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DECOMPOSITION IN STEREOLOGICAL
UNFOLDING PROBLEMS

Viktor Beneš and Pavel Krejč́ıř

Some new results in an old problem of stereological unfolding in particle systems are
presented. Under the conditional independence property of particle section parameters the
multivariate unfolding problem can be decomposed into a series of simpler problems. The
general idea is applied to the unfolding of trivariate size-shape-orientation distribution of
spheroids using the vertical uniform random sampling design.

1. INTRODUCTION

The conditional independence relation plays a key role in a number of topics in
probability theory and its applications, cf. van Putten and van Schuppen [14]. In
the area of sufficient statistics this relation enters in a natural way. Therefore it
is not surprizing that in this context the assumptions of conditional independence
appeared in a stereological study Baddeley and Cruz–Orive [1].

We present here another application of conditional independence in stereology,
namely in the classical unfolding problem. Consider a system of three-dimensional
particles of similar shape spread in an opaque base and observe its planar section.
The problem may be formulated either in the design-based approach where particles
are fixed and the section plane random or in the model-based approaches where
particles form a stationary random process. Defining some geometrical parameters
of particles one would like to evaluate their joint distribution from the observed par-
ameters of planar particle sections. The problem typically leads to integral equations
between corresponding joint probability densities, which are solved either analyti-
cally (Cruz–Orive [4], Gokhale [6]) or numerically (Ohser and Mücklich [12]).

In the present paper it is shown how multivariate unfolding problems may be in-
vestigated using the probabilistic interpretation of the kernel function in the integral
equation. When a suitably defined conditional independence property is satisfied the
unfolding can be decomposed into a series of simpler problems. The general theory is
applied finally to the trivariate size-shape-orientation distribution of ellipsoidal par-
ticles. Using the sampling design of vertical uniform random sections the relation
between planar and spatial parameters is obtained. In a statistical study numerical
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EM-algorithm (Silvermann et al [13]) is used for the real data evaluation and the
stability of solution is discussed.

2. UNFOLDING AND CONDITIONAL INDEPENDENCE

A bounded closed convex set in Rd is called a particle. Let a fixed particle X
be described by n real geometrical parameters x1, x2, . . . , xn. A sampling design is
represented by a random hyperplane ρ with probability distribution Q on the para-
metric space of hyperplanes. Assume that the intersection Y = X ∩ ρ 6= ∅, then
Y is a random closed convex set in Rd−1 called a particle section. Let y1, . . . , ym

be geometrical parameters describing Y, such that y1, . . . , yk, k ≤ min(n, m) cor-
respond to properties of x1, . . . , xk, e. g. x1, y1 size, x2, y2 shape factor etc. Let
p(y1, . . . , ym|x1, . . . , xn, ↑) be the conditional probability density of y1, . . . , ym given
x1, . . . , xn and given that the particle is hit by ρ. The upper arrow ↑ emphasizes
that the distribution p depends not only on particle characteristics but also on the
sampling design Q.

Further assume that particles are randomly dispersed in Rd with constant inten-
sity Nd. If particles are still fixed (just translates of X) denote Nd−1(x1, . . . , xn) the
mean (with respect to Q) intensity of particle sections in ρ.

In the following step given Nd let particles are random with probability density
f(x1, . . . , xn) of parameters x1, . . . , xn invariant with respect to translations in Rd.
We are interested in particle sections observed in ρ.

Definition 1. The average particle section intensity Nd−1 and probability density
g(y1, . . . , ym) of parameters y1, . . . , ym are defined by

Nd−1g(y1, . . . , ym) (1)

=
∫
· · ·

∫
Nd−1(x1, . . . , xn)p(y1, . . . , ym|x1, . . . , xn, ↑) f(x1, . . . , xn) dx1 · · · dxn.

The stereological unfolding problem consists in the estimation of unknown particle
characteristics f, Nd from the particle section distribution g and Nd−1, which can
be observed and estimated from realizations of ρ. The first part of the solution is to
establish the theoretical relations.

Proposition 1. The unfolding problem is decribed by an equation

Nd−1g(y1, . . . , ym) = Nd

∫
· · ·

∫
k(x1, . . . , xn, y1, . . . , ym) f(x1, . . . , xn) dx1 · · · dxn,

(2)
for some nonnegative kernel function k.

P r o o f . Use Definition 1 and put

k(x1, . . . , xn, y1, . . . , ym) =
Nd−1(x1, . . . , xn)

Nd
p(y1, . . . , ym|x1, . . . , xn, ↑). 2
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The problems (2) were studied until now for m,n at most 2. They lead to
Abel type integral equations which can be solved analytically, cf. Cruz–Orive [4]
for size-shape distribution of rotational ellipsoids, Gokhale [6] for size-orientation
distribution of circular plates. For situations when the input data form a bivariate
histogram equation (2) is discretized and solved by numerical methods, cf. Ohser
and Mücklich [12] for size-shape, size-number (number of vertices) distribution of
various particular polyhedra. It was shown in the latter paper that even in some
cases with complex section classification, when the form of (2) is unknown, the
coefficients of its discrete version can be obtained by simulations.

For a greater number of parameters than two, direct analytical or numerical meth-
ods are also worth investigation, however, the aim of the present paper is to proceed
another way. We observe that when the following property of section parameters
is satisfied, the unfolding problem can be decomposed in a series of problems with
smaller number of parameters. Each of these subproblems has a kernel function with
smaller number of arguments which simplifies the solution.

Definition 2. Random variable y1 is strongly conditionally independent on y2, . . .
. . . , ym given x1, . . . , xn and Q if the kernel function k in (2) satisfies

k(x1, . . . , xn, y1, . . . , ym) = k1(x1, y1) k2(x2, . . . , xn, y2, . . . , ym) (3)

for some functions k1, k2 and any y1, . . . , ym, x1, . . . , xn.

Theorem 1. Let y1 be strongly conditionally independent on y2, . . . , ym. Then
there exist nonnegative functions k1, k2 and h(x1, y2, . . . , ym) such that
a) for any y2, . . . , ym fixed

Nd−1g(y1, . . . , ym) = Nd

∫
k1(x1, y1)h(x1, y2, . . . , ym) dx1 (4)

b) for each x1 fixed

h(x1, y2, . . . , ym) =
∫
· · ·

∫
k2(x2, . . . , xn, y2, . . . , ym) f(x1, . . . , xn) dx2 · · · dxn.

(5)

P r o o f . Putting (3) into (2) and introducing function h (5) and (4) follows. 2

The decomposition (4) and (5) of the unfolding problem (2) suggests solution in
two steps:

a) given Nd−1 and g, for each fixed y2, . . . , ym solve the “outer” univariate problem
(4) with respect to unknown Nd and h,

b) for each fixed x1 investigate the “inner” problem (5) with simpler kernel func-
tion k2 which could be eventually further decomposed.

In the rest of the paper we study some special unfolding problems in R3. The
sampling design of vertical uniform random (VUR) sections will be used, which is
anisotropic but in practice simpler than commonly used sampling design of isotropic
uniform random (IUR) sections.



248 V. BENEŠ AND P. KREJČÍŘ

3. PLATELIKE PARTICLES

We start with a known result which is in fact a special case of subsection 4.1 in
this paper on oblate rotational ellipsoid if we reduce the number of parameters by
putting there c = 0. Let particles are circular plates of zero thickness in R3 with
constant intensity NV , random radius a > 0 and normal orientation (θ, φ). Here
θ ∈ 〈0, π

2 〉 is the colatitude (angle between the plate normal and the fixed vertical
axis) and φ ∈ 〈0, 2π) the longitude. We denote f(a, θ) = 1

2π

∫ 2π

0
f1(a, θ, φ) dφ the

joint probability density function of the radius a and angle θ. A vertical section
plane is such that it is parallel to the vertical axis. In a vertical uniform random
section plane particle sections are observed of length 2A > 0 and orientation angle
α ∈ 〈0, π

2 〉 to the vertical axis. Let g(A,α), NA be the corresponding probability
density function and section intensity in the sense of Definition 1. Gokhale [6] derived
an integral equation connecting f and g. First a short proof of his result is presented.

Theorem 2. It holds

NAg(A,α) = NV
4
π

∫ ∞

A

∫ π/2

π/2−α

A cos2 θ sin θf(a, θ) dadθ

sin2 α
√

(a2 −A2) (sin2 α− cos2 θ)
, (6)

for A > 0, α ≥ π
2 − θ.

P r o o f . Let a plate centered in the origin have fixed a, θ, φ, and a vertical uni-
form random section plane hitting the plate have distance d from origin and let the
longitude longitude of the normal be φ∗. Its probability density is constant

q(d, φ∗) =
1
L

for 0 ≤ φ∗ ≤ 2π, 0 ≤ d ≤ l(φ∗) and

q(d, φ∗) = 0

otherwise, where l(ϕ) = a
√

1− sin2 θ sin2(ϕ− φ) is the support function of the
ellipse of particle projection (in vertical direction). The perimeter of this ellipse
L = L(a, θ) = πb(a, θ), b(a, θ) being its mean breadth. The basic relations between
spatial and planar parameters (derived in Gokhale [6]) are

sin(φ∗ − φ) = cot θ cot α

for π/2− θ ≤ α ≤ π
2 and

d =
cos θ

sin α

√
a2 −A2

for 0 ≤ A ≤ a. They define a transformation between (d, φ∗) and (A,α) which is
one-to-one for 0 ≤ φ∗ < π

2 assuming (without loss of generality) that φ = 0. Its
Jacobian

J =

∣∣∣∣∣
∂d
∂A

∂d
∂α

∂φ∗

∂A
∂φ∗

∂α

∣∣∣∣∣ =
A√

a2 −A2

cos2 θ

sin2 α
√

sin2 α− cos2 θ
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yields the conditional density p(A,α|a, θ, ↑) = 4
LJ = 4/(πb(a, θ)) J independent of

φ. Now for a system of fixed particles we have b(a, θ) = NA(a, θ)/NV . For system
of random particles, we get the result (6) integrating p(A,α|a, θ, ↑) with respect to
joint density f(a, θ) and using (1). 2

Formula (6) is a double Abelian integral equation the theoretical solution of which
with respect to f is available, see Gokhale [6]. Using Theorem 1 we decompose this
problem into series of univariate unfolding problems.

Corollary 1. Denoting

k2(θ, α) =
2
π

cos2 θ

sin2 α
√

sin2 α− cos2 θ
, (7)

the problem (6) can be decomposed as follows:

a) the “outer” problem for each fixed α

NAg(A,α) = 2NV

∫ ∞

A

Ah(a, α)√
a2 −A2

da, (8)

b) the “inner” problem for each fixed a > 0

h(a, α) =
∫ π/2

π/2−α

k2(θ, α) f(a, θ) sin θ dθ. (9)

P r o o f . Observe that the strong independence property is fulfilled for the kernel
function in (6) with k1(a,A) = A/

√
a2 −A2 and k2 in (7). Then (8), (9) corresponds

to (4), (5) in Theorem 1. 2

In practice often the input is a bivariate frequency histogram of lengths and
orientations observed in vertical section planes. Then the use of the analytical
solution is not comfortable since it requires fitting of the bivariate density followed
by numerical differentiation and integration. Therefore a traditional approach of
discretization of the integral equation (6) and evaluation of the bivariate histogram
of spatial parameters is desired. It can be applied either directly using the techniques
of Ohser and Mücklich [12] or in steps using Corollary 1. The latter way, which is
preferable especially for problems with more parameters, was developed in Beneš et
al [2].

Further aim is to investigate the unfolding problem with three parameters: size,
shape factor and orientation (colatitude) of flat particles. It will be shown for the
model of oblate ellipsoids that the joint size-shape-orientation distribution can be
unfolded from VUR sections.
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4. ELLIPSOIDAL PARTICLES

An arbitrary ellipsoid in the Euclidean space Rd can be expressed by means of a
symmetric positive-definite square matrix Wd. The ellipsoid Ed centered in the
origin of a coordinate system is the set Ed = {t ∈ Rd, tW−1

d t′ ≤ 1}, where W−1 is
the inverse matrix of W and t′ is the transposed vector t. It holds Wd = OdLO′d,
where Od is an orthogonal matrix the columns of which correspond to the orientation
vectors of principal semiaxes and L is a diagonal matrix with diagonal elements being
the square lengths of the semiaxes of an ellipsoid Ed.

For d = 3 consider a three-dimensional ellipsoid t+E3, given by W3 = (wij), i, j =
1, 2, 3, which is centered in an arbitrary point t = (x, y, z) ∈ R3. Now denote ρ the
plane x = 0, and study the intersection of t + E3 with the plane ρ. The following
Lemma is a special case of Lemma 2.1 in Møller [11], p. 324:

Lemma 1. The intersection (t+E3)∩ρ is non-void if and only if e = 1− x2

w11
≥ 0.

Denote

U =
(

y
z

)
−

(
w21

w31

)
x

w11
and W22.3 =

(
w22 w23

w23 w33

)
− 1

w11

(
w21

w31

)
(w21 w31) ,

then for e ≥ 0 it is

(t + E3) ∩ ρ = {s ∈ R2, (s− U)W−1
22.3(s− U)′ ≤ e} × ox, (10)

where ox means that a zero x-coordinate is added to (y, z) points. Moreover, the
length of the orthogonal projection of t + E3 onto x-axis is equal to 2

√
w11.

4.1. Oblate ellipsoids

Let the particle be a fixed oblate rotational ellipsoid E3 with semiaxes a = b > c
centred in the origin. The orientation of the axis of rotation is θ, φ. Let a vertical
section plane ρ have normal orientation θ∗ = π/2, φ∗ in spherical coordinates and
the distance d from the origin. Under the condition that the particle is hit by ρ
denote the semiaxes of intersection ellipse (10) by A,C, A ≥ C and by α the angle
between the semiaxis A and vertical axis (it is correctly defined whenever C 6= A).

Definition 3. The shape factors of the particle, its section, are defined as s =
c/a, S = C/A, respectively.

It follows that always 0 < s ≤ 1, 0 < S ≤ 1.
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Lemma 2. The spatial and planar parameters of a vertical section of given ellipsoid
are related as

sin(φ∗ − φ) = cot θ cot α (11)

d =
s
√

a2 −A2

S
(12)

A = a

√
1− d2

w∗11
, (13)

where
w∗11 = a2 − (a2 − c2) sin2 θ cos2(φ∗ − φ). (14)

P r o o f . A straightforward algebraic calculation using Lemma 1. 2

We proceed by randomizing the sampling design to get conditional densities for
size-orientation and size-shape problem of type (2). Denote

E(β, z) =
∫ β

0

√
1− z2 sin2 ϕdϕ

the elliptic integral of second kind, specially E(π
2 , z) = E(z).

Proposition 2. Under the vertical uniform random sampling design the condi-
tional distributions of particle section parameters for the size-orientation, size-shape
unfolding problem have densities

p1(A,α|a, θ, s, ↑) =
4
L

A√
a2 −A2

cos θ

sin α

√
1− (1− s2) (sin2 θ − cos2 θ cot2 α)

sin2 θ − cos2 α
, (15)

for π/2− θ ≤ α ≤ π/2, 0 ≤ A ≤ a, p1 = 0 otherwise, and

p2(A,S|a, θ, s, ↑) =
4
L

A√
a2 −A2

s

S2

{(
1− S2

s2

)[
S2 sin2 θ +

S2

s2
cos2 θ − 1

]}−1/2

,

(16)
for s ≤ S ≤ s/

√
s2 sin2 θ + cos2 θ, 0 ≤ A ≤ a, p2 = 0 otherwise, respectively.

Here L = πb(a, θ, s) = 4aE(
√

1− s2 sin θ) is the perimeter of the ellipse of particle
projection (in vertical direction), b(a, θ, s) its mean breadth.

P r o o f . Consists of the evaluation of Jacobians analogously to the proof of The-
orem 2. For the size-orientation problem we start from formula (11) and

d =
√

a2 −A2

√
1− (1− s2) (sin2 θ − cos2 θ cot2 α),

for the size-shape problem we start from formula (12) and

sin(φ∗ − φ) =

√
1−

s2

S2 − 1
(s2 − 1) sin2 θ

,
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obtained from (11) – (14). 2

The main result of this Section is the following Theorem concerning the unfolding
problem (2) of size-shape-orientation distribution. Let f(a, θ, s), g(A,α, S) be the
probability densities of spatial and planar parameters, respectively. Further denote

D(α, θ) =
√

sin2 α−cos2 θ

sin θ sin α and B(s, θ) = sin θ
√

1− s2.

Theorem 3. The size parameter A is strongly conditionally independent on the
shape factor S and orientation α and the outer size problem of the decomposition
is

NAg(A,α, S) = 2NV

∫ ∞

A

A√
a2 −A2

h(a, α, S) da (17)

for some nonnegative function h and any fixed α, S.

Let H(a, α, S) =
∫ α

0

∫ S

0
h(a, β, T ) dβdT. The inner shape-orientation problem for

any fixed a is

H(a, α, S) =
2
π

∫ ∫
K(α, S, θ, s) f(a, θ, s) sin θ dθds, (18)

where
K(α, S, θ, s) = min(K1(α, θ, s), K2(S, θ, s)). (19)

Here for each fixed θ, s

K1(α, θ, s) = E(arcsin D(α, θ), B(s, θ)) (20)

for π/2− θ ≤ α ≤ π/2, K1(α, θ, s) = 0 for α < π/2− θ and

K2(S, θ, s) = E
(

arcsin

(
1

B(s, θ)

√
1− s2

S2

)
, B(s, θ)

)
(21)

for s ≤ S ≤ s/
√

s2 sin2 θ + cos2 θ, K2(S, θ, s) = 0 for S < s and K2(S, θ, s) =
E(B(s, θ)) otherwise.

P r o o f . Proposition 2 yields the strong conditional independence of size on both
shape and orientation and formula (17) follows as in Theorem 2 and Corollary 1.

From formulas (11) – (13) in Lemma 2 it follows that for fixed θ, s holds

S = S(α) = s
[
1 + (s2 − 1) (sin2 θ − cos2 θ cot2 α)

]−1/2
, (22)

which means that orientation and shape factor are conditionally functionally de-
pendent. Therefore the joint conditional density p(α, S|θ, s, ↑) is degenerate and we
proceed in terms of distribution fuctions. Observe that the transformation S(α) in
(22) is monotone increasing on 〈0, π

2 〉 for each fixed s, θ. Therefore (Mikusinski et al
[10]) the joint conditional distribution function

P (α, S|θ, s, ↑) =
K(α, S, θ, s)
E(B(s, θ))
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is equal to the upper Frechet bound of marginal conditional distribution functions

K1(α, θ, s)
E(B(s, θ))

,
K2(S, θ, s)
E(B(s, θ))

,

which implies (19). The functions K1, K2 follow from (15), (16):

K1(α, θ, s) =
∫ α

π
2−θ

cos θ

sin β

√
1− (1− s2) (sin2 θ − cos2 θ cot2 β)

sin2 θ − cos2 β
dβ,

and

K2(S, θ, s) =
∫ S

s

s

T 2

{(
1− T 2

s2

)[
T 2 sin2 θ +

T 2

s2
cos2 θ − 1

]}−1/2

dT.

(18) is thus obtained using the Fubini theorem. 2

4.2. Prolate ellipsoids

Consider now a system of prolate rotational ellipsoids with semiaxes a > b = c under
the same notation as in the previous subsection. The unfolding problem for joint
distribution of spatial parameters (a, θ, s) from planar parameters (A,α, S) cannot
be derived exactly in the same way as in the oblate case. It will be shown later that
it holds

Proposition 3. In the prolate case the parameter A is not strongly conditionally
independent of S and α given a, θ, s.

However, still an analogous way exists, namely to replace in the analysis a,A by
the shorter semiaxes c, C. In fact the triplet c, θ, s yields the same information as
a, θ, s. Therefore solution of the unfolding problem between joint probability densities
f(c, θ, s) and g(C, α, S) of spatial, planar parameters, respectively, is satisfactory for
practical statistical purposes.

First let the particle be a fixed prolate rotational ellipsoid E3 centred in the
origin.

Lemma 3. The spatial and planar parameters of a vertical section of given ellipsoid
are related as

sin(φ∗ − φ) = cot θ tan α (23)

d =
S
√

c2 − C2

s
(24)

C = c

√
1− d2

w∗11
, (25)
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where d is the distance of vertical section from origin and

w∗11 = c2 + (a2 − c2) sin2 θ cos2(φ∗ − φ). (26)

P r o o f . A straightforward algebraic calculation using Lemma 1. 2

We proceed analogously to the previous subsection, size is represented by smaller
semiaxes. Denote

Z(s, θ) = 1 + (s−2 − 1) sin2 θ, M(s, θ) =

√
Z(s, θ)− 1

Z(s, θ)
.

Proposition 4. Under the vertical uniform random sampling design the condi-
tional distributions of particle section parameters for the size-orientation, size-shape
unfolding problem have densities

p1(C, α|c, θ, s, ↑) =
4
L

C√
c2 − C2

cos θ

cos α

√
1 + (s−2 − 1) (sin2 θ − cos2 θ tan2 α)

sin2 θ − sin2 α
, (27)

for 0 ≤ α ≤ θ, 0 ≤ C ≤ c, p1 = 0 otherwise, and

p2(C,S|c, θ, s, ↑) =
4
L

C√
c2 − C2

S2

s

[
(S2 − s2) (sin2 θ + s2 cos2 θ − S2)

]−1/2
, (28)

for s ≤ S ≤
√

s2 cos2 θ + sin2 θ, 0 ≤ C ≤ c, p2 = 0 otherwise, respectively. Here
L = πb(a, θ, s) = 4cZ(s, θ) E(M(s, θ)) is the perimeter of the ellipse of particle
projection (in vertical direction), b(a, θ, s) its mean breadth.

P r o o f . Consists of the evaluation of Jacobians analogously to the proof of The-
orem 2. For the size-orientation problem we start from formula (23) and

d =
√

c2 − C2

√
1 + (s−2 − 1) (sin2 θ − cos2 θ tan2 α),

for the size-shape problem we start from formula (24) and

cos(φ∗ − φ) =

√
S2 − s2

(1− s2) sin2 θ
, (29)

obtained from (23) – (26). 2

Remark. For the longer semiaxes it holds d = S
s

√
s2a2 − S2A2, the Jacobian of

this transformation (including (29)) cannot be factorized and the negative result of
Proposition 3 follows.

Concerning the unfolding problem of size-shape-orientation distribution we get
the following result.
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Theorem 4. The size parameter C is strongly conditionally independent on the
shape factor S and orientation α and the outer size problem of the decomposition
is

NAg(C,α, S) = 2NV

∫ ∞

C

C√
c2 − C2

h(c, α, S) dc (30)

for some nonnegative function h and any fixed α, S.

Let H(c, α, S) =
∫ α

0

∫ S

0
h(c, β, T ) dβdT. The inner shape-orientation problem for

any fixed c is

H(c, α, S) =
2
π

∫ ∫
K(α, S, θ, s) f(c, θ, s) sin θdθds, (31)

where

K(α, S, θ, s) = max
(
0,K1(α, θ, s) + K2(S, θ, s)−

√
Z(s, θ) E(M(s, θ))

)
. (32)

Here for each fixed θ, s

K1(α, θ, s) =
√

Z(s, θ) E(arcsin(cot θ tan α), M(s, θ)) (33)

for 0 ≤ α ≤ θ, K1(α, θ, s) =
√

Z(s, θ) E(M(s, θ)) for α > θ and

K2(S, θ, s) =
√

Z(s, θ) E
[
arcsin

(
1

M(s, θ)

√
1− s2

S2

)
, M(s, θ)

]
(34)

−
√

1− s2

S2

√
Z(s, θ)− S2

s2

for s ≤ S ≤
√

s2 cos2 θ + sin2 θ, K2(S, θ, s) = 0 for S < s and K2(S, θ, s) =√
Z(s, θ) E(M(s, θ)) otherwise.

P r o o f . Proposition 4 yields the strong conditional independence of size and
formula (30) follows as in Theorem 2 and Corollary 1.

From formulas (22) – (24) in Lemma 3 it follows that for fixed θ, s,

S = S(α) =
√

s2 + (1− s2) (sin2 θ − cos2 θ tan2 α), (35)

Which means that orientation and shape factor are conditionally functionally de-
pendent and the joint conditional density p(α, S|θ, s, ↑) is degenerate. Observe that
the transformation S(α) in (35) is monotone decreasing on 〈0, π

2 〉 for each fixed s, θ.
Again by Mikusinski et al [10], the joint conditional distribution function

P (α, S|θ, s, ↑) =
K(α, S, θ, s)√

Z(s, θ) E(M(s, θ))

is equal to the lower Frechet bound of marginal conditional distribution functions

K1(α, θ, s)√
Z(s, θ) E(M(s, θ))

,
K2(S, θ, s)√

Z(s, θ) E(M(s, θ))
,
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which implies (32). The functions K1, K2 follow from (27), (28):

K1(α, θ, s) =
∫ α

0

cos θ

cos β

√
1 + (s−2 − 1) (sin2 θ − cos2 θ tan2 β)

sin2 θ − sin2 β
dβ,

and

K2(S, θ, s) =
∫ S

s

T 2

s

[
(T 2 − s2) (sin2 θ + s2 cos2 θ − T 2)

]−1/2
dT.

The last integral was found in Gradshtejn and Ryzhik [7], p. 261. 2

5. NUMERICAL EXAMPLE

Unfolding problems belong to a class of inverse problems (Coleman [3]) which are
often called ill-posed, which means that a small error in the evaluation of input
quantities may cause a large error in the resulting estimator. It is difficult to study
this property by functional-analytic methods. From reasons described at the end
of Section 3, a discretization method is used in our example for the solution of
size-shape-orientation problem. It transforms an integral equation onto a system of
linear equations. Condition number of the matrix of this system can be used as a
criterion for the stability of solution.

Assume that in the model of oblate ellipsoidal particles n particle sections are
observed using the VUR sampling design and classified into trivariate histogram
with class limits for size, shape factors and orientations, respectively:

aj = Aj = bj , j ∈ Z; si = Si =
(

1− i

m

)ν

, αi = θi = i4, i = 1, . . . , m. (36)

Here b > 1, ν > 0 are given constants, m the number of classes, 4 = π
2m . Notice

that classes of colatitude θ in (36) correspond to areas on the hemisphere of spatial
orientations proportional to cos θi−1 − cos θi.

The unfolding runs in two steps according to Theorem 3. In both of them the iter-
ative EM-algorithm is used, see Silvermann et al [13] for its numerical and statistical
properties. The outer problem (17) is in fact the Wicksell [15] corpuscule problem as
expected according to results of Kleinwachter and Zähle [9]. H(al, αj , Sk) and NV

are then estimated using any commonly used method, e. g. Beneš et al [2], Ohser
and Mücklich [12].

Discretization of the inner bivariate problem (18) is standard, cf. Ohser and
Mücklich [12]. For each fixed a it is assumed that s, θ are discrete random variables
and Fij = P (s = si, θ = θj). Further

H(k, l) = H(a, αl, Sk−1)−H(a, αl, Sk)−H(a, αl−1, Sk−1) + H(a, αl−1, Sk)

and

pijkl =
2
π

[K(si, θj , Sk−1, αl)−K(si, θj , Sk, αl) (37)

−K(si, θj , Sk−1, αl−1) + K(si, θj , Sk, αl−1)]
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using (19), i, j, k, l = 1, . . . , m. The discrete analogue of (18) is the system of
equations

Hkl =
m∑

i=1

m∑

j=1

pijkl Fij , (38)

which is solved by EM-algorithm with λth iteration step

F
(λ+1)
ij =

F
(λ)
ij

tij

∑

k

∑

l

Hklpijkl

rλ
kl

, (39)

where tij =
∑

k

∑
l pijkl, rλ

kl =
∑

i

∑
j F

(λ)
ij pijkl. As an initial iteration F

(0)
ij = Hij

is sufficient.
In a statistical study, a sample of n = 10017 particle sections of a composite

material (Beneš et al [2]) was classified according to (36) with b = 1.756, j =
1, . . . ,m; ν = 1.5, m = 8. The matrix P of coefficients pijkl for the inner problem
(38) has size 64 × 64 and condition number cond(P ) = ‖P‖ ‖P−1‖ = 75.75 using
the norm ‖P‖ =

√∑
ijkl p

2
ijkl. This relatively low value (cf. Gerlach and Ohser [5])

justifies the use of the method. Histogram Flij of estimated frequencies of spatial
parameters al, θi, sj obtained from (39) for each fixed al is in Figure 1. It enables
further investigation of various kinds of dependencies within the particle system.

Fig. 1. Histogram of estimated spatial size-shape-orientation distribution. The volume
of three-dimensional balls in the Figure is proportional to the estimated

values of Flij , l, i, j = 1, . . . , 8. The axes intersect in the point l = i = j = 1.
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6. DISCUSSION

Møller [11] proved that it is possible to reconstruct an ellipsoid completely from three
parallel sections. His method is hardly applicable in quantitative metallography from
two reasons. First the preparation of appropriate parallel sections in hard materials
with small particles (cf. Beneš et al [2]) is almost impossible, while a vertical plane
(e. g. parallel to the deformation axis) is easily obtained. From the same reason
also the assumption-free methods of stereology (Karlsson and Cruz–Orive [8]) may
sometimes be useless.

Secondly Møller’s method works for perfect ellipsoids while in practice the shape
assumption is often an approximation, only. Therefore we revisited the 70 years old
problem in order to pose a new three-parametric ill-posed problem, the solution of
which is, thanks to modern numerical approaches, acceptable for practice.
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[2] V. Beneš, A.M. Gokhale and M. Slámová: Unfolding the bivariate size–orientation
distribution. Acta Stereol. 15, (1996), 1, 9–14.

[3] R. Coleman: Inverse problems. J. Microsc. 153 (1989), 3, 233–248.
[4] L.M. Cruz–Orive: Particle size–shape distributions: The general spheroid problem,

I., II. J. Microsc. 107 (1976), 3, 235–253, 112 (1978), 153–167.
[5] W. Gerlach and J. Ohser: On the accurancy of numerical solutions for some stereolog-

ical problems as the Wicksell corpuscule problem. J. Biomath. 28 (1986), 7, 881–887.
[6] A.M. Gokhale: Estimation of bivariate size and orientation distribution of micro-

cracks. Acta Metall. and Mater. 44 (1996), 2, 475–485.
[7] I. S. Gradshtejn and I. M. Ryzhik: Tables of Integrals, Sums, Series and Products (in

Russian). GIFML Moscow 1963.
[8] L.M. Karlsson and L.M. Cruz–Orive: The new stereological tools in metallography:

estimation of pore size and number in aluminium. J. Microscopy 165 (1992), 3, 391–
415.

[9] A. Kleinwachter and M. Zähle: Size distribution stereology for quasiellipsoids in Rn.
Math. Oper. Stat. 17 (1986), 332–335.

[10] P. Mikusinski, H. Sherwood and M. D. Taylor: Probabilistic interpretations of copulas
and their convex sums. In: Advances in Probability Distributions with Given Marginals
(Dall’Aglio et al, eds.), Kluwer Acad. Publ., Dordrecht 1991, pp. 95–112.

[11] J. Møller: Stereological analysis of particles of varying ellipsoidal shape. J. Appl.
Probab. 25 (1988), 322–335.

[12] J. Ohser and F. Mücklich: Stereology for some classes of polyhedrons. Adv. in Appl.
Probab. 27 (1995), 2, 384–96.



Decomposition in Stereological Unfolding Problems 259

[13] B.W. Silvermann, M.C. Jones, D.W. Nychka and J.D. Wilson: A smoothed EM
approach to indirect estimation problems, with particular reference to stereology and
emission tomography. J. Roy. Statist. Soc. Ser. B 52 (1990), 271–324.

[14] C. van Putten and J.H. van Schuppen: Invariance properties of the conditional inde-
pendence relation. Ann. Probab. 13 (1985), 3, 934–945.

[15] S.D. Wicksell: The corpuscule problem. A mathematical study of a biometrical prob-
lem. Biometrika 17 (1925), 84–88.
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