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POSSIBILISTIC ALTERNATIVES OF ELEMENTARY
NOTIONS AND RELATIONS OF THE THEORY
OF BELIEF FUNCTIONS1

Ivan Kramosil

The elementary notions and relations of the so called Dempster–Shafer theory, introduc-
ing belief functions as the basic numerical characteristic of uncertainty, are modified to the
case when probabilistic measures and basic probability assignments are substituted by pos-
sibilistic measures and basic possibilistic assignments. It is shown that there exists a high
degree of formal similarity between the probabilistic and the possibilistic approaches in-
cluding the role of the possibilistic Dempster combination rule and the relations concerning
the possibilistic nonspecificity degrees.

1. INTRODUCTION – CLASSICAL BELIEF FUNCTIONS

First of all, let us explicitate the following methodological principle: this paper is
conceived as a mathematical and theoretical one, so that the reader interested in the
intuition and possible interpretations behind the notions introduced and statements
claimed and proved below is kindly invited to consult appropriate sources from an
already rich list of works dealing with belief functions and Dempster–Shafer theory.
For the same reasons we shall not go into details when analyzing the intuition and
interpretation behind the possibilistic alternatives of the notions and relations of the
theory of belief functions, which are introduced, investigated and deduced below.

The most simple combinatorial definition of classical non-normalized belief func-
tion over a finite nonempty space S reads as follows. Basic probability assignment
(b.p.a.) over S is a mapping m which takes the power-set P(S) of all subsets of
S into the unit interval [0, 1] of real numbers in such a way that

∑
A⊂S m(A) = 1.

Hence, m is nothing else than a probability distribution over the power-set P(S).
The non-normalized degree of belief belm generated by the b.p.a. m and ascribed to
a subset A of S is defined by

belm(A) =
∑

∅6=B⊂A
m(B), (1)

setting belm(∅) = 0 for the empty subset ∅ of S.

1This work has been sponsored by the grant no. A 1030803 of the Grant Agency of the Academy
of Sciences of the Czech Republic.
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An alternative way how to arrive at (1) reads as follows. Let S be taken as the
set of all possible internal states of a system (answers to a question, solutions to
a problem, medical or technical diagnoses, etc.), let E be the space of empirical
values (observations, symptoms, hints) concerning the system in question, and let
ρ : S × E → {0, 1} (or ρ ⊂ S × E) be a compatibility relation which defines the
subjects’s knowledge as far as the system is concerned. Namely, if ρ(s, x) = 0 for
some s ∈ S and x ∈ E, then x cannot be the actual internal state of the system
supposing that x was observed, hence, s and x are incompatible. If ρ(s, x) = 1, then
the state s and the empirical value x are compatible. So, for each x ∈ E, the set
Uρ(x) = {s ∈ S : ρ(s, x) = 1} of states compatible with x is defined.

Let the observed empirical value x be of statistical (stochastical) nature, formally,
let x be the value taken by a random variable X defined on a fixed probability space
〈Ω,A, P 〉 with the values in a measurable space 〈E, E〉 over E. Under some reason-
able measurability conditions, e. g., when E is finite and E = P(E), the composed
mapping U(X(·)) : Ω → P(S) is a set-valued (generalized) random variable. Setting
m(A) = P ({ω ∈ Ω : U(X(ω)) = A}) for each A ⊂ S, (1) transforms into

belm(A) = P ({ω ∈ Ω : ∅ 6= U(X(ω)) ⊂ A}) . (2)

Also the Dempster combination rule, which enables to combine the degrees of
belief ascribed by two or more subjects to the same system charged with uncertainty,
can be most easily defined at the algebraic combinatorial level. Let m1, m2 be
b.p.a.’s on the same finite space S. Define the mapping m1⊕m2 : P(S) → (−∞,∞)
setting for each A ⊂ S

(m1 ⊕m2) (A) =
∑

B,C⊂S, B∩C=A
m1(B)m2(C). (3)

An easy calculation yields that m1⊕m2 is also a b.p.a. on S, so that (m1⊕m2) (A) ∈
[0, 1] holds for each A ⊂ S and

∑
A⊂S(m1⊕m2) (A) = 1. The b.p.a. m1⊕m2 is called

the Dempster product of the b.p.a.’s m1 and m2 and the operation ⊕ is called the
Dempster combination rule. For more b.p.a.’s m1, m2, . . . , mn on the same S their
Dempster product m1 ⊕m2 ⊕ · · · ⊕mn, or simply ⊕n

i=1mi, is defined by recursion,
i. e., by (m1 ⊕ m2 ⊕ · · · ⊕ mn−1) ⊕ mn. As the operation ⊕ is commutative and
associative, the bracketing is irrelevant and can be omitted. The so called vacuous
b.p.a. mS is defined by mS(S) = 1, so that mS(A) = 0 for every A ⊂ S, A 6= S,
and plays the role of the unit element with respect to the operation ⊕ in the sense
that

(m⊕mS) ≡ (mS ⊕m) ≡ m (4)

holds for each b.p.a. m on S, here ≡ denotes the equality of the corresponding
values for all subsets of S.

The Dempster combination rule for belief functions, denoted with a certain toler-
ance also by ⊕, is defined by the Dempster product of the corresponding b.p.a.’s in
the following way. If m1, m2 are b.p.a.’s on S and belm1 , belm2 are the corresponding
belief functions (as S is finite, there exists a one-to-one relation between basic prob-
ability assignments and belief functions), then the Dempster product belm1 ⊕ belm2
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of belm1 and belm2 is defined by

belm1 ⊕ belm2 ≡df belm1⊕m2 . (5)

Also within the space of belief functions the Dempster combination rule is commu-
tative and associative, so that the way in which Dempster product of more b.p.a.’s
is defined applies also to the case of belief functions.

The approach to Dempster combination rule through random sets reads as follows.
Consider two subjects observing and investigating the same system, hence, S is the
same for both of them. Also the observational space E, probability space 〈Ω,A, P 〉
and random variable X are supposed to be the same for both the subjects. This
assumption may be accepted without a too great loss of generality, as E can be
a many-dimensional vector space XXn

i=1Ei, so that observations of different nature,
possibly made by different subjects, can be described by values from different Ei’s.
What matters are possibly different compatibility relations ρ1, ρ2 : S ×E → {0, 1},
defining the perhaps different kinds and degrees of knowledge of both the subjects as
far as the decision or testing problem in question is concerned. The basic idea, when
combining the pieces of knowledge of both the subjects, reads that any assertion
of one of them, claiming that a particular s ∈ S and x ∈ E are incompatible is
taken as valid and, consequently, accepted by the other subject. In symbols, the
combined knowledge of both the subjects is defined by a new compatibility relation
ρ12 : S × E → {0, 1} such that

ρ12(s, x) = ρ1(s, x) ∧ ρ2(s, x) (6)

holds for every s ∈ S and x ∈ E; here ∧ denotes the usual operation of infimum
(minimum, in this particular case) in the unit interval of reals. Hence, for sets of
compatible states (6) yields that

Uρ12(x) = Uρ1(x) ∩ Uρ2(x) (7)

and, supposing that x = X(ω) for a random variable, as above, we obtain the
set-valued mapping Uρ12(X(·)) defined, for each ω ∈ Ω, by

Uρ12(X(ω)) = Uρ1(X(ω)) ∩ Uρ2(X(ω)). (8)

If this mapping is measurable with respect to the σ-field P(P(S)), we can define,
for each A ⊂ S, the value m12(A) by

m12(A) = P ({ω ∈ Ω : Uρ1(X(ω)) ∩ Uρ2(X(ω)) = A}) . (9)

As S and, consequently, also P(S) are finite, m12(A) can be written as

m12(A) =
∑

B,C⊂S, B∩C=A
P ({ω ∈ Ω:Uρ1(X(ω))=B}∩{ω ∈ Ω:Uρ2(X(ω))=C}) .

(10)
If the set-valued random variables Uρ1(X(·)) and Uρ2(X(·)) are statistically inde-
pendent in the sense that the equality

P ({ω ∈ Ω : Uρ1(X(ω)) = B} ∩ {ω ∈ Ω : Uρ2(X(ω)) = C}) (11)
= P ({ω ∈ Ω : Uρ1(X(ω)) = B}) · P ({ω ∈ Ω : Uρ2(X(ω)) = C})
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holds for every B, C ⊂ S, and if we set

mi(A) = P ({ω ∈ Ω : Uρi(X(ω)) = A}) (12)

for each A ⊂ S and both i = 1, 2, (10) implies that

m12(A) =
∑

B,C⊂S, B∩C=A
P ({ω ∈ Ω : Uρ1(X(ω)) = B}) (13)

P ({ω ∈ Ω : Uρ2(X(ω)) = C})
=

∑
B,C⊂S, B∩C=A

m1(B)m2(C),

hence,

m12(A) = (m1 ⊕m2) (A) (14)

according to the definition of Dempster product by (3).
In what follows, a common and important feature of the formal model explained

above consists in the fact that all the values ascribed to a subset A of S by various
basic probability assignments and belief functions are defined by probabilities, i. e.,
values of the probability measure P given by the probability space 〈Ω,A, P 〉 in
question and ascribed to random events (measurable subsets of Ω, i. e., subsets from
the σ-field A) appropriately induced by the subset A of S under consideration. In
their turn, probability measures are particular cases of numerically quantified sizes
of sets (or at least of certain subsets of the universe of discourse), namely those
fulfilling the demands of normalization (values from the unit interval of reals) and
σ-additivity. So, an immediate idea arises: to modify the model of belief functions
from above in such a way that the sizes of corresponding sets of elementary random
events (subsets of Ω) will be quantified by set functions alternative to probability
measures. In the rest of this paper we shall try to do so replacing probability
measures by the so called possibilistic measures. It could and should be a matter of
further investigation to generalize the approach developed below also to the case of
so called fuzzy measures.

2. POSSIBILISTIC MEASURES – DEFINITION AND PRELIMINARIES

Possibilistic measures were introduced by L. Zadeh in [12] and have been widely
developed since, let us recall the works by D. Dubois and H. Prade ([2, 3, 4]), or
the detailed work [1] by G. deCooman dealing with non-numerical (lattice-valued)
possibilistic measures. It is just this work [1] which discovers and proves far go-
ing and deep formal analogies between possibilistic and probabilistic measures, for
which possibilistic measures deserve to be taken into consideration when looking for
possible alternatives to probability measures. In the sequel we shall very often take
profit of these analogies.

The most simple definition of possibilistic measures reads as follows.
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Definition 2.1. Let Ω be a nonempty set, let P(Ω) denote the set of all subsets
of Ω. A possibilistic measure on Ω is a mapping Π : P(Ω) → [0, 1] such that

Π(∅) = 0, Π(Ω) = 1 (15)
Π(A ∪B) = Π(A) ∨Π(B) (16)

for every A, B ⊂ Ω, here ∨ denotes the standard supremum in the unit interval (and,
dually, ∧ denotes infimum). A possibilistic measure Π on Ω is called distributive if
the equality

Π(A) =
∨

ω∈A
Π({ω}) (17)

holds for all ∅ 6= A ⊂ Ω (it holds for A = ∅ as well, if we apply the convention
according to which the supremum over the empty set of nonnegative items equals
zero. As a matter of fact, we shall apply this convention in what follows). If (17)
holds, then the mapping π : Ω → [0, 1] defined by π(ω) = Π({ω}) for every ω ∈ Ω
is called the possibilistic distribution induced by and generating the possibilistic
measure Π.

By induction, (16) yields that Π (
⋃n

i=1 Ai) =
∨n

i=1 Π(Ai) is valid for every finite
sequence A1, A2, . . . , An of subsets of Ω, consequently, if Ω is finite, every possibilis-
tic measure on Ω is distributive. If Ω is infinite, this need not be the case: consider
the possibilistic measure Π0 such that Π0(A) = 0 for finite subsets A of S (including
the empty one) and Π0(A) = 1, if A is infinite. If Π is distributive, then for every
nonempty system R of subsets of Ω the following identity holds:

Π
(⋃

R∈R
R

)
=

∨ {
Π({ω}) : ω ∈

⋃
R∈R

R
}

(18)

=
∨

R∈R

∨
ω∈R

Π({ω}) =
∨

R∈R
Π(R).

A possibilistic measure Π is called compact, if there exists ω ∈ Ω such that Π({ω}) =
1, if Π is distributive, its possibilistic distribution is also called compact. If Ω is
finite, every possibilistic measure on Ω is compact. Any function f : Ω → [0, 1]
such that

∨
ω∈Ω f(ω) = 1 induces the distributive possibilistic measure Πf on Ω

such that Πf (A) =
∨

ω∈A f(ω) for every ∅ 6= A ⊂ S and Πf (∅) = 0; its possibilistic
distribution coincides with f . If f(ω) = 1 for some ω ∈ Ω, Πf is compact.

A possibilistic measure Π on Ω is called two-valued, if Π(A) ∈ {0, 1} for every
A ⊂ Ω. If a two-valued possibilistic measure on Ω is distributive and if KΠ = {ω ∈
Ω : Π({ω}) = 1}, then the kernel KΠ of Π uniquely defines Π in the sense that, for
every A ⊂ Ω, Π(A) = 1, if A ∩KΠ 6= ∅, Π(A) = 0 otherwise. Obviously, the kernel
KΠ is nonempty. A two-valued possibilistic measure Π on Ω is single, if KΠ = {ωΠ}
for some ωΠ ∈ Ω. Hence, for every A ⊂ Ω, Π(A) = 1, if ωΠ ∈ A, Π(A) = 0 otherwise.

The conception of possibilistic measure has been modified in several directions.

(a) Only distributive possibilistic measures are considered.

(b) Also non-normalized possibilistic measures with Π(Ω) < 1 are considered.
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(c) Possibilistic measures are defined as partial mappings, i. e., Π(A) is defined for
every A ∈ R ⊂ P(Ω), R 6= P(Ω). Most often, R is supposed to be a so called
ample field, which is closed with respect to the operations of set-theoretic
complement and unions (and intersections, consequently) of any nonempty
systems of subsets of Ω. Hence, ample field strengthens the notion of σ-field
which is closed with respect to finite and countable unions and intersections.
As a matter of fact, an ample field R ⊂ P(Ω) can be identified with the
power-set P(Ω| ≈) of all subsets of the factor-space Ω| ≈ induced in Ω by
an equivalence relation ≈ on Ω. Introducing a term analogous to that used
in probability theory, the triple 〈Ω,R, Π〉 can be called the possibilistic space
induced in the set Ω by the ample field R and by the possibilistic measure Π
defined on R.

(d) Also possibilistic measures with non-numerical values are considered. The
space of these values must be equipped by a structure rich enough to define
the supremum and infimum operations and to process them. Most often, the
space of values is supposed to be equipped by a complete lattice.

What is important in our context is the fact that possibilistic measures can simu-
late the probabilistic ones also when introducing a possibilistic analogy of the notion
of integral or, in a more probability theory-like terms, the notion of expected value.
This can be done due to the notion of Sugeno integral, the most simple but sufficient
for our purposes definition of which reads as follows.

Definition 2.2. Let 〈Ω,P(Ω), Π〉 be a possibilistic space, let f : Ω → [0, 1] be a
function. The Sugeno integral of f over Ω and with respect to Π is defined by

∮

Ω

f dΠ =
∨

α∈[0,1]
[α ∧Π({ω ∈ Ω : f(ω) ≥ α})] . (19)

As proved in [9], if Π is distributive, then
∮

Ω

f dΠ =
∨

ω∈Ω
[f(ω) ∧Π({ω})] =

∨
ω∈Ω

[f(ω) ∧ π(ω)]. (20)

In [1], where only distributive possibilistic measures are considered, (20) plays im-
mediately the role of the definition of Sugeno integral. Replacing, just as a formal
construction,

∨
ω∈Ω by

∑
ω∈Ω and ∧ by product, we arrive at the common definition

of integral for the most simple case of function defined on a finite probability space.
It is, perhaps, worth saying explicitly, that the roles of supremum and infimum

operations for possibilistic measures are not completely dual. Possibilistic measures
are monotonous with respect to the set-theoretic inclusion, as for any A ⊂ B ⊂ Ω
the inequality

Π(A) ≤ Π(A) ∨Π(B −A) = Π(A ∪ (B −A)) = Π(B) (21)
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easily follows. Consequently, for each A, B ⊂ Ω, Π(A ∩ B) ≤ Π(A), Π(A ∩ B) ≤
Π(B), so that

Π(A ∩B) ≤ Π(A) ∧Π(B). (22)

However, the equality in (22) does not hold in general. Indeed, take Ω such that
card(Ω) ≥ 2 and consider the most trivial possibilistic measure Π on Ω such that
Π(∅) = 0, Π(A) = 1 for every ∅ 6= A ⊂ Ω. Then, for every ∅ 6= A ⊂ Ω, A 6= Ω, we
obtain that

0 = Π(∅) = Π(A ∩ (S −A)) < 1 = 1 ∧ 1 = Π(A) ∧Π(S −A). (23)

If the possibilistic measure Π is single, the equality Π(A ∩ B) = Π(A) ∧ Π(B)
holds for every A, B ⊂ Ω. Evidently, the only thing we have to prove is that
if Π(A ∩ B) = 0, then either Π(A) = 0 or Π(B) = 0. But, Π(A ∩ B) = 0 iff
ωΠ /∈ A ∩ B, where {ωΠ} is the singleton kernel of the single possibilistic measure
Π. Consequently, ωΠ /∈ A ∩B implies that either ωΠ /∈ A or ωΠ /∈ B, so that either
Π(A) = 0 or Π(B) = 0.

If the relation Π(A∩B) = Π(A)∧Π(B) is valid, the sets A and B (random events
A and B, when preferring the probabilistic terminology) are called possibilistically
independent or, more correctly, independent with respect to minimum-based relation
of possibilistic independence (cf. [5, 7, 8, 12] for a more detailed discussion), even if
also alternative definitions of the notion of possibilistic independence are suggested
and investigated. We shall take profit of this notion later in this paper.

3. BASIC POSSIBILISTIC ASSIGNMENTS AND POSSIBILISTIC BELIEF
FUNCTIONS – COMBINATORIC MODEL

In this chapter we shall try to develop a possibilistic analogy to the notions and
constructions developed in Chapter 1 following, as far as possible, the methodological
pattern consisting in a more or less routine substitution of summations by suprema
and products by infima in our considerations from above.

Definition 3.1. Basic possibilistic assignment (b.poss.a.) on a nonempty set S is
a mapping π : P(S) → [0, 1] such that

∨
A⊂S π(A) = 1, hence, b.poss.a. on S is a

possibilistic distribution on P(S). Possibilistic belief function BELπ induced by the
b.poss.a. π on S is a mapping such that, for all A ⊂ S,

BELπ(A) =
∨
∅6=B⊂A

π(B) = Π(P(A)− {∅}), (24)

where Π is the possibilistic measure induced by π on S. Hence, BELπ(∅) = Π(P(∅)−
{∅}) = Π(∅) = 0.

Contrary to the case of probabilistic belief functions over finite set S, there is, in
general, no one-to-one relation between b.poss.a.’s and possibilistic belief functions.
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Lemma 3.1. If π(S) < BELπ(S), then there exists a b.poss.a. π∗ such that
π∗(S) 6= π(S), hence, π∗ 6≡ π, but BELπ∗(A) = BELπ(A) for every A ⊂ S, so that
BELπ∗ ≡ BELπ holds.

P r o o f . Set π∗(A) = π(A) for every A ⊂ S, A 6= S, set π(S) < π∗(S) <
BELπ(S). Then, for every A ⊂ S, A 6= S, if B ⊂ A, then B 6= S, so that

BELπ∗(A) =
∨
∅6=B⊂A

π∗(B) =
∨
∅6=B⊂A

π(B) = BELπ(A). (25)

As π(S) < π∗(S) < BELπ(S), we obtain that

BELπ(S) =
∨
∅6=B⊂S

π(B) =
∨
∅6=B⊂S, B 6=S

π(B) (26)

BELπ∗(S) =
∨
∅6=B⊂S

π∗(B) =
∨
∅6=B⊂S, B 6=S

π∗(B), (27)

but for all B ⊂ S, B 6= S, π and π∗ coincide, and for some B 6= S, π∗(B) = π(B) >
π(S), so that BELπ(S) = BELπ∗(S). 2

Lemma 3.2. If there exists ∅ 6= B ⊂ S such that π(B) ≥ π(∅) holds (in particular,
if π(∅) < 1), then BELπ(S) = 1.

P r o o f . If π(B) ≥ π(∅) for some ∅ 6= B ⊂ S, then

BELπ(S) =
∨
∅6=B⊂S

π(B) =
∨

B⊂S
π(B) = 1, (28)

as π is a b.poss.a., hence, a possibilistic distribution on P(S). If π(∅) < 1, then
there must exist B ⊂ S, B 6= ∅, such that π(B) > π(∅), as

∨
B⊂S π(B) = 1. 2

Lemma 3.3. Let π be a basic possibilistic assignment on S. Then

(a) BELπ(A) ≤ BELπ(B) for every A ⊂ B ⊂ S,

(b) BELπ(A ∪B) ≥ BELπ(A) ∨BELπ(B) for every A, B ⊂ S,

(c) BELπ(A ∩B) ≤ BELπ(A) ∧BELπ(B) for every A, B ⊂ S.

P r o o f . All the statements follow directly from the fact that possibilistic measures
are monotonous with respect to the set-theoretic inclusion. In more detail, if A ⊂
B ⊂ S, then P(A) ⊂ P(B) and (a) follows by

BELπ(A) =
∨
∅6=C⊂A

π(C) ≤
∨
∅6=C⊂B

π(C) = BELπ(B). (29)

The assertions (b) and (c) follow immediately. 2

Let A ⊂ S, let πA be such a b.poss.a. on S that πA(A) = 1, πA(B) = 0 for
every B ⊂ S, B 6= A (note that in the case of b.poss.a.’s the later condition does
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not follow from the former one). In this case, the b.poss.a. πS is called vacuous and
the b.poss.a. π∅ is called inconsistent and we shall prove below, that they play the
same roles with respect to the Dempster combination rule and with respect to the
corresponding compatibility relations as the basic probability assignments labeled
by the same adjectives. Moreover, let us define the trivial b.poss.a. π∗ setting
π∗(A) = 1 for every A ⊂ S. Obviously there is no analogy to this notion within the
space of basic probability assignments. Denoting by BELA the possibilistic belief
function BELπA

, we obtain that BELA(B) =
∨
∅6=C⊂B πA(C) = 1, if A ⊂ B, and

BELA(B) = 0 otherwise. Hence, BELS(B) = 0 for every B ⊂ S, B 6= S, and
BELS(S) = 1. For BEL∅ we obtain that BEL∅(A) =

∨
∅6=B⊂A π∅(B) = 0 for every

A ⊂ S (for A 6= ∅ by convention accepted above). Finally,

BEL∗(A) = BELπ∗(A) =
∨
∅6=B⊂A

π∗(B) = 1 (30)

for every ∅ 6= A ⊂ S, BEL∗(∅) = 0 by convention.
Also the well-known relation between probabilistic belief and plausibility func-

tions can be modified to the case of possibilistic measures. Given a basic probability
assignment on a finite set S, the corresponding plausibility function plm takes P(S)
into [0, 1] in such a way that

plm(A) =
∑

B⊂S, B∩A 6=∅
m(B) (31)

for every ∅ 6= A ⊂ S, plm(∅) = 0 by convention. In the terms of random sets we can
write that

plm(A) = P ({ω ∈ Ω : Uρ(X(ω)) ∩A 6= ∅}) . (32)

As can be easily proved, the relation

plm(A) = belm(S)− belm(S −A) (33)

holds for every A ⊂ S, sometimes (33) is immediately taken as the definition of plm.
For a possibilistic distribution π on P(S), i. e., for a basic poss.a. on S, we can

define the possibilistic plausibility function PLπ, setting

PLπ(A) =
∨

B⊂S, B∩A 6=∅
π(B), (34)

so that PLπ(∅) = 0 by convention.
As for every ∅ 6= A, B ⊂ S either B ⊂ S −A or B ∩A 6= ∅ hold, we obtain that

PLπ(A) ∨BELπ(S−A) =
(∨

B∩A 6=∅
π(B)

)
∨

(∨
∅6=B⊂S−A

π(B)
)

(35)

=
∨
∅6=B

π(B) = BELπ(S);

this relation obviously corresponds to (33) above.

Before examining the alternative approach to possibilistic belief functions through
set-valued random (or rather possibilistic) mappings, let us introduce the possibilistic
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alternative to the Dempster combination rule at the abstract algebraic and combi-
natoric level. For the sake of simplicity we shall use the same symbol ⊕ also for
the possibilistic Dempster combination rule hoping that it will be always clear from
the context, whether it denotes the classical Dempster rule or its possibilistic mod-
ification. Considering b.poss.a.’s π1 and π2 on S and replacing, in a routine way,
summations by suprema and products by infima, we obtain, for any A ⊂ S, that

(π1 ⊕ π2) (A) =df

∨
B,C⊂S, B∩C=A

[π1(B) ∧ π2(C)]. (36)

As π1 and π2 are b.poss.a.’s on S, the relation
∨

A⊂S π1(A) =
∨

A⊂S π2(A) = 1
holds. Hence, for each ε > 0 there exist B0, C0 ⊂ S such that π1(B0) > 1 − ε and
π2(C0) > 1− ε is valid, so that, setting A0 = B0 ∩ C0, we obtain that

(π1⊕π2) (A0) =
∨

B, C⊂S, B∩C=A0
[π1(B)∧π2(C)] ≥ π1(B0)∧π2(C0) > 1− ε, (37)

consequently,
∨

A⊂S(π1⊕π2) (A) = 1 and π1⊕π2 is a b.poss.a. on S. The operation
⊕ is evidently commutative, so that (π1 ⊕ π2) (A) = (π2 ⊕ π1) (A) for every A ⊂ S.
It is also associative, as for every A ⊂ S,

((π1 ⊕ π2)⊕ π3) (A) =
∨

B∩C=A
[(π1 ⊕ π2) (B) ∧ π3(C)] (38)

=
∨

B∩C=A

[[∨
D∩E=B

(π1(D) ∧ π2(E))
]
∧ π3(C)

]

=
∨

B,E,C,D∩E∩C=A
(π1(D) ∧ π2(E) ∧ π3(C)) .

However, we arrive at the same expression when analyzing, analogously, the expres-
sion (π1 ⊕ (π2 ⊕ π3)) (A), so that the equality

((π1 ⊕ π2)⊕ π3) (A) = (π1 ⊕ (π2 ⊕ π3)) (A) (39)

holds for every A ⊂ S. Hence, when defining recurrently, for b.poss.a.’s π1, π2, . . . , πn

on S,
⊕n

i=1 πi = π1 ⊕ π2 ⊕ · · · ⊕ πn =df (π1 ⊕ · · · ⊕ πn−1)⊕ πn, (40)

the definition is correct, as the bracketing is irrelevant.

So, the most elementary properties of possibilistic Dempster operation ⊕ are the
same as in the classical probabilistic case. Also the roles of the vacuous b.poss.a.
πS as the unit element and the inconsistent b.poss.a. π∅ as the zero element with
respect to ⊕ are the same as in the probabilistic case (if taking ⊕ as product; if
taking it as summation, the roles of πS and π∅ are interchanged). Or, for every
b.poss.a. π on S and for every A ⊂ S,

(π ⊕ πS) (A) =
∨

B∩C=A
(π(B) ∧ πS(C)) = π(A) ∧ πS(S) = π(A), (41)

as 〈B,C〉 = 〈A,S〉 is the only pair of subsets of S such that B ∩ C = A and
πS(C) > 0, hence, π ⊕ πS ≡ π. Dually, for ∅ 6= A ⊂ S,

(π ⊕ π∅) (A) =
∨

B∩C=A
π(B) ∧ π∅(C) = 0, (42)
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as for A 6= ∅ there is no B, C ⊂ S such that B ∩ C = A and π∅(C) > 0. For A = ∅
we obtain that

(π ⊕ π∅) (A) =
∨

B⊂S
π(B) = 1, (43)

as B∩C = ∅ holds for every B ⊂ S supposing that C = ∅. Consequently, π⊕π∅ ≡ π∅.
The trivial b.poss.a. π∗ (let us recall that π∗(A) = 1 for every A ⊂ S) is not so
trivial with respect to the possibilistic Dempster rule, as for every A ⊂ S

(π ⊕ π∗) (A) =
∨

B∩C=A
[π(B) ∧ π∗(C)] =

∨
B⊃A

π(B) = Q(A), (44)

as the last expression could be taken as the possibilistic analogy of the commonality
function defined, for probabilistic b.p.a. m, by q(A) =

∑
B⊃A m(B).

4. COMPATIBILITY RELATIONS AND BASIC POSSIBILISTIC
ASSIGNMENTS

The following construction copies, in its first steps, the pattern briefly outlined
above in the case of basic probabilistic assignments and belief functions. Let S be a
nonempty set of possible states of a system (alternative interpretations are above),
let E be a nonempty set of possible values of empirical data (observations, e. g.)
concerning the system in question and its environment. Let ρ : S × E → {0, 1} be
a compatibility relation and let Uρ(x) = {s ∈ S : ρ(s, x) = 1} be the set of states
compatible with an empirical value x ∈ E.

In order to describe the random or at least nondeterministic, nature of the empir-
ical data we shall suppose that x = X(ω), where X is a measurable mapping which
takes the measurable space 〈Ω,P(Ω)〉 into a measurable space 〈E, E〉 generated in E
by a nonempty σ-field E of subsets of E; if E is finite, we take as a rule E = P(E).
Combining together the mappings U : E → P(S) and X : Ω → E, we obtain a set-
valued mapping Uρ(X(·)) : Ω → P(S) ascribing to each ω ∈ Ω the subset Uρ(X(ω))
of S. Given A ⊂ S, we can define its inverse image {ω ∈ Ω : Uρ(X(ω)) = A} with
respect to this mapping and we may quantify somehow the size of this subset of
Ω. Contrary to the model explained in Chapter 2 above we shall not use, for these
sakes, a probability measure P , but rather a possibilistic measure Π0 defined on the
power-set P(Ω). In other terms, we shall define a possibilistic space 〈Ω,P(Ω), Π0〉
and we also define, for every A ⊂ S, the value π(A) by

π(A) = Π0 ({ω ∈ Ω : Uρ(X(ω)) = A}) . (45)

As can be easily seen,
∨

A⊂S
π(A) =

∨
A⊂S

Π0 ({ω ∈ Ω : Uρ(X(ω)) = A}) (46)

= Π0

(⋃
A⊂S

{ω : ω ∈ Ω : Uρ(X(ω)) = A}
)

= Π0(Ω) = 1,

as Uρ(X(·)) is total on Ω and Π0 is a possibilistic measure on P(Ω). Hence, the
mapping π : P(S) → [0, 1] is a basic possibilistic assignment on S.

As a matter of fact, every b.poss.a. on S can be defined by (45) as the following
statement proves.
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Theorem 4.1. For every b.poss.a. on S there exist possibilistic space 〈Ω,P(Ω), Π0〉,
empirical space E, mapping X : Ω → E and compatibility relation ρ : S×E → {0, 1}
such that (45) holds for every A ⊂ S.

P r o o f . Let π : P(S) → [0, 1] be a b.poss.a. on S, let Π be the possibilistic
measure on P(Ω) induced by π. Define the possibilistic space 〈Ω,P(Ω),Π0〉 such that
Ω = P(S) and Π0 = Π, hence, consider the possibilistic space 〈P(S),P(P(S)), Π〉.
Set E = P(S) and suppose that X is the identity mapping on Ω = P(S), so that
X(A) = A for every A ⊂ S. Define, finally, the compatibility relation ρ : S ×
E → {0, 1} by the characteristic function (identifier) χx of a subset x of S, so that
ρ(s, x) = 1, if s ∈ x, ρ(s, x) = 0 otherwise. Then we obtain, for every A ⊂ S, that

Π0 ({ω ∈ Ω : Uρ(X(ω)) = A}) = Π ({B ⊂ S : Uρ(X(B)) = A}) (47)
= Π ({B ⊂ S : Uρ(B) = A}) = Π ({B ⊂ S : {s ∈ S : ρ(s,B) = 1} = A})
= Π ({B ⊂ S : {s ∈ S : χB(s) = 1} = A}) = Π ({B ⊂ S : B = A}) = Π({A})
=

∨
B, B=A

π(B) = π(A).

The assertion is proved. 2

Analogously to the case of basic probability assignments, partial cases of b.poss.a.’s
picked out above can be easily seen to be defined by particular compatibility rela-
tions. Let ρA : S × E → {0, 1} be such that ρA(s, x) = 1 iff s ∈ A ⊂ S holds, no
matter which the value of x may be. Then Uρ(x) = A for every x ∈ E, consequently,
Uρ(X(ω)) = A for every ω ∈ Ω. So,

π(A) = Π0 ({ω ∈ Ω : Uρ(X(ω)) = A}) = Π0(Ω) = 1, (48)

and π(B) = Π0(∅) = 0 for every B ⊂ S, B 6= A, so that π ≡ πA. The particular
cases π∅ and πS are obviously defined by compatibility relations ρ∅(s, x) ≡ 0 and
ρS(s, x) ≡ 1 for every s ∈ S, x ∈ E. The trivial b.poss.a. π∗ such that π∗(A) = 1
for every A ⊂ S can be obtained by the construction presented above in the proof
of Theorem 4.1, supposing that Ω = P(S) and Π0({ω}) = 1 for every ω ∈ Ω.

For the possibilistic Dempster combination rule we may also proceed in a way
copying as close as possible our reasonings for the probabilistic case presented above.
Let ρ1, ρ2 be two compatibility relations taking S × E into {0, 1} and let ρ12 =
S × E → {0, 1} be defined by

ρ12(s, x) = ρ1(s, x) ∧ ρ2(s, x) (49)

for every s ∈ S, x ∈ E. So, for every x ∈ E,

Uρ12(x) = {s ∈ S : ρ12(s, x) = 1} = Uρ1(x) ∩ Uρ2(x). (50)

Let 〈Ω,P(Ω),Π0〉 be a possibilistic space, let X : Ω → E be a measurable mapping,
let

πi(A) = Π0 ({ω ∈ Ω : Uρi(X(ω)) = A}) (51)
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for i = 1, 2 and 12 and for every A ⊂ S. Then

π12(A) = Π0 ({ω ∈ Ω : Uρ12(X(ω)) = A}) (52)
= Π0 ({ω ∈ Ω : Uρ1(X(ω)) ∩ Uρ2(X(ω)) = A})
= Π0

(⋃
B,C⊂S, B∩C=A

({ω ∈ Ω : Uρ1(X(ω)) = B} ∩ {ω ∈ Ω : Uρ2(X(ω)) = C})
)

=
∨

B,C⊂S, B∩C=A
Π0 ({ω ∈ Ω : Uρ1(X(ω)) = B} ∩ {ω ∈ Ω : Uρ2(X(ω)) = C})

≤
∨

B∩C=A
[Π0 ({ω ∈ Ω : Uρ1(X(ω)) = B}) ∧Π0 ({ω ∈ Ω : Uρ2(X(ω)) = C})]

=
∨

B∩C=A
[π1(B) ∧ π2(C)] .

In general, the inequality on the fifth line in (52) cannot be replaced by equality.
This can be done at least in the two following cases: if the possibilistic measure
Π0 is single (cf. the end of Chapter 2), or if the set-valued variables Uρ1(X(·)) and
Uρ2(X(·)) are possibilistically (minimum-based) independent in the sense that the
equality

Π0 ({ω ∈ Ω : Uρ1(X(ω)) = B} ∩ {ω ∈ Ω : Uρ2(X(ω)) = C}) (53)
= Π0 ({ω ∈ Ω : Uρ1(X(ω)) = B}) ∧Π0 ({ω ∈ Ω : Uρ2(X(ω)) = C})

holds for every B, C ⊂ S. If (53) holds, then (52) yields that

π12(A) =
∨

B∩C=A
[π1(B) ∧ π2(C)] = (π1 ⊕ π2) (A) (54)

according to (53). Hence, as in the case of probabilistic Dempster combination rule,
also its possibilistic modification is based on two hidden assumptions: (i) minimum-
based combination of compatibility relations with the same semantics as above, and
(ii) possibilistic independence of the sets of compatible states taken as set-valued
variables. Cf. [6] for a more detailed analysis of the probabilistically based Dempster
combination rule.

5. POSSIBILISTIC NONSPECIFICITY DEGREES AND DEMPSTER
COMBINATION RULE

The intuition behind the Dempster combination rule can be read as follows. The
pieces of knowledge of different subjects are such that any of these pieces enable to
eliminate some states from the set of possible actual internal states of the investigated
system. In other terms, the subject can focus her/his attention to a proper subset of
S so approaching, partially, the desired final state of reasoning when only one state
s0 ∈ S remains as possible so that, consequently, the actual state of the system is
identified. The way in which these pieces of knowledge are shared by two or more
subjects is such that all the states which can be eliminated by at least one of the
subjects are eliminated by all of them so that the cardinality of the remaining subset
of S is as small as possible.
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Hence, our informal feelings are that the better is a basic probability assignments,
the smaller are, at least in average, its focal elements (elements to which positive
probabilities are ascribed). So we can define, given a b.p.a. m on a finite set S,
its (probabilistic) nonspecificity degree W (m) by the expected value of the relative
(i. e., normalized to one) cardinalities of all subsets of S (including the non-focal ones
when the probability is 0 so that the expected value remains untouched). Hence, we
set

W (m) =
∑

A⊂S
(‖A‖/‖S‖) m(A) (55)

where ‖A‖ denotes the cardinality of a subset A of S; as S is finite, ‖A‖ denotes
simply the number of elements in A.

At least for the extremum cases this definition agrees with the intuition behind
as sketched above. Indeed, W (m) = 1 (the maximum possible value for m) iff m
is the vacuous b.p.a. mS which does not contain any information concerning the
actual value of s beyond the apriori accepted closed world assumption according to
which all possible states of the system in question are supposed to be elements of the
space S. On the other side, W (m) = 1/‖S‖ (the minimum possible positive value
of W ) iff m = m{s} for some s ∈ S, hence, iff m({s}) = 1; in this case m uniquely
determines the actual state of the investigated system. Of course, W (m∅) = 0 for
the totally inconsistent b.p.a. m∅, but this b.p.a. does not yield any information
concerning the actual state s and will be avoided from our classification.

As analyzed in more detail and proved in [10], Dempster combination rule im-
proves the qualities of the composed b.p.a.’s in the sense of reduction of the values
of the nonspecificity degree W defined by (55). Indeed, for any basic probability
assignments m1, m2 defined on the same finite set S the inequality

W (m1 ⊕m2) ≤ W (m1) ∧W (m2) (56)

holds with ∧ denoting, as above, the standard infimum operation within the unit
interval [0, 1] of reals. Moreover, let ⊗ be the combination rule dual to the Dempster
one and defined by

(m1 ⊗m2) (A) =
∑

B,C⊂S, B∪C=A
m1(B)m2(C) (57)

for any b.p.a.’s m1, m2 on S and any A ⊂ S. This rule can be defined also through
compatibility relations ρ1, ρ2 and random sets, setting

ρ12(s, x) = ρ1(s, x) ∨ ρ2(s, x) (58)

for every s ∈ S and x ∈ E. Consequently, Uρ12(x) = Uρ1(x)∪Uρ2(x) for every x ∈ E
so that, setting x = X(ω) and supposing that the set-valued random variables
Uρ1(X(·)) and Uρ2(X(·)) are statistically independent, we arrive easily at (57). As
could be expected, for any b.p.a.’s m1, m2 on S the inequality

W (m1 ⊕m2) ≥ W (m1) ∨W (m2) (59)

dual to (56) holds with ∨ as the supremum in [0, 1] (cf., again, [10] for more details
and proof).
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In the rest of this chapter we shall try to “translate” the formulas (56) and (58)
into the possibilistic terms, following the more or less routine pattern applied above,
and to prove the resulting statements. Let us note that (55) is nothing else than the
definition of the integral of the random variable ‖A‖/‖S‖ over the probability space
〈P(S),P(P(S)),M〉, where M(A) =

∑
A∈Am(A) for every A ⊂ P(S), hence, (55)

turns into
W (m) =

∫

P(S)

(‖A‖/‖S‖) dM. (60)

The idea immediately arises to replace (60) by the corresponding Sugeno integral.

Theorem 5.1. Let S be a nonempty finite set, let π1, π2 : P(S) → [0, 1] be basic
possibilistic assignments on S. Then the following inequality holds for both i = 1, 2

∨
A⊂S

(
(‖A‖/‖S‖) ∧

[∨
B,C⊂S, B∩C=A

(π1(B) ∧ π2(C))
])

(61)

≤
∨

A⊂S
((‖A‖/‖S‖) ∧ πi(A)) .

P r o o f . The proofs for both i = 1, 2 are evidently analogous, so that we can
limit ourselves to the case when i = 1. Let π∗ be the trivial b.poss.a. on S defined
above by the identity π∗(A) = 1 for each A ⊂ S. Consequently, π1(A) ≤ π∗(A)
holds for every A ⊂ S. Replacing π2 by π∗ in the left-hand side of the inequality
(61) we obtain that

∨
B∩C=A

(π1(B) ∧ π2(C)) ≤
∨

B∩C=A
(π1(B) ∧ π∗(C)) (62)

=
∨

B,C⊂S, B∩C=A
(π1(B) ∧ 1)

=
∨

B, B∩C=A for some C⊂S
π1(B) =

∨
B, B⊃A

π1(B).

So we obtain that
∨

A⊂S

(
(‖A‖/‖S‖) ∧

[∨
B∩C=A

(π1(B) ∧ π2(C))
])

(63)

≤
∨

A⊂S

(
(‖A‖/‖S‖) ∧

[∨
B, B⊃A

π1(B)
])

.

As S and, consequently, also P(S) are finite sets there exists, for each A ⊂ S, a
set BA ⊂ S such that BA ⊃ A and π1(BA) =

∨
B⊃A π1(B); if there are more such

B ⊃ A, no matter which of them will be chosen. Then
∨

A⊂S

(∨
B⊃A

((‖A‖/‖S‖) ∧ π1(B))
)

(64)

=
∨

A⊂S

(
(‖A‖/‖S‖) ∧

(∨
B⊃A

π1(B)
))

=
∨

A⊂S
((‖A‖/‖S‖) ∧ π1(BA))

≤
∨

A⊂S
((‖BA‖/‖S‖) ∧ π1(BA)) ,
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as BA ⊃ A implies that ‖BA‖ ≥ ‖A‖. Set

P0(S) = {B ⊂ S : B = BA for some A ⊂ S}. (65)

Obviously, P0(S) ⊂ P(S), so that
∨

A⊂S
((‖BA‖/‖S‖) ∧ π1(BA)) (66)

=
∨

B∈P0(S)
((‖B‖/‖S‖) ∧ π1(B))

≤
∨

B⊂S
((‖B‖/‖S‖) ∧ π1(B)) .

Combining (63), (64) and (66) together, we obtain that

∨
A⊂S

(
(‖A‖/‖S‖) ∧

[∨
B∩C=A

(π1(B) ∧ π2(C))
])

(67)

≤
∨

A⊂S
((‖A‖/‖S‖) ∧ π1(A))

holds, so that the assertion is proved. 2

As a matter of fact, (61) is nothing else than (56) modified to the case of possi-
bilistic measures. Indeed, let π be a b.poss.a. on S, let Π be the induced possibilistic
measure on P(P(S)), let Ω = P(S), let f : Ω → [0, 1] be defined by f(A) = ‖A‖/‖S‖
for every A ⊂ S. Then, setting

W ∗(π) =
∮

Ω

f(ω) dΠ =
∮

P(S)

(‖A‖/‖S‖) dΠ, (68)

we obtain by (20), as Π is distributive by definition, that

W ∗(π) =
∨

A⊂S
[(‖A‖/‖S‖) ∧ π(A)] . (69)

The value W ∗(π) is the possibilistic analogy of W (m) and can be called the pos-
sibilistic nonspecificity degree ascribed to the b.poss.a. π. The relation (61) then
reads as

W ∗(π1 ⊕ π2) ≤ W ∗(πi), i = 1, 2, (70)

for the possibilistic Dempster product π1 ⊕ π2, so that the analogy of (56) follows
immediately.

The following assertion is dual to (61).

Theorem 5.2. Let S be a nonempty finite set, let π1, π2 : P(S) → [0, 1] be
b.poss.a.’s on S. Then the following inequality holds for i = 1, 2.

∨
A⊂S

(
(‖A‖/‖S‖) ∧

[∨
B,C⊂S, B∪C=A

(π1(B) ∧ π2(C))
])

(71)

≥
∨

A⊂S
((‖A‖/‖S‖) ∧ πi(A)) .
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P r o o f . Again, the proof for i = 1 is quite sufficient. As π2 is a b.poss.a. on a
finite set S, there exists C0 ⊂ S such that π2(C0) = 1 (if there are more such subsets
of S, denote by C0 no matter which one of them). Denoting, for each A ⊂ S, by A1

the subset A ∪ C0 ⊂ S, we obtain that
∨

B∪C=A1
(π1(B) ∧ π2(C)) ≥ π1(A) ∧ π2(C0) = π1(A). (72)

As A1 ⊃ A, the inequality ‖A1‖ ≥ ‖A‖ follows, so that

(‖A1‖/‖S‖) ∧
(∨

B∪C=A1
(π1(B) ∧ π2(C))

)
≥ (‖A‖/‖S‖) ∧ π1(A) (73)

holds as well. As such an A1 exists for every A ⊂ S, we can set

P1(S) = {B ⊂ S : B = A ∪ C0 for some A ⊂ S} ⊂ P(S) (74)

and we obtain that
∨

A⊂S

(
(‖A‖/‖S‖) ∧

[∨
B,C⊂S, B∪C=A

(π1(B) ∧ π2(C))
])

(75)

≥
∨

A∈P1(S)

(
(‖A‖/‖S‖) ∧

[∨
B,C⊂S, B∪C=A

(π1(B) ∧ π2(C))
])

≥
∨

A⊂S
((‖A‖/‖S‖) ∧ π1(A)) .

The assertion is proved. 2

If we define the possibilistic dual combination rule ⊗ in the way copying the dual
Dempster rule, i. e., if we set for every b.poss.a.’s π1, π2 and each A ⊂ S,

(π1 ⊗ π2) (A) =
∨

B,C⊂S, B∪C=A
(π1(B) ∧ π2(C)), (76)

the inequality (71) can be rewritten in the form

W ∗(π1 ⊗ π2) ≥ W ∗(π1) ∨W ∗(π2) (77)

dual to (70) and analogous to (59).

(Received December 22, 1999.)
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e-mail: kramosil@cs.cas.cz


	INTRODUCTION -- CLASSICAL BELIEF FUNCTIONS
	POSSIBILISTIC MEASURES -- DEFINITION AND PRELIMINARIES
	BASIC POSSIBILISTIC ASSIGNMENTS AND POSSIBILISTIC BELIEFFUNCTIONS -- COMBINATORIC MODEL
	COMPATIBILITY RELATIONS AND BASIC POSSIBILISTICASSIGNMENTS
	POSSIBILISTIC NONSPECIFICITY DEGREES AND DEMPSTERCOMBINATION RULE

