following lemma is straightforward (see also [3, 7, 9] for the case of a feedback
connection of S as in Fig. 7).

Lemma 4. If system S in Fig. 8 is observable, and the Jordan form of matrix A1

has q̄ Jordan blocks of dimensions not lower than i corresponding to the eigenvalue
α, then for each d̄(·) ∈ D̄i

α and for each r(·) ∈ R̄i
α there exists x1 ∈ IRn such that

(A.12) is satisfied.
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Fig. 8. An open-loop connection.

(Received December 2, 1993.)
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