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— Printed by PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions
should be placed with: MYRIS TRADE Ltd., P.O.Box 2, V Št́ıhlách 1311, 142 01 Prague 4,
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ESTIMATION OF VARIANCES
IN A HETEROSCEDASTIC RCA(1) MODEL

Hana Janečková

The paper concerns with a heteroscedastic random coefficient autoregressive model
(RCA) of the form Xt = btXt−1 + Yt. Two different procedures for estimating σ2

t =
EY 2

t , σ2
b = Eb2

t or σ2
B = E(bt−Ebt)

2, respectively, are described under the special seasonal
behaviour of σ2

t . For both types of estimators strong consistency and asymptotic normality
are proved.

1. INTRODUCTION

A random coefficient autoregressive model (RCA) is defined as Xt = btXt−1 + Yt,
where {bt} are random coefficients with Ebt = β and {Yt} is an error process.
The primary aim of many authors is to estimate an unknown parameter β under
various sets of assumptions and derive asymptotic properties of such estimators (see
for example [1, 3, 5, 7, 9] and [10]). Next to β, remaining parameters (such as
E(bt − β)2 = σ2

B or EY 2
t = σ2

t ) are also unknown very frequently and hence should
be estimated too. It is for example useful for estimating asymptotic variance of
OLS or WLS estimators of β since their asymptotic distribution depends on these
unknown parameters (see [5]). Moreover, WLS and CWLS estimators (for definition
of CWLS see [3] or [4]) depend on these parameters directly. Hence, in case they
are unknown, they must be firstly estimated and then replaced by their estimates.
These all are reasons why to estimate these nuisance parameters.

A standard least squares procedure for estimation of σ2
B and σ2

t is well described
in [10] under the assumption that processes {Yt} and {bt} are mutually independent
and consist of independent and identically distributed random variables. This tech-
nique was generalized for example in [3] for a RCA model where processes {Yt} and
{bt} are correlated. In [9] the author deals with a heteroscedastic RCA(1) model but
this procedure is then applied only to the case of constant variances σ2

t = σ2 for all
t. In general both processes {Yt}, {bt} are allowed to be non-stationary. Maximum
likelihood procedure is another approach of estimation σ2

B and σ2
t . This technique

in a homoscedastic case is described for example in [10].
In this paper we will generalize the standard least squares procedure for a het-

eroscedastic RCA(1) model with a special seasonal pattern of σ2
t . Moreover, we will

describe an alternative approach of estimation of σ2
B and σ2

t . Under both approaches
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we will prove strong consistency and asymptotic normality of given estimators. At
the end of the paper we numerically compare estimates from both procedures. The
main theoretical results of this paper are substantially based on the fact that OLS
estimator of β in a heteroscedastic RCA(1) model is strongly consistent and asymp-
totically normal that is shortly proved in [5]. Full versions of the proofs and all
auxiliary lemmas can be found in [4] or [8]. Generalization of these results for
RCA(1) processes containing martingale differences is given in [7].

2. MODEL DEFINITION

Let us suppose that the behaviour of the process {Xt} is described by the RCA(1)
model

Xt = btXt−1 + Yt, t = 1, . . . , n (1)

where X0 is a random variable with EX0 = 0, 0 < EX2
0 = σ2

0 < ∞ , Yt, t = 1, . . . , n
are random variables with EYt = 0 ∀ t, 0 < EY 2

t = σ2
t < ∞ that are independent of

X0 and bt, t = 1, . . . , n are random variables with Ebt = β ∀ t, 0 < Eb2
t = σ2

b < ∞
∀ t that are independent of X0 and of {Yt}.

Model (1) can be rewritten into the form of a fixed coefficient AR(1) model:

Xt = βXt−1 + BtXt−1 + Yt = βXt−1 + ut, (2)

where ut = BtXt−1 + Yt and Bt = bt − β. To keep a unified notation let us denote
σ2

B := EB2
t , so the equation σ2

B = σ2
b −β2 holds. Further, let us define the system of

σ-fields F = {Ft} in the following way: F0 = σ(X0), Ft = σ(X0, Y1, B1, . . . , Yt, Bt)
for t = 1, 2 . . .

In [5] we concerned with estimation of the unknown parameter β in model (2)
under assumption of known variances σ2

t and σ2
B . But in practice these parameters

are mainly unknown and have to be estimated. In a fully general form of EY 2
t = σ2

t

this problem is unsolvable since there is more parameters than observations in the
model. In the sequel we will focus on a special structure of σ2

t behaving according
to the following model:

EY 2
t = σ2

t = σ
2[i]
Y for t ∈ Ii := {i, k + i, . . . , n− k + i}, i = 1, . . . , k, (3)

where k is a given fixed number such that 1 ≤ k ≤ N < n. Without loss of generality
we can suppose that n = mk where m ∈ N. A constant N plays a role of a reasonable
upper bound such that m is a sufficiently large number of observations for regression
estimation. Due to the time shift, in the following it will be useful to define the set
I0 := {0, k, 2k, . . . , n− k}.

This model describes seasonal behaviour of variances σ2
t with a period k. In our

opinion this pattern is reasonable and useful generalization of a homoscedastic as-
sumption that can be used in a real time series analysis. Moreover, it satisfies a
condition 1

n

∑n
t=1 σ2

t
n→∞−→ σ2 > 0 for σ2 = 1

k

∑k
i=1 σ

2[i]
Y . This condition was intro-

duced in [5] and is crucial for proving strong consistency and asymptotic normality
of the OLS and WLS estimator of β. On the other hand it is not as restrictive as a
condition σ2

n
n→∞−→ σ2 > 0 that is assumed in [9].
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Further, this model significantly reduces number of all unknown parameters in
model (1) to k + 2 and hence they can be already estimated.

Agreement: For simplicity we will use the following abbreviations: SLLN–MD for
strong law of large numbers for martingale differences (see Theorem 20.11 in [2]),
SLLN–MX for strong law of large numbers for mixingales (see Theorem 20.16 in [2])
and CLT–MD for central limit theorem for martingale differences (see Theorem
VI.4.12 in [11]).

3. STANDARD APPROACH

3.1. Estimation procedure

Let us suppose that the starting value X0 and observations X1, . . . , Xn are available.
The standard approach of estimating σ2

t and σ2
B is based on estimated OLS residuals

ût := Xt − β̂Xt−1, where β̂ is the OLS estimator of β defined as

β̂ =
∑n

t=1 XtXt−1∑n
t=1 X2

t−1

. (4)

Since
E(u2

t |Ft−1) = σ2
t + σ2

BX2
t−1 a.s., (5)

holds for unobservable ut, it looks reasonable to get estimators of interest by mini-
mizing

∑n
t=1(û

2
t − σ2

t − σ2
BX2

t−1)
2. For a seasonal heteroscedasticity given by (3) it

is equivalent to an OLS procedure in the following regression model:

Û
2

= Dσ2
Y + X2σ2

B + ζ,

where Û
2

= (û2
1, . . . , û

2
n)′, X2 = (X2

0 , X2
1 , . . . , X2

n−1)
′ are vectors of input values,

ζ = (ζ1, . . . , ζn) is a vector of errors, σ2
Y = (σ2[1]

Y , . . . , σ
2[k]
Y )′ and σ2

B are unknown
coefficients and D = im×1 ⊗ Ik×k, i = (1, 1, . . . , 1)′ are fixed matrices. By solving
normal equations we can easily derive that OLS estimators of unknown coefficients
are given by

σ̂2
B = (X2′MDX2)−1X2′MDÛ

2
, (6)

σ̂2
Y = (D′D)−1D′(Û

2 −X2σ̂2
B), (7)

where MD = I −D(D′D)−1D′ = I − 1
m (ii′ ⊗ I). After some algebra, expression

(6) can be rewritten into the form:

σ̂2
B =

∑k
i=1

∑
t∈Ii

û2
t

(
X2

t−1 −X2
[i−1]

)

∑k
i=1

∑
t∈Ii

(
X2

t−1 −X2
[i−1]

)2 , (8)
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where X2
[i]

= 1
m

∑
t∈Ii

X2
t . Due to a special structure of a matrix D the vector

estimator σ̂2
Y can be decomposed into k scalar estimators

σ̂
2[i]
Y = û2

[i] −X2
[i−1]

σ̂2
B , i = 1, . . . , k, (9)

where û2
[i]

= 1
m

∑
t∈Ii

û2
t .

The estimator of the second moment σ2
b can be then obtained as σ̂2

b = σ̂2
B + β̂2.

3.2. Strong consistency

In order to prove strong consistency of given estimators we have to impose stronger
conditions than in case of strong consistency of β̂ (see [5]). Let us assume:

A0: {Yt} is a process of independent random variables, {bt} is a process of inde-
pendent and identically distributed random variables,

A1: E|X0|4+δ < ∞ and ωt := E|Yt|4+δ ≤ K < ∞∀ t and for some δ > 0,

A2: ωb := E|bt|4+δ < 1 for some δ > 0,

A3: 1
n

∑n
t=1 EY 4

t
n→∞−→ µY,4.

Remark 3.1. The assumption of identically distributed {bt} is not necessary but
it technically simplifies all proofs. Analogous techniques can be applied under more
general moment conditions.

As mentioned in the introduction, the main results of this paper are substantially
based on the asymptotic properties of the OLS estimator β̂ given by (4). Hence,
for better readability of the text, these properties are summarized in the next two
theorems together with their shortened proofs. Detailed proofs can be found in [4]
or [8], for a generalized case of RCA(1) model with martingale differences they are
given also in [7].

Theorem 3.1. Under Assumptions A0 – A2, β̂
a. s. n→∞−→ β holds.

P r o o f . Combining (2) and (4) we get

β̂ − β =
(

1
n

n∑
t=1

Xt−1ut

)(
1
n

n∑
t=1

X2
t−1

)−1

.

In the first step it is shown that 1
n

∑n
t=1 Xt−1ut

a. s. n→∞−→ 0. This arises from the fact
that {Xt−1ut} is an Ft-martingale difference sequence (see Lemma 3.3 in [8]) and
from SLLN–MD. Further, it can be proved that the sequence {X2

t −EX2
t ,Ft} is an

L1+ε-mixingale of an arbitrary size for some ε > 0 (see Lemma 3.4. in [8]). This
fact together with SLLN–MX yields that 1

n

∑n
t=1 X2

t−1
a. s. n→∞−→ σ2

1−σ2
b

> 0, where

σ2 = 1
k

∑k
i=1 σ

2[i]
Y , which concludes the proof. 2
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Theorem 3.2. Under Assumptions A0 –A3, the asymptotic distribution of
√

n(β̂−
β) is N

(
0, ∆

(
1−σ2

b

σ2

)2
)

, where ∆ = σ2
B

6σ2
bσ2+µY,4
1−µb,4

+σ2, σ2 = limn→∞ 1
n

∑n
t=1 σ2

t EX2
t−1

and µb,4 = Eb4
t .

P r o o f . The proof is based on analyzing asymptotic behaviour of the expression

√
n

(
β̂ − β

)
=

(
1
sn

n∑
t=1

Xt−1ut

)(√
n

s2
n

1
n

n∑
t=1

X2
t−1

)−1

,

where s2
n :=

∑n
t=1 E

(
X2

t−1u
2
t

)
. Firstly, it can be derived that 1

ns2
n

n→∞−→ ∆ holds.
Thus, in the rest of the proof it is sufficient to show that 1

sn

∑n
t=1 Xt−1ut has the

asymptotic distribution N(0, 1). CLT–MD and SLLN–MX are useful in this case
(see the proof of Theorem 3.3 in [8]). 2

Remark 3.2. In cited papers, Theorem 3.1 is proved under weaker version of
Assumptions A1 and A2 for moments of order 2 + δ instead of 4 + δ. Since later on
in this paper it will be used only in cases where moments of order 4+δ are required,
it is formulated in this form.

Auxiliary lemmas

Lemma 3.1. Assumptions A0 – A2 imply that E|Xt|4+δ ≤ C < ∞ ∀ t.

P r o o f . Firstly, the process {Xt} can be expressed in the form Xt =
∑t

j=0 ct,j−1

Yt−j , where Y0 := X0, ct,j :=
∏j

i=0 bt−i and ct,−1 := 1.
Further, applying Minkowski’s inequality for p = 4 + δ on this expression we get:

(
E|Xt|4+δ

) 1
4+δ =


E

∣∣∣∣
t∑

j=0

ct,j−1Yt−j

∣∣∣∣
4+δ




1
4+δ

≤
t∑

j=0

(
E|ct,j−1Yt−j |4+δ

) 1
4+δ

=
t∑

j=0

(
E

(
j−1∏

i=0

|bt−i|4+δ

)
ωt−j

) 1
4+δ

≤ K
1

4+δ

t∑

j=0

(
ω

1
4+δ

b

)j

≤ C

1− ω
1

4+δ

b

≤ C ′,

where C and C ′ denote general positive constants. 2

Lemma 3.2. Let {Zt} be a martingale difference sequence with respect to Zt =
σ(Z1, . . . , Zt) (Zt-m.d.s.), then {T [i]

t } where T
[i]
t := Ztk+i are martingale differences

with respect to T [i]
t := Ztk+i for i = 1, . . . , k.

P r o o f . T [i]
t -measurability and L1 integrability of {T [i]

t } are obvious. Further,
for i = 1, . . . , k we get

E
(
T

[i]
t

∣∣∣T [i]
t−1

)
= E(Ztk+i|Z(t−1)k+i) = E

[
E(Ztk+i|Ztk+i−1)

∣∣∣Ztk+i−k

]
= 0 a.s. 2
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In the sequel let us use the following notation: Πj := limn→∞ 1
n

∑n
t=1 EXj

t , τj
a.s.
:=

limn→∞ 1
n

∑n
t=1 Xj

t , Π[i]
j := limm→∞ 1

m

∑
t∈Ii

EXj
t , τ

[i]
j

a.s.
:= limm→∞ 1

m

∑
t∈Ii

Xj
t .

Lemma 3.3. Under Assumptions A0 – A2, limits Π[i]
j and τ

[i]
j for j = 1, 2 exist for

all i. If moreover A3 holds, then Π[i]
4 and τ

[i]
4 exist. Furthermore, τ

[i]
j = Π[i]

j holds
a.s. for j = 1, 2, 4 and i = 1, . . . , k.

P r o o f . One possibility is explicit derivation of each expression separately for
i = 1, . . . , k. Alternatively, the limits of interest can be obtained as limits of the
solutions of a system of k linear equations. In case of Π[i]

j the system arises when
summing the equation EXj

t = E(btXt−1 + Yt)j over t ∈ I1, . . . , Ik and dividing by
m. In case of τ

[i]
j the same is done for the equality Xj

t = (btXt−1+Yt)j . Convergence
of all redundant terms to zero is ensured by SLLN–MD.

This procedure for j = 1, 2 is demonstrated in the next example. Both systems
of equations are constructed, all limits of the solution are derived and convergence
of all redundant terms is explained. For j = 4, the procedure is analogous. 2

Remark 3.3. Alternatively, the proof of Lemma 3.3 for j = 1, 2 can be based on
mixingales theory. In [8] it is shown that the sequences {S[i]

t , Σ[i]
t } and {S[i]2

t −ES
[i]2

t ,

Σ[i]
t }, where S

[i]
t := Xtk+i and Σ[i]

t := Ftk+i are all L1+ε-mixingales (see Lemma 3.13
in [8]). Hence, equalities τ

[i]
j = Π[i]

j a.s for j = 1, 2 directly yield also from SLLN–MX
(see Lemma 3.14 in [8]).

Corollary. Under assumptions of Lemma 3.3, limits Πj , τj for j = 1, 2, 4 exist and
they are given as Πj = 1

k

∑k
i=1 Π[i]

j and τj = 1
k

∑k
i=1 τ

[i]
j .

Example. It trivially holds that τ
[i]
1 = Π[i]

1 = 0 a.s for all i. In case of j = 2 we
get the two following systems:

t = σ2
b t−1 + σ̂2

Y + Bm + Cm p = σ2
bp−1 + σ̂2

Y + Am

where t =
(
t[1], . . . , t[k]

)′
, t−1 =

(
t[k], t[1] . . . , t[k−1]

)′
, t[i] = 1

m

∑
t∈Ii

X2
t ,

p = Et, p−1 = Et−1, Bm =
(
B

[1]
m , . . . , B

[k]
m

)′
,

B
[i]
m = 1

m

∑
t∈Ii

[
(b2

t − σ2
b )X2

t−1 + 2Xt−1btYt +
(
Y 2

t − σ
2[i]
Y

)]
, Cm = (Cm, 0, . . . , 0)′ ,

Cm = σ2
b

1
m (X2

0 −X2
n) and Am = ECm. Since Am

m→∞−→ 0, Cm
a. s. m→∞−→ 0 due to

Borel–Cantelli lemma and since B
[i]
m

a. s. m→∞−→ 0 due to SLLN–MD, it can be derived
that for the common limits Π[i]

2 , τ
[i]
2 of the solutions p[i], t[i] the following relations
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hold:

Π[k]
2 =

1
1− σ2k

b

k−1∑

i=0

σ2i
b σ

2[k−i]
Y ,

Π[l]
2 = σ2l

b Π[k]
2 +

l−1∑

i=0

σ2i
b σ

2[l−i]
Y for l = 1, . . . , k − 1.

(10)

Moreover, since Π2 = 1
1−σ2

b

1
k

∑k
i=1 σ

2[i]
Y (see [5]), one can easily check that Π2 =

1
k

∑k
i=1 Π[i]

2 really holds.

Remark 3.4. It can be easily derived that the limit σ2 occurred in Theorem 3.2
is of the form

σ2 := lim
n→∞

1
n

n∑
t=1

σ2
t EX2

t−1 =
1
k

k∑

i=1

σ
2[i]
Y Π[i−1]

2 .

In the following let us define λn := 1
n

∑k
i=1

∑
t∈Ii

(
X2

t−1 −X2
[i−1]

)2

,

ρt := u2
t − σ2

t − σ2
BX2

t−1, σ2∗
B := λ−1

n
1
n

∑k
i=1

∑
t∈Ii

u2
t

(
X2

t−1 −X2
[i−1]

)
and

σ
2[i]∗
Y := u2

[i] −X2
[i−1]

σ2∗
B .

So that the estimators (8) and hence (9) be well-defined, we have to moreover assume
one technical assumption:

A4: Yt cannot take only two values for each t.

Lemma 3.4. Assumption A4 ensures that λn is strictly positive almost surely for
large n.

P r o o f . Since X2
[i] a. s. m→∞−→ mΠ[i]

2 , we can concentrate on the expression
1
n

∑k
i=1

∑
t∈Ii

(
X2

t−1 − Π[i−1]
2

)2

. Suppose in contradiction that X2
t − Π[i]

2 = 0 a.s.

for all t ∈ Ii and for all i. Then Xt can reach only two values V
[i]
1 =

√
Π[i]

2 and

V
[i]
2 = −

√
Π[i]

2 . In this case we get either Yt = V
[i]
1 − btXt−1 or Yt = V

[i]
2 − btXt−1

for t ∈ Ii. Since Yt is independent of bt and Xt−1, it implies that Yt can take also
only two values that is the contradiction. 2

It is easy to derive that λn = 1
n

∑n
t=1 X4

t−1− 1
k

∑k
i=1

(
X2

[i−1]
)2

. Since Π[0]
2 = Π[k]

2 ,

we can define Λ
a.s.
:= limn→∞ λn, where

Λ = Π4 − 1
k

k∑

i=1

(
Π[i]

2

)2

. (11)
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Remark 3.5. Limit Π4 is given by Π4 = 1
1−µb,4

(6σ2
bσ2 + µY,4) (see [5]).

Opposed to the stationary case, in this general non-stationary model Lemma 3.4
does not imply that Λ > 0. Hence, we have to require this property as an additional
assumption:

A5: Λ > 0 holds.

Lemma 3.5. Under A0 – A5, σ̂2
B − σ2∗

B
a. s. n→∞−→ 0 and σ̂

2[i]
Y − σ

2[i]∗
Y

a. s. n→∞−→ 0 for
i = 1, . . . , k hold.

P r o o f . Firstly, since û2
t = (Xt− β̂Xt−1)2 = u2

t −2(β̂−β)Xt−1ut +(β̂−β)2X2
t−1,

we get

σ̂2
B − σ2∗

B =λ−1
n

1
n

k∑

i=1

∑

t∈Ii

(û2
t − u2

t )
(
X2

t−1 −X2
[i−1]

)
(12)

=(β̂−β)2−λ−1
n

1
k

k∑

i=1

(β̂−β)
[
2

1
m

∑

t∈Ii

X3
t−1ut−2X2

[i−1] 1
m

∑

t∈Ii

Xt−1ut

]
,

where 1
n

∑k
i=1

∑
t∈Ii

X2
t−1

(
X2

t−1 −X2
[i−1]

)
= λn was used. Because {X3

t−1ut} and
{Xt−1ut} are L1+δ-uniformly bounded Ft-m.d.s., Lemma 3.2 together with SLLN–
MD and Lemma 3.3 imply that the expression in brackets converges almost surely
to 0. The fact that β̂

a. s. n→∞−→ β (see Theorem 3.1) concludes the proof of the first
part.
Further, for i = 1, . . . , k we have

σ̂
2[i]
Y − σ

2[i]∗
Y =

1
m

∑

t∈Ii

(û2
t − u2

t )−
(
σ̂2

B − σ2∗
B

)
X2

[i−1]
(13)

= (β̂ − β)
[
−2

1
m

∑

t∈Ii

Xt−1ut + (β̂ − β)X2
[i−1]

]
− (

σ̂2
B − σ2∗

B

)
X2

[i−1]
.

The same arguments as before together with the first statement of this lemma imply
that (13) converges a.s. to 0 that finishes the proof. 2

Theorems

Theorem 3.3. Under A0 –A5, σ̂2
B

a. s. n→∞−→ σ2
B holds.

P r o o f . Because of Lemma 3.5, it is sufficient to show that

σ2∗
B − σ2

B
a. s. n→∞−→ 0. (14)

Using the previous notation we can write

σ2∗
B = λ−1

n

1
n

k∑

i=1

∑

t∈Ii

(
ρt + σ2

BX2
t−1 + σ

2[i]
Y

)(
X2

t−1 −X2
[i−1]

)
.
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Since
∑k

i=1 σ
2[i]
Y

∑
t∈Ii

(
X2

t−1 −X2
[i−1]

)
= 0, we get

σ2∗
B − σ2

B = λ−1
n

1
n

k∑

i=1

∑

t∈Ii

(
X2

t−1 −X2
[i−1]

)
ρt. (15)

Further, let us define

σ2∗∗
B := λ−1

n

1
n

k∑

i=1

∑

t∈Ii

(
X2

t−1 −Π[i−1]
2

)
ρt + σ2

B . (16)

In the following let us show that σ2∗
B − σ2∗∗

B
a. s. n→∞−→ 0. Combining (15) an (16) we

get

σ2∗
B − σ2∗∗

B = λ−1
n

1
k

k∑

i=1

(
Π[i−1]

2 −X2
[i−1]

) 1
m

∑

t∈Ii

ρt. (17)

Since E(ρt|Ft−1) = E(u2
t − σ2

t − σ2
BX2

t−1|Ft−1) = 0, {ρt} is an Ft-m.d.s. that is
moreover L1+δ-uniformly bounded. Hence, Lemma 3.2 and SLLN–MD imply that
1
m

∑
t∈Ii

ρt
a. s. n→∞−→ 0. Lemma 3.3 then gives that σ2∗

B − σ2∗∗
B

a. s. n→∞−→ 0.

Finally, since
{(

X2
t−1 − Π[i−1]

2

)
ρt

}
for t ∈ Ii and ∀ i remain to be L1+δ-bounded

martingale differences, convergence of σ2∗∗
B −σ2

B
a. s. n→∞−→ 0 in (16) is again a conse-

quence of SLLN–MD and hence the proof is finished. 2

Theorem 3.4. Under A0 –A5, σ̂
2[i]
Y

a. s. n→∞−→ σ
2[i]
Y holds for i = 1, . . . , k.

P r o o f . Due to Lemma 3.5, it remains to show that σ
2[i]∗
Y −σ

2[i]
Y

a. s. n→∞−→ 0 holds
for each i.
We can write

σ
2[i]∗
Y − σ

2[i]
Y =

1
m

∑

t∈Ii

(u2
t − σ2∗

B X2
t−1)− σ

2[i]
Y =

1
m

∑

t∈Ii

(u2
t − σ

2[i]
Y − σ2

BX2
t−1)

− (σ2∗
B − σ2

B)X2
[i−1]

=
1
m

∑

t∈Ii

ρt − (σ2∗
B − σ2

B)X2
[i−1]

. (18)

Hence, the desired result directly follows from (14), Lemma 3.3 and SLLN–MD. 2

3.3. Asymptotic normality

In case of asymptotic normality requirements for higher moments are needed. In
contrast to the previous paragraph let us strengthen Assumptions A1 and A2 into
the form:

A1’: E|X0|8+δ < ∞ and τt := E|Yt|8+δ ≤ K < ∞∀ t and for some δ > 0,

A2’: τb := E|bt|8+δ < 1 for some δ > 0.
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Similarly as in case of EY 2
t and EY 4

t , some restrictions for higher moments of the
process {Yt} must be considered. One possibility under which all following proofs
can be done analogously is to assume that EY j

t
t→∞−→ µY,j for j = 3, . . . , 8. But this

structure reduces the idea of seasonal behaviour of the error term. To sustain a
seasonal variation of higher moments of {Yt} analogously as in (3) we will assume
the following restrictions:

A3’: EY j
t = µ

[i]
Y,j for t = Ii, j = 3, . . . , 8.

Remark 3.6. Assumption A3’ is trivially fulfilled for example if Yt are identically
distributed within each Ii.

Auxiliary lemmas

Lemma 3.6. Assumptions A0, A1’ and A2’ imply that E|Xt|8+δ ≤ C < ∞ ∀ t.

P r o o f . Analogously as for Lemma 3.1. 2

Lemma 3.7. Under Assumptions A0, A1’, A2’ and A3’, limits Π[i]
j , τ

[i]
j for j =

3, . . . , 8 exist for all i = 1, . . . , k. Moreover, τ
[i]
j = Π[i]

j holds a.s.

P r o o f . We can use the analogous procedure as in Lemma 3.3 applied to EXj
t =

E(btXt−1+Yt)j in case of Π[i]
j and to Xj

t = (btXt−1+Yt)j in case of τ
[i]
j , respectively.

2

Remark 3.7. Existence of Π[i]
j for j = 2, 4, 6, 8 only is essential for crucial Theo-

rems 3.5 and 3.6 hold. For Theorems 4.2 and 4.3 limits Π[i]
j moreover for j = 3, 5

have to exist. However, in both cases the restriction A3’ for j = 7 is redundant and
hence can be omitted.

Lemma 3.8. Under Assumptions A0, A1’, A2’, A3’, A4 and A5,
√

n(σ̂2
B−σ2∗

B ) n→∞−→
0 in probab. and

√
n
(
σ̂

2[i]
Y − σ

2[i]∗
Y

)
n→∞−→ 0 in probab. for i = 1, . . . , k hold.

P r o o f . The first statement directly yields from (12) multiplied by
√

n, since√
n(β̂−β) converges in distribution (see Theorem 3.2) while (β̂−β) and the expres-

sion in brackets converges almost surely to 0.
The second property is analogously seen when multiplying (13) by

√
n. Lemma 3.3

and the first part of this lemma have to be moreover used in this case. 2
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Theorems

Theorem 3.5. Under Assumptions A0, A1’, A2’, A3’, A4 and A5, the asymptotic
distribution of

√
n(σ̂2

B − σ2
B) is N(0,Λ−2Σ̂B), where Λ is defined by (11) and

Σ̂B :=
1
k

k∑

i=1

lim
m→∞

1
m

∑

t∈Ii

E
[(

X2
t−1 −Π[i−1]

2

)2

ρ2
t

]
.

P r o o f . Due to Lemma 3.8, it remains to examine the expression
√

n(σ2∗
B −σ2

B) =√
n(σ2∗

B − σ2∗∗
B ) +

√
n(σ2∗∗

B − σ2
B).

Firstly, let us show that
√

n(σ2∗
B − σ2∗∗

B ) n→∞−→ 0 in probab.

Since
√

n(σ2∗
B − σ2∗∗

B ) = λ−1
n

1√
k

∑k
i=1

(
Π[i−1]

2 − X2
[i−1]

)
1√
m

∑
t∈Ii

ρt holds due to

(17) and since X2
[i] a. s. m→∞−→ mΠ[i]

2 , it is sufficient to show that 1√
m

∑
t∈Ii

ρt is
Op(1). It follows directly from the Chebyshev’s inequality, for all ε > 0 there exists
Kε > 0 such that

P
(∣∣∣ 1√

m

∑

t∈Ii

ρt

∣∣∣ ≥ Kε

)
≤ 1

K2
ε

1
m

∑

t∈Ii

Eρ2
t ≤

C

K2
ε

< ε,

since E
(∑

t∈Ii
ρt

)2

=
∑

t∈Ii
Eρ2

t and Eρ2
t ≤ C < ∞ for all t.

Secondly, for t ∈ Ii and i = 1, . . . , k let us define Z
[i]
t :=

(
X2

t−1 − Π[i−1]
2

)
ρt.

Then using (16) we get
√

n(σ2∗∗
B − σ2

B) = λ−1
n

1√
n

∑k
i=1

∑
t∈Ii

Z
[i]
t . Further, put

s2
n :=

∑k
i=1

∑
t∈Ii

E
(
Z

[i]
t

)2

. Then 1
ns2

n
n→∞−→ Σ̂B . Derivation of Σ̂B is quite tech-

nical and time consuming and it is presented in Appendix A.1, its explicit form is
given by (25).
Consequently, it remains to show that 1

sn

∑k
i=1

∑
t∈Ii

Z
[i]
t has the asymptotic dis-

tribution N(0, 1). Since Z
[i]
t are martingale differences, CLT-MD can be applied.

Hence, it remains to verify assumptions of this theorem which are of the form:

i) 1
s2

n

∑k
i=1

∑
t∈Ii

E
[(

Z
[i]
t

)2∣∣∣Ft−1

]
n→∞−→ 1 in probab.,

ii) 1
s2

n

∑k
i=1

∑
t∈Ii

E
[(

Z
[i]
t

)2

I
[|Z[i]

t |≥εsn]

]
n→∞−→ 0 for all ε > 0.

The first condition can be checked by explicit expansion of all terms that is done
in Appendix A.1. Since {M [i]

1,t} defined in appendix by (24) is an Ft-m.d.s. that

satisfies SLLN–MD, 1
n

∑k
i=1

∑
t∈Ii

M
[i]
1,t

n→∞−→ 0 in probab. holds. Taking conditional
and unconditional expectations of remaining terms in (23), we can show, using
Lemmas 3.3, 3.7 and SLLN–MD, desired convergence of all remaining terms.

The second condition directly yields from the fact that E
∣∣∣Z [i]

t

∣∣∣
2+δ′

≤ C < ∞ ∀ t for

δ′ = δ
4 and from convergence 1

ns2
n

n→∞−→ Σ̂B . 2
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Theorem 3.6. Under Assumptions A0, A1’, A2’, A3’, A4 and A5, the asymptotic
distribution of

√
n(σ̂2[i]

Y − σ
2[i]
Y ) for i = 1, . . . , k is N

(
0, Σ̂[i]

Y

)
, where

Σ̂[i]
Y := kΣ̂[i]

1 − 2Π[i−1]
2 Λ−1Σ̂[i]

2 +
(
Π[i−1]

2

)2

Λ−2Σ̂B ,

Σ̂[i]
1 := lim

m→∞
1
m

∑

t∈Ii

Eρ2
t ,

Σ̂[i]
2 := lim

m→∞
1
m

∑

t∈Ii

E
[(

X2
t−1 −Π[i−1]

2

)
ρ2

t

]
.

P r o o f . The asymptotic distribution of
√

n(σ̂2[i]
Y − σ

2[i]
Y ) is, due to Lemma 3.8,

the same as that of
√

n
(
σ

2[i]∗
Y −σ

2[i]
Y

)
=

√
k
m

∑
t∈Ii

ρt−
√

n(σ2∗
B −σ2

B)X2
[i−1]

, which
is seen from (18).

Further, since
√

n(σ2∗
B −σ2∗∗

B )X2
[i−1] n→∞−→ 0 in probab. and

√
n(σ2∗

B −σ2
B)

(
X2

[i−1]−
Π[i−1]

2

)
n→∞−→ 0 in probab., we can concentrate on the expression

√
k

m

∑

t∈Ii

ρt −
√

n(σ2∗∗
B − σ2

B)Π[i−1]
2 =

√
k

m

∑

t∈Ii

ρt −
[
λ−1

n

1√
n

k∑

j=1

∑

t∈Ij

Z
[j]
t

]
Π[i−1]

2 .

Since (λ−1
n −Λ−1) 1√

n

∑k
j=1

∑
t∈Ij

Z
[j]
t

n→∞−→ 0 in probab., we can equivalently exam-
ine the asymptotic distribution of

√
k

m

∑

t∈Ii

ρt −
[
Λ−1 1√

n

k∑

j=1

∑

t∈Ij

Z
[j]
t

]
Π[i−1]

2 =
1√
n

k∑

j=1

∑

t∈Ij

Ω[i,j]
t ,

where Ω[i,j]
t :=

[
kδi,t − Λ−1

(
X2

t−1 − Π[j−1]
2

)
Π[i−1]

2

]
ρt and δi,t = 1 for t ∈ Ii and 0

elsewhere.
It is easy to check that Ω[i,j]

t are martingale differences for each i and hence the
standard application of CLT-MD as in the previous case can be used. Let us therefore

define s
2[i]
n :=

∑k
j=1

∑
t∈Ij

E
(
Ω[i,j]

t

)2

. Then,

s2[i]
n =

k∑

j=1

∑

t∈Ij

E
[
k2ρ2

t δi,t − 2kΠ[i−1]
2 Λ−1

(
X2

t−1 −Π[j−1]
2

)
ρ2

t δi,t

+
(
Π[i−1]

2

)2

Λ−2
(
X2

t−1 −Π[j−1]
2

)2

ρ2
t

]

= k2
∑

t∈Ii

Eρ2
t − 2kΠ[i−1]

2 Λ−1
∑

t∈Ii

E
(
Z

[i]
t ρt

)
+

(
Π[i−1]

2

)2

Λ−2
k∑

j=1

∑

t∈Ij

E
(
Z

[j]
t

)2
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and hence 1
ns

2[i]
n

n→∞−→ Σ̂[i]
Y . The appropriate limits are derived in Appendix A.2 and

their final forms are given by (28) and (31).
Finally, we have to prove that 1

s
[i]
n

∑k
j=1

∑
t∈Ij

Ω[i,j]
t has the asymptotic distribution

N(0, 1) for all i. The corresponding conditions of CLT–MD are of the following
form:

i) 1

s
2[i]
n

∑k
j=1

∑
t∈Ij

E
[(

Ω[i,j]
t

)2∣∣∣Ft−1

]
n→∞−→ 1 in probab.,

ii) 1

s
2[i]
n

∑k
j=1

∑
t∈Ij

E
[(

Ω[i,j]
t

)2

I
[|Ω[i,j]

t |≥εs
[i]
n ]

]
n→∞−→ 0 for all ε > 0,

Their verification can be done using expressions (26), (27), (29) and (30) from Ap-
pendix A.2 analogously as in the previous proof. 2

Remark 3.8. It is worth mentioning that while Σ̂B depends on k only through
an average of some terms, Σ̂[i]

Y includes linear term kΣ̂[i]
1 that increases asymptotic

variance of each estimator σ̂
2[i]
Y with increasing number of seasonal periods (and

hence unknown seasonal coefficients). Further, the relation between Σ̂[i]
Y and Σ̂B is

seen.

4. ALTERNATIVE APPROACH

4.1. Estimation procedure

In contrast to the procedure described in Section 3, this approach primarily gives
estimators of σ2

b and σ2
t instead of σ2

B and σ2
t . In its first stage it does not require

the OLS estimator β̂. The idea is however very similar to the previous one.
Since the standard procedure is based on relation (5) for unknown residuals ut,

we have decided to use similar relation for the observed process itself. One can see
that

E(X2
t |Ft−1) = σ2

t + σ2
bX2

t−1 a.s.

and hence analogously as in the previous case the estimators of unknown parameters
can be obtained by minimizing

∑n
t=1(X

2
t − σ2

t − σ2
bX2

t−1)
2 or equivalently as OLS

estimators in the regression model X2
t = σ2

t + σ2
bX2

t−1 + ηt, where ηt are Ft-m.d.s.
Using the same arguments we can derive that they are given by the following

formulas:

σ̃2
b =

∑k
i=1

∑
t∈Ii

X2
t

(
X2

t−1 −X2
[i−1]

)

∑k
i=1

∑
t∈Ii

(
X2

t−1 −X2
[i−1]

)2 , (19)

σ̃
2[i]
Y = X2

[i] −X2
[i−1]

σ̃2
b , i = 1, . . . , k. (20)

Consequently we can define the estimator of σ2
B as σ̃2

B = σ̃2
b − β̂2.
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4.2. Asymptotic properties

These estimators are also strongly consistent and asymptotically normal. The proofs
of these properties are even easier that those of Theorems 3.5 and 3.6 since Lem-
mas 3.5 and 3.8 are not needed. The main steps of the proofs are however the same
and hence we can directly formulate the following theorems.

Theorem 4.1. Under A0 –A5, σ̃2
b

a. s. n→∞−→ σ2
b holds.

P r o o f . In this case we can directly analyze the difference σ̃2
b−σ2

b . Expression (19)
can be reformulated in the way
σ̃2

b = σ2
b +λ−1

n
1
n

∑k
i=1

∑
t∈Ii

(
X2

t −σ2
bX2

t−1

)(
X2

t−1−X2
[i−1]

)
. Extending the previous

expression by the term
∑k

i=1 σ
2[i]
Y

∑
t∈Ii

(
X2

t−1−X2
[i−1]

)
= 0, we can further write

σ̃2
b − σ2

b = λ−1
n

1
n

k∑

i=1

∑

t∈Ii

(
X2

t−1 −X2
[i−1]

)
ηt. (21)

Analogously as in (16) let us define

σ2∗∗
b := λ−1

n

1
n

k∑

i=1

∑

t∈Ii

(
X2

t−1 −Π[i−1]
2

)
ηt + σ2

b . (22)

Since {ηt} is also an Ft-m.d.s., we can proceed in the same way as in the proof of
Theorem 3.3. 2

Remark 4.1. Strong consistency of β̂ directly implies that σ̃2
B

a. s. n→∞−→ σ2
B holds.

Theorem 4.2. Under A0 –A5, σ̃
2[i]
Y

a. s. n→∞−→ σ
2[i]
Y holds for i = 1, . . . , k.

P r o o f . Firstly, let us define σ
2[i]#
Y := X2

[i]−X2
[i−1]

σ2
b . Then σ̃

2[i]
Y −σ

2[i]#
Y

a. s. n→∞−→
0, due to Theorem 4.1 and Lemma 3.3.
Further, σ

2[i]#
Y − σ

2[i]
Y = 1

m

∑
t∈Ii

ηt
a. s. m→∞−→ 0 holds, since {ηt} satisfy SLLN–MD

and hence the proof is finished. 2

Theorem 4.2. Under Assumptions A0, A1’, A2’, A3’, A4 and A5, the asymptotic
distribution of

√
n(σ̃2

b − σ2
b ) is N(0,Λ−2Σ̃b), where

Σ̃b :=
1
k

k∑

i=1

lim
m→∞

1
m

∑

t∈Ii

E
[(

X2
t−1 −Π[i−1]

2

)2

η2
t

]
.

P r o o f . Combining (21), (22) and Lemma 3.3 we get
√

n(σ̃2
b − σ2∗∗

b ) n→∞−→ 0 in
probab., since it can be shown that 1√

m

∑
t∈Ii

ηt is Op(1). To find the asymptotic



Estimation of Variances in a Heteroscedastic RCA(1) Model 419

distribution of
√

n(σ2∗∗
b − σ2

b ) we can proceed analogously as in the proof of The-
orem 3.5 where ρt is interchanged with ηt. All conditions can be verified similarly.
Derivation of Σ̃b is presented in Appendix A.3, its explicit form is given by (32). 2

Theorem 4.3. Under Assumptions A0, A1’, A2’, A3’, A4 and A5, the asymptotic
distribution of

√
n(σ̃2[i]

Y − σ
2[i]
Y ) for i = 1, . . . , k is N(0, Σ̃[i]

Y ), where

Σ̃[i]
Y := kΣ̃[i]

1 − 2Π[i−1]
2 Λ−1Σ̃[i]

2 +
(
Π[i−1]

2

)2

Λ−2Σ̃b,

Σ̃[i]
1 := lim

m→∞
1
m

∑

t∈Ii

Eη2
t ,

Σ̃[i]
2 := lim

m→∞
1
m

∑

t∈Ii

E
[(

X2
t−1 −Π[i−1]

2

)
η2

t

]
.

P r o o f . As in the previous case, basic steps of the proof will be similar to those
in the proof of Theorem 3.6. Using analogous arguments one can verify that the

asymptotic distribution of
√

n(σ̃2[i]
Y − σ

2[i]
Y ) =

√
k
m

∑
t∈Ii

ηt−
√

n(σ̃2
b − σ2

b )X2
[i−1]

is

the same as that of
√

k
m

∑
t∈Ii

ηt −
√

n(σ2∗∗
b − σ2

b )Π[i−1]
2 and consequently as that

of 1√
n

∑k
j=1

∑
t∈Ij

Ψ[i,j]
t , where Ψ[i,j]

t :=
[
kδi,t − Λ−1

(
X2

t−1 −Π[j−1]
2

)
Π[i−1]

2

]
ηt.

Derivation of the asymptotic variance Σ̃[i]
Y and checking of conditions of CLT–MD

are then made analogously as in the proof of the mentioned theorem. Again, the
exact form of Σ̃[i]

Y is derived in Appendix A.4, formulas for Σ̃[i]
1 and Σ̃[i]

2 are given
by (33) and (34). 2

5. COMPARISON OF BOTH APPROACHES

5.1. Theoretical comments

Basic difference between two presented methods is the fact that in the former one the
parameter β has to be firstly estimated to obtain residuals ût. Then the remaining
parameters σ2

B and σ2
t are estimated. On the other hand, in the latter method

estimates of σ2
b and σ2

t are directly computed.
In the alternative method described in Section 4 one avoids estimation of residuals

in the first stage that may incorporate inaccuracy before remaining parameters are
estimated. On the other hand, the fact that both parameters β and σ2

B are estimated
together in the alternative method may be also its disadvantage, since impact of
each parameter can not be well separated. It can consequently lead to inaccurate
estimates of the whole σ2

b .
Theoretical comparison of both approaches is however hardly to be done, even in

case of estimates of σ2
t . It arises from the fact that asymptotic variances of σ̂

2[i]
Y and

σ̃
2[i]
Y depend on asymptotic variances Σ̂B and Σ̃b, respectively, that are incomparable.
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5.2. Numerical comparison

We made several simulations to find out in which cases the standard method is
preferable to the alternative one and vice versa. Selected results of our simulation
study are presented in the sequel.

We simulated 21 types of RCA(1) processes satisfying model (1), where bt and
Yt were supposed to be normally distributed. In each case different parameters of
distribution of bt were considered. Their values are summarized in Table. In spite
of the fact that this paper concerns with generally heteroscedastic RCA(1) models,
the homoscedastic processes Yt with σ2

t = σ2
Y = 1 were used for this presentation.

The reason is that comparison of both approaches can be well demonstrated in
homoscedastic case. We additionally made analogous simulations for σ2

Y = 5 and
for seasonal heteroscedasticity with k = 2 and k = 4. The conclusions are however
very similar to those presented here.

All estimates were based on 100 independent realizations with 1000 observations
in each case. Since estimates σ̂2

B and σ̃2
B differ from σ̂2

b and σ̃2
b only of β̂2, it is

sufficient to compare only one of these pairs. We chose to present here estimates of
σ2

b and σ2
Y that are summarized in Table.

Table. Estimates of σ2
b and σ2

Y in a homoscedastic RCA(1) model.

Parameters of Estimates
distribution of bt

β σ2
B σ2

b σ̂2
b σ̃2

b σ̂2
Y σ̃2

Y

A 0 0.1 0.1 0.0911 0.0922 1.0088 1.0086
0.2 0.06 0.1 0.0902 0.0914 1.0103 1.0097

B 0 0.2 0.2 0.1903 0.1927 1.0122 1.0109
0.3 0.11 0.2 0.2701 0.2608 0.9126 0.9256

C 0 0.26 0.26 0.2458 0.2499 1.0199 1.0166
0.4 0.1 0.26 0.2483 0.2467 1.0093 1.0123

D 0.1 0.35 0.36 0.3144 0.3157 1.0587 1.0593
0.5 0.11 0.36 0.3500 0.3554 1.0141 1.0061

0 0.5 0.5 0.3947 0.4034 1.1936 1.1822
0.2 0.46 0.5 0.4071 0.4031 1.1395 1.1557

E 0.3 0.41 0.5 0.4301 0.4150 1.1202 1.1563
0.4 0.34 0.5 0.4551 0.4294 1.0946 1.1548
0.5 0.25 0.5 0.4661 0.4429 1.0620 1.1062

0 0.64 0.64 0.4442 0.4656 1.4430 1.4023
F 0.1 0.63 0.64 0.4469 0.4591 1.4628 1.4463

0.2 0.6 0.64 0.4614 0.4588 1.4305 1.4481
0.6 0.28 0.64 0.5919 0.5314 1.1199 1.2876

0 0.74 0.74 0.4833 0.5075 1.7607 1.6942
G 0.2 0.7 0.74 0.4946 0.5084 1.8308 1.7993

0.3 0.65 0.74 0.5201 0.4883 1.6550 1.7692
0.7 0.25 0.74 0.6806 0.5765 1.1144 1.4931

In order to make comparison of both methods, all processes were separated into
7 groups so to have the same second moment σ2

b within each group. Boldfaced
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values in Table are those where the alternative approach gives estimates with smaller
estimated bias than the standard method. One can see that priority of one of the
method does not depend on the value of the second moment σ2

b but one the value β
alone. Our simulations show that the alternative method is preferable for processes
where the true parameter β is close to 0 regardless of the value σ2

b ranking within
(0, 1). It holds both for estimates of σ2

b and σ2
Y .

These empirical results may correspond with the fact that under the null hypoth-
esis H0 : β = 0, the RCA(1) process is second order equivalent to the special case
of the ARCH(1) process in the sense that both processes have the same conditional
expectation and variance. In a homoscedastic case it was proved in [12], generaliza-
tion for heteroscedastic processes is given in [6]. In the latter paper there is shown
that estimation procedure for ARCH processes is the same as the alternative method
presented here for RCA processes.

Finally, from Table one can deduce some common features of both methods.
It is seen that both methods overestimate parameters σ2

Y and underestimate σ2
b .

The higher the value of σ2
b , the greater the over- and underestimation. Comparing

estimated variance of presented estimates (that are not given here), one can see
that there is no significant and systematic superiority of one of the method. When
parameter σ2

b is greater than 0.8 and it is tending to 1, processes start to be very
unstable and both methods give inaccurate estimates with extremely high estimated
variances.

APPENDIX

A.1 Derivation of Σ̂B

The expression
(
Z

[i]
t

)2

=
(
X2

t−1−Π[i−1]
2

)2

ρ2
t =

(
X2

t−1−Π[i−1]
2

)2 (
u2

t−σ2
t −σ2

BX2
t−1

)2,
where ut = BtXt−1 + Yt, can be expanded, for t ∈ Ii, to the following form:

(
Z

[i]
t

)2

= X8
t−1(B

2
t −σ2

B)2 + 2X6
t−1

[
2B2

t Y 2
t −Π[i−1]

2 (B2
t −σ2

B)2
]

+ X4
t−1

[
Y 4

t +
(
σ

2[i]
Y

)2

− 2Y 2
t σ

2[i]
Y +

(
Π[i−1]

2

)2

(B2
t −σ2

B)2 − 8Π[i−1]
2 B2

t Y 2
t

]

+ 2X2
t−1Π

[i−1]
2

[
2Y 2

t σ
2[i]
Y − Y 4

t −
(
σ

2[i]
Y

)2

+ 2Π[i−1]
2 B2

t Y 2
t

]

+
(
Π[i−1]

2

)2[
Y 4

t +
(
σ

2[i]
Y

)2

− 2Y 2
t σ

2[i]
Y

]
+ M

[i]
1,t,

(23)
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where

M
[i]
1,t = 4X7

t−1(B
2
t −σ2

B)BtYt + 2X6
t−1(B

2
t −σ2

B)
[
Y 2

t − σ
2[i]
Y

]

+ 4X5
t−1BtYt

[
Y 2

t −σ
2[i]
Y −2Π[i−1]

2 (B2
t −σ2

B)
]
−4X4

t−1(B
2
t −σ2

B)Π[i−1]
2

[
Y 2

t −σ
2[i]
Y

]

+ 4X3
t−1BtYtΠ

[i−1]
2

[
2σ

2[i]
Y − 2Y 2

t + Π[i−1]
2 (B2

t −σ2
B)

]

+ 2X2
t−1(B

2
t −σ2

B)
(
Π[i−1]

2

)2[
Y 2

t − σ
2[i]
Y

]
+ 4Xt−1BtYt

(
Π[i−1]

2

)2[
Y 2

t − σ
2[i]
Y

]
.

(24)

One can easily check that EM
[i]
1,t = 0, hence after some algebra in (23) we get for

Σ̂B := limn→∞ 1
n

∑k
i=1

∑
t∈Ii

E
(
Z

[i]
t

)2

the following equality:

Σ̂B = Π[i−1]
8 var(B2

t ) +
1
k

k∑

i=1

{
2Π[i−1]

6

[
2σ2

Bσ
2[i]
Y −Π[i−1]

2 var(B2
t )

]

+ Π[i−1]
4

[
var

(
Y 2[i]

)
+

(
Π[i−1]

2

)2

var(B2
t )− 8Π[i−1]

2 σ2
Bσ

2[i]
Y

]

+
(
Π[i−1]

2

)2[
4Π[i−1]

2 σ2
Bσ

2[i]
Y − var

(
Y 2[i]

)]}
,

(25)

where var
(
Y 2[i]

)
= µ

[i]
Y,4 −

(
σ

2[i]
Y

)2

.

A.2 Derivation of Σ̂[i]
Y

Firstly, let us derive Σ̂[i]
1 := limm→∞ 1

m

∑
t∈Ii

Eρ2
t . It is easy to show that for t ∈ Ii

ρ2
t = X4

t−1(B
2
t −σ2

B)2 + 4X2
t−1B

2
t Y 2

t + Y 4
t − 2Y 2

t σ
2[i]
Y +

(
σ

2[i]
Y

)2

+ M
[i]
2,t, (26)

where

M
[i]
2,t = 4X3

t−1(B
2
t −σ2

B)BtYt + 2X2
t−1(B

2
t −σ2

B)
[
Y 2

t − σ
2[i]
Y

]

+ 4Xt−1BtYt

[
Y 2

t − σ
2[i]
Y

]
.

(27)

Again, EM
[i]
2,t = 0 holds and hence

Σ̂[i]
1 = Π[i−1]

4 var(B2
t ) + 4Π[i−1]

2 σ2
Bσ

2[i]
Y + var

(
Y 2[i]

)
. (28)
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Further, let us expand Z
[i]
t ρt for t ∈ Ii:

Z
[i]
t ρt = X6

t−1(B
2
t −σ2

B)2 + X4
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[
4B2

t Y 2
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where
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Y 2

t − σ
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and EM
[i]
3,t = 0. Derivation of Σ̂[i]

2 = limm→∞ 1
m

∑
t∈Ii

E
(
Z

[i]
t ρt

)
is now straightfor-

ward:

Σ̂[i]
2 = Π[i−1]

6 var(B2
t )+Π[i−1]

4

[
4σ2

Bσ
2[i]
Y −Π[i−1]

2 var(B2
t )

]
−4

(
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2

)2

σ2
Bσ

2[i]
Y . (31)

A.3 Derivation of Σ̃b

One can observe that the only difference between Σ̂B and Σ̃b is in using ρt or ηt,
respectively. Let us compare both terms:

ρt = u2
t − σ2

BX2
t−1 − σ2

t = (B2
t − σ2

B)X2
t−1 + 2Xt−1BtYt + Y 2 − σ2

t ,

ηt = X2
t − σ2

bX2
t−1 − σ2

t = (b2
t − σ2

b )X2
t−1 + 2Xt−1btYt + Y 2 − σ2

t .

Since the difference is only in using bt and σ2
b instead of Bt and σ2

B , we can formally
interchange these terms in (23) and (24) and get the limit Σ̃b analogously as in (25).
The only one difference is that two terms 4X5

t−1btY
3
t and −8X3

t−1Π
[i−1]
2 btY

3
t from

(24) do not already have zero expectation and have to be taken under consideration.
Hence, the final form of Σ̃b is

Σ̃b = Π[i−1]
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1
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A.4 Derivation of Σ̃[i]
Y

Analogously as in Appendix A.3 we get the desired limits by interchanging bt and σ2
b

with of Bt and σ2
B in (26), (27), (29) and (30). After this operation, the only term

with non-zero expectation is 4X3
t−1btY

3
t from (30). By evaluating the appropriate

limits we get
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4 var(b2
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Králové 2001, pp. 87–92.
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