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ON BARTLETT’S TEST FOR CORRELATION
BETWEEN TIME SERIES

Jiř́ı Anděl and Jaroḿır Antoch

An explicit formula for the correlation coefficient in a two-dimensional AR(1) process

is derived. Approximate critical values for the correlation coefficient between two one-

dimensional AR(1) processes are tabulated. They are based on Bartlett’s approximation

and on an asymptotic distribution derived by McGregor. The results are compared with

critical values obtained from a simulation study.

1. INTRODUCTION

Let (X1, Y1)′,. . . ,(Xn, Yn)′ be a sample from a bivariate regular normal distribution
with independent components. If r′ is the sample correlation coefficient then it is
known that

Er′ = 0, var r′ =
1
n

+ O(n−
3
2 ) (1)

(see Cramér [4], § 27.8 and § 29.7). If {Xt} and {Yt} are independent time series then
the variance of the sample correlation coefficient does not obey the formula (1.1).
Let {εt} and {ηt} be two independent strict white noises such that εt ∼ N(0, σ2

1)
and ηt ∼ N(0, σ2

2). Consider AR(1) processes

Xt = ρ1Xt−1 + εt, Yt = ρ2Yt−1 + ηt.

Their variances are

v2
1 = var Xt =

σ2
1

1− ρ2
1

, v2
2 = var Yt =

σ2
2

1− ρ2
2

.

If we define

r∗ =

1
n

n∑
t=1

XtYt

v1v2

then it is easy to prove that under our assumptions Er∗ = 0 and

var r∗ =
1
n

1 + ρ1ρ2

1− ρ1ρ2
− 2ρ1ρ2

n2

1− (ρ1ρ2)n

(1− ρ1ρ2)2
(2)
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(see Anděl [1]). Usually, only the first term on the right-hand side of (1.2) serves
as an approximation of the var r∗. This result is due to Bartlett [3]. Of course, in
practical applications the variances v2

1 and v2
2 are not known. If it is known that

EXt = 0 and EYt = 0 then the statistic

r =

n∑
t=1

XtYt

√
n∑

t=1
X2

t

n∑
t=1

Y 2
t

is calculated. However, if {Xt} and {Yt} are stationary AR(1) processes with non-
vanishing means the usual correlation coefficient

r′ =

n∑
t=1

(Xt − X̄)(Yt − Ȳ )
√

n∑
t=1

(Xt − X̄)2
n∑

t=1
(Yt − Ȳ )2

(3)

is preferred. McGregor [9] showed that

var r ∼ V1 =
1
n

1 + ρ1ρ2

1− ρ1ρ2
, (4)

i. e., that Bartlett’s approximation derived for r∗ is also valid for r. Let α = ρ1ρ2

and N = n + α(4−3α)
1−α2 . McGregor [9] proved that the density of r is

p(r) = f(r)[1 + O(n−1)], −1 < r < 1 (5)

where the function

f(r) =
2N−2

√
1− α

B
(

N−1
2 , 1

2

) (1− r2)
1
2 (N−3)

×

√√
(1 + α)2 − 4αr2 + 1 + α

[√
(1 + α)2 − 4αr2 + 1− α

]N− 3
2 √

(1 + α)2 − 4αr2

(6)

is also a density.
As for the correlation coefficient r′ defined in (1.3), McGregor and Bielenstein

[10] proved that its density is also given by (1.5) but N must be replaced by M − 1
where M = n + α(6− 5α)/(1− α2).

A simple procedure for testing statistical significance of r was suggested by Han-
nan [7], namely to use r “as an ordinary correlation from n(1 − ρ1ρ2)/(1 + ρ1ρ2)
observations. (Of course, ρ1 and ρ2 would need to be estimated from the data and
mean corrections would have to be made.)” Hannan notes that this procedure was
suggested by Bartlett in 1935. In statistical papers this procedure is called Bartlett’s
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approximation. Let r1 and r2 be sample first-lag autocorrelations calculated from
X1, . . . , Xn and Y1, . . . , Yn, respectively. Nakamura et al [12] published a table of
critical values for r given r1 and r2 when n = 30. Their critical values are based
on a simulation study. It is shown that in some cases Bartlett’s approximation is
not very satisfactory. For example, if n = 30 and ρ1 = ρ2 = 0.9 the five per cent
two-sided critical value for r given by Bartlett’s approximation is 0.87 but the crit-
ical value obtained from simulations is 0.71. Nakamura et al also investigated the
approximation

var r∗ ∼ V2 =
1
n

1 + ρ1ρ2

1− ρ1ρ2
− 1

n2

2ρ1ρ2

(1− ρ1ρ2)2

and a sample modification of it. Bartlett’s approximation based on V2 was found to
be better especially when ρ1 and ρ2 have their absolute values near to 1.

It is also possible to calculate critical values for r using the density f introduced
in (1.6). McGregor [9] calculated values of f(r) and published some graphs of this
density. Although “the corresponding approximate values of the cumulative distri-
bution function P (r) =

∫ r

−1
p(r) dr were found as a check” they were not published

in the paper.
Hannan [6] proposed an exact test for correlation between two autoregressive

processes {Xt} and {Yt}. However, to make the test exact, not all information in
the data is used. Haugh [8] introduced a general method for testing the correlation
using the residuals. Tests based on comovements between time series are described
by Goodman and Grunfeld [5]. Some tests in frequency domain are reviewed in
Anděl [1].

In this paper we proceed as follows. In Section 2 we discuss some properties
of the theoretical correlation coefficient ρ between the variables Xt and Yt when
(Xt, Yt)′ is a stationary two-dimensional AR(1) process. Critical values based on
McGregor’s density, critical values based on Bartlett’s approximation and critical
values obtained from a simulation study are given in Section 3. Some conclusions
and recommendations are given in Section 4.

2. CORRELATION COEFFICIENT IN A TWO–DIMENSIONAL AR(1)
PROCESS

Consider a stationary two-dimensional AR(1) process Zt = (Xt, Yt)′ given by Zt =
UZt−1 + εt where εt is a white noise such that Eεt = 0 and var εt = S where

U =
(

u11 u12

u21 u22

)
, S =

(
s11 s12

s21 s22

)
.

Of course, s12 = s21. Assume that {Zt} is stationary, i. e., that both the roots of
the matrix U

λ12 =
1
2

[
u11 + u22 ±

√
(u11 − u22)2 + 4u12u21

]
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are inside the unit circle. Define u = u11u22 − u12u21. It is known that the variance
matrix B = var Zt is given by the formula

[(1− u2
11)(1− u2

22) − u12u21(u + u11u22 + 2)](1− u)B

= (1 + u)USU ′ − u(u11 + u22)(SU ′ + US)

+ [(1− u2
11)(1− u2

22)− u12u21(u + u11u22 + 2)

+ u(u2
11 + u2

22 + u12u21 + u11u22 − 1)]S

(7)

(see Anděl [2], p. 242). If we denote

B =
(

b11 b12

b21 b22

)

then the correlation coefficient ρ between Xt and Yt can be written in the form ρ =
b12/

√
b11b22. Inserting from (2.1) we get after some computations that ρ = A/

√
BC

where

A = s12[(1− u2
11)(1− u2

22)− u2
12u

2
21] + s11u21(u11 − u22u) + s22u12(u22 − u11u),

B = s22[1− u11u22 − u12u21 − u2
11(1− u)] + 2s12u21(u22 − u11u) + s11u

2
21(1 + u),

C = s11[1− u11u22 − u12u21 − u2
22(1− u)] + 2s12u12(u11 − u22u) + s22u

2
12(1 + u).

The formula for ρ is quite complicated. It can be simplified in special cases, e. g.
when s12 = 0 or when u12 = u21 = 0. If s12 = 0 and u12 = u21 = 0 then, of course,
ρ = 0.

It must be stressed, however, that ρ is not a good measure of dependence between
{Xt} and {Yt} since there exist two-dimensional AR(1) processes Zt = (Xt, Yt)′ such
that ρ = 0 although {Xt} and {Yt} are dependent. We introduce some examples.

Example 1. Let {ηt} be a one-dimensional white noise with Eηt =0 and var ηt >0.
If we define Xt = ηt and Yt = ηt−1 then cov(Xt, Yt) = 0 but cov(Xt−1, Yt) =
var ηt−1 > 0. This process can be expressed in the form

Zt =
(

0 0
1 0

)
Zt−1 +

(
ηt

0

)

i. e., Zt is a two-dimensional stationary AR(1) process.

Example 2. One could object that Example 1 is in some sense degenerated. How-
ever, it is possible to construct a “normal” model with correlated components such
that ρ = 0. Define Zt = UZt−1 + εt where

U =
(

0.7 0.3
0.1 0.5

)
, S =

(
1 −1368/3816

−1368/3816 1

)
.

The process {Zt} is stationary since λ1 = 0.8, λ2 = 0.4 and S is positive definite.
Inserting into (2.1) we get

B =
(

2.20126 0
0 1.36268

)



On Bartlett’s Test for Correlation Between Time Series 549

and thus ρ = 0. Since the covariance function R(s) of AR(1) process satisfies

R(s)−UR(s− 1) = 0 for s ≥ 0

and R(0) = B we get

R(1) = UB =
(

1.54088 0.40880
0.22013 0.68134

)
.

Then

corr(Xt+1, Yt) =
0.40880√

2.20126× 1.36268
= 0.23604,

corr(Xt, Yt+1) =
0.22013√

2.20126× 1.36268
= 0.12710.

3. CRITICAL VALUES

In Tables 1 – 9 we summarize selected critical values suitable for the testing of sta-
tistical significance of the correlation coefficient between two AR(1) processes. We
used following approaches to obtain them:

– simulations,

– Bartlett’s approximation,

– numerical integration.

For n ∈ {10, 20, 30, 40, 50, 100, 200, 500} and for each couple (ρX , ρY ) such that
ρX ∈ {0.1, 0.4, 0.8} and ρY ∈ {0.2, 0.6, 0.9} we generated 100 000 independent real-
izations {X1, . . . , Xn} and {Y1, . . . , Yn} where {Xt} and {Yt} are independent AR(1)
processes with the autocorrelations ρX and ρY , respectively. From the each pair
{X1, . . . , Xn} and {Y1, . . . , Yn} of realizations the statistics r and r′ were calculated.
Based on these values we found corresponding 0.95 and 0.99 sample quantiles. Pro-
grams for simulations were coded in Matlab v. 4.2.1c and run on both Pentium based
PC and DEC workstations. In Tables 1 – 9 we denote these sample quantiles RS if
the sample correlation coefficient r was used and R′S if the usual sample correlation
coefficient r′ was used.

For the calculation of Bartlett’s approximation we applied procedure Quantile
[StudentTDistribution[n],q] implemented in Mathematica v.2.2 for DEC work-
stations. The results were checked using the function tinv implemented in the
Statistical Toolbox v. 2.0 for Matlab. In Tables 1 – 9 we denote these critical values
by RB . Principal advantage of mentioned procedures is that one can use them even
in the case when the number of degrees of freedom is not an integer.

Numerical integration was calculated using the procedure NIntegrate imple-
mented in Mathematica v. 2.2 for DEC workstations. In Tables 1 – 9 we denote by
RI the quantiles based on the density f given by (1.6) and by R′I the quantiles based
on the analogical density of r′.

Much more detailed results covering broader range of values of ρX and ρY etc.
are available from the authors on request.
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Table 1. ρX = 0.1, ρY = 0.2.

α = 0.95 α = 0.99
n RS R′S RB RI R′I RS R′S RB RI R′I

10 .529 .555 .562 .527 .554 .689 .724 .728 .690 .719
20 .376 .383 .386 .374 .384 .511 .523 .526 .510 .522
30 .306 .311 .312 .306 .311 .420 .427 .431 .422 .429
40 .264 .267 .269 .265 .268 .366 .369 .374 .368 .372
50 .238 .241 .240 .237 .239 .329 .334 .335 .331 .334

100 .169 .169 .169 .168 .169 .236 .237 .237 .236 .237
200 .119 .119 .119 .119 .119 .167 .167 .168 .168 .168
500 .074 .075 .075 .075 .075 .105 .106 .106 .106 .106

Table 2. ρX = 0.1, ρY = 0.6.

α = 0.95 α = 0.99
n RS R′S RB RI R′I RS R′S RB RI R′I

10 .538 .564 .587 .539 .563 .704 .729 .755 .701 .726
20 .385 .393 .403 .386 .395 .526 .537 .546 .524 .534
30 .315 .320 .326 .317 .321 .434 .441 .448 .435 .441
40 .272 .276 .281 .275 .278 .380 .385 .389 .380 .384
50 .246 .249 .250 .246 .248 .341 .346 .348 .342 .345

100 .175 .176 .176 .174 .175 .246 .247 .247 .244 .246
200 .124 .124 .124 .123 .124 .173 .173 .175 .174 .174
500 .078 .078 .078 .078 .078 .110 .110 .110 .110 .110

Table 3. ρX = 0.1, ρY = 0.9.

α = 0.95 α = 0.99
n RS R′S RB RI R′I RS R′S RB RI R′I

10 .551 .571 .607 .548 .570 .711 .734 .775 .709 .732
20 .396 .401 .416 .395 .403 .535 .540 .563 .534 .544
30 .323 .327 .336 .325 .329 .445 .448 .462 .445 .451
40 .281 .282 .290 .282 .285 .391 .393 .401 .390 .394
50 .251 .255 .258 .253 .255 .347 .352 .359 .351 .354

100 .179 .181 .181 .179 .180 .252 .253 .254 .251 .252
200 .127 .127 .128 .127 .127 .180 .180 .180 .179 .179
500 .081 .080 .081 .080 .081 .113 .113 .114 .114 .114
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Table 4. ρX = 0.4, ρY = 0.2.

α = 0.95 α = 0.99
n RS R′S RB RI R′I RS R′S RB RI R′I

10 .547 .570 .600 .545 .567 .708 .734 .768 .706 .730
20 .393 .401 .412 .392 .400 .530 .542 .557 .531 .541
30 .332 .328 .333 .322 .327 .441 .448 .457 .442 .448
40 .278 .281 .287 .280 .283 .387 .390 .397 .387 .391
50 .251 .253 .255 .250 .253 .346 .349 .355 .348 .351

100 .178 .179 .179 .178 .178 .248 .249 .252 .249 .250
200 .126 .126 .126 .126 .126 .178 .178 .178 .177 .178
500 .079 .080 .080 .080 .080 .113 .112 .113 .112 .113

Table 5. ρX = 0.4, ρY = 0.6.

α = 0.95 α = 0.99
n RS R′S RB RI R′I RS R′S RB RI R′I

10 .603 .613 .721 .597 .613 .760 .772 .876 .753 .768
20 .445 .449 .492 .445 .451 .596 .601 .652 .590 .597
30 .369 .373 .396 .370 .373 .499 .504 .537 .500 .505
40 .321 .324 .340 .323 .326 .442 .445 .467 .442 .445
50 .291 .292 .303 .291 .292 .398 .400 .418 .400 .402

100 .209 .209 .212 .208 .208 .291 .291 .297 .290 .291
200 .148 .148 .149 .148 .148 .207 .206 .210 .207 .208
500 .094 .094 .094 .094 .094 .133 .132 .133 .132 .132

Table 6. ρX = 0.4, ρY = 0.9.

α = 0.95 α = 0.99
n RS R′S RB RI R′I RS R′S RB RI R′I

10 .652 .638 .831 .643 .654 .800 .793 .949 .792 .801
20 .494 .485 .568 .491 .496 .644 .634 .735 .640 .646
30 .412 .409 .455 .413 .416 .550 .546 .610 .551 .554
40 .363 .358 .391 .362 .364 .492 .488 .531 .490 .493
50 .325 .325 .347 .327 .328 .442 .444 .476 .446 .448

100 .236 .236 .243 .235 .236 .328 .326 .338 .327 .327
200 .168 .168 .171 .168 .168 .237 .236 .239 .235 .236
500 .107 .107 .107 .107 .107 .151 .150 .152 .151 .151



552 J. ANDĚL AND J. ANTOCH

Table 7. ρX = 0.8, ρY = 0.2.

α = 0.95 α = 0.99
n RS R′S RB RI R′I RS R′S RB RI R′I

10 .572 .589 .657 0.570 .589 .736 .753 .822 .729 .747
20 .419 .423 .449 0.417 .425 .562 .572 .602 .558 .568
30 .345 .349 .362 0.345 .349 .474 .474 .495 .470 .475
40 .299 .301 .312 0.300 .303 .411 .414 .430 .413 .417
50 .270 .272 .278 0.270 .272 .373 .377 .385 .373 .375

100 .192 .192 .195 0.192 .193 .269 .270 .273 .268 .269
200 .137 .137 .137 0.136 .136 .192 .192 .193 .192 .192
500 .086 .086 .087 0.086 .086 .122 .122 .122 .122 .122

Table 8. ρX = 0.8, ρY = 0.6.

α = 0.95 α = 0.99
n RS R′S RB RI R′I RS R′S RB RI R′I

10 .701 .674 .948 .695 .702 .837 .823 .994 .833 .839
20 .548 .536 .668 .546 .550 .697 .687 .832 .696 .700
30 .465 .459 .534 .464 .466 .608 .601 .699 .609 .611
40 .410 .406 .457 .410 .412 .546 .543 .611 .547 .549
50 .373 .371 .405 .372 .373 .500 .501 .549 .501 .502

100 .269 .269 .282 .270 .270 .372 .372 .391 .372 .373
200 .193 .194 .198 .194 .194 .271 .272 .277 .270 .270
500 .123 .124 .125 .123 .123 .174 .174 .175 .174 .174

Table 9. ρX = 0.8, ρY = 0.9.

α = 0.95 α = 0.99
n RS R′S RB RI R′I RS R′S RB RI R′I

10 .825 .736 – .820 .822 .919 .865 – .918 .919
20 .695 .636 .971 .696 .698 .829 .781 .998 .830 .831
30 .613 .557 .815 .614 .615 .758 .721 .940 .759 .760
40 .554 .532 .697 .555 .556 .703 .678 .856 .703 .703
50 .507 .494 .616 .510 .511 .649 .636 .783 .657 .657

100 .382 .378 .422 .382 .382 .514 .509 .569 .512 .513
200 .279 .278 .293 .279 .279 .384 .383 .406 .383 .383
500 .180 .180 .184 .180 .180 .252 .252 .257 .251 .251



On Bartlett’s Test for Correlation Between Time Series 553

4. CONCLUSIONS

The difference between RS and R′S typically grows either if ρX and/or ρY increases or
if n decreases. However, this difference is practically negligible for n ≥ 50 irrespective
of the values of ρX and/or ρY . For smaller values of n is RS usually larger than R′S .

On the contrary, the difference between RI and R′I increases both if n decreases
and if ρX and/or ρY decreases. However, the difference in all considered situations
is practically negligible provided n ≥ 50.

Difference between RS and RI is very small already for n = 10 and practically
negligible for n ≥ 20. The situation is almost the same in the case of R′S and R′I
and small values of ρX and ρY . On the other hand, the situation is worse in the
case of R′S and R′I and larger values of ρX and ρY . The values of R′I are typically
greater than those of R′S and the difference start to be negligible only for n ≥ 100.

As for Bartlett’s approximation, it gives in all cases more conservative values (as
expected). While this approximation seems to give very well acceptable results for
n ≥ 50 and at least one of ρ’s small, the discrepancy is quite big even for n = 200
and both ρX and ρY large.

The values RI are closer to RS than the values RB . Similarly, R′I are closer to
R′S than the values RB . This leads to the recommendation that the approximations
RI and R′I should be preferred to the approximation RB .
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