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ON ROBUST STABILITY OF NEUTRAL SYSTEMS

Silviu–Iulian Niculescu

This paper focuses on the problem of uniform asymptotic stability of a class of linear
neutral systems including some constant delays and time-varying cone-bounded nonlineari-
ties. Sufficient stability conditions are derived by taking into account the weighting factors
describing the nonlinearities. The proposed results are applied to the stability analysis of
a class of lossless transmission line models.

1. INTRODUCTION

It is relatively well known that the existence of a delay in a physical system may
induce instability or bad performance [12, 14] in open or closed-loop schemes. In
certain control problems, one encounters linear hyperbolic differential equations with
mixed initial and derivative boundary conditions, see, e. g. processes including steam
or water pipes, lossless transmission lines. In some cases, the connection through
the partial differential equations can be rewritten by using some appropriate delay
(inter)connections. Thus, using a technique proposed in Hale and Verduyn Lunel [10]
(see also the works of Brayton [4], Abolinia and Myshkis [1], Cooke and Krumme [6]
or Răsvan [9, 18]), a nonlinear lossless transmission line [3] can be easily described by
a functional differential equation of neutral type. Further examples and discussions
can be found in [19]. The particularity of neutral systems is that the delay argument
occurs also in the derivative of the state variables.

A different example is proposed in [16], where the effect of force measurements
delays on the stability of manipulators in contact with a rigid environment is con-
sidered. The closed-loop system is represented by a linear time-invariant neutral
equation. In this case, the time-delay may be a cause of possible bouncing of the
robot’s tip on the environment.

There are several methods to analyze the stability of such systems. Without
being exhaustive, one can mention in the frequency-domain class, a frequency-
dependent matrix pencil technique [5], or the singular value test [24]; in the time-
domain class, the Lyapunov’s second method (with the Razumikhin and Krasovskii
methodologies) [10, 20], or the comparison methods [13]. Thus, using an appropriate
Lyapunov–Krasovskii functional, [24] proves that the stability of such system can
be reduced to the existence of a positive-definite solution of a continuous Riccati
equation coupled with a discrete Lyapunov equation. A guided tour of the general
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corresponding methods for the stability and robust stability of linear systems with
delayed states can be found in [17].

In this paper, we consider a particular class of uncertain time-delay systems
described by linear neutral differential equations, including cone-bounded and time-
varying nonlinear uncertainty. We are interested in analyzing stability conditions for
such systems. The approach adopted here is based on Lyapunov’s second method and
makes use of an appropriate Lyapunov–Krasovskii functional [10, 12, 24]. Sufficient
delay-independent stability conditions are given in terms of positive solution to some
linear matrix inequalities (LMIs). Note that the proposed conditions extend the
results of [24] to handle nonlinear uncertainty, and/or multiple delays. Furthermore,
an appropriate optimization problem related to the nonlinearity description can be
also considered. As an application, a simplified neutral model of a nonlinear lossless
transmission line is proposed.

The paper is organized as follows: in Section 2, we give the problem formulation.
The main results are presented in Section 3. The case of a lossless transmission line
model described as a neutral system is considered in Section 4. Some concluding
remarks end the paper.

Notation. The following notations will be used throughout the paper. R denotes
the set of real numbers, Rn denotes the n dimensional Euclidean space, and Rn×m

denotes the set of all n×m real matrices. Cn,τ = C([−τ, 0], Rn) denotes the Banach
space of continuous vector functions mapping the interval [−τ, 0] into Rn with the
topology of uniform convergence. The following norms will be used: ‖·‖ refers to the
Euclidean vector norm; ‖φ‖c = sup−τ≤t≤0 ‖φ(t)‖ stands for the norm of a function
φ ∈ Cn,τ . Moreover, we denote by Cv

n,τ the set defined by Cv
n,τ = {φ ∈ Cn,τ : ‖φ‖c <

v}, where v is a positive real number.

2. PROBLEM STATEMENT

Consider the following class of linear neutral systems:

d
dt
Dxt = Ax(t) + Bx(t− τ2) + ∆A(xt(0), t) + ∆B(xt(−τ2), t)

+∆D(Dxt, t), (1)

with the initial condition

xt0(θ) = φ(θ), ∀ θ ∈ [−τ̄ , 0]; (t0, φ) ∈ R+ × Cv
n,τ , (2)

where τ̄ = max{τ1, τ2}, and the operators xt,D : Cn,τ 7→ Rn are defined as follows:

xt(θ) = x(t + θ),
Dxt = x(t)−Dx(t− τ1).

The delays of the system are τ1,2 > 0 and are assumed constant, and D, A and B
are constant matrices of appropriate dimension.

The mappings ∆A, ∆B, ∆D : Cn,τ×R 7→ Rn denote unknown nonlinear functions
satisfying the following assumption:
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Assumption 1. The uncertain functions ∆A, ∆B and ∆D are gain bounded
smooth functions described by





∆A(xt(0), t) = Eaδa(xt(0), t), δa(y, t)T δa(y, t) ≤ yT WT
a Way,

∆B(xt(−τ), t) = Ebδb(xt(−τ), t), δb(y, t)T δb(y, t) ≤ yT WT
b Wby,

∆D(Dxt, t) = Edδd(Dxt, t), δd(y, t)T δd(y, t) ≤ yT WT
d Wdy,

(3)

for all y ∈ Rn and all t ∈ R, with known matrices Ea, Eb and Ed. The matrices
Wa, Wb and Wd are given weighting matrices. The unknown mappings δa, δb, δd

satisfy the conditions

δa(0, t) = 0, δb(0, t) = 0, δd(0, t) = 0.

This assumption implies that the origin x = 0 is an equilibrium point of the sys-
tem (1) with δa, δb and δd uniformly bounded by x(t), x(t−τ) and Dxt, respectively.

If C ≡ 0, δd ≡ 0 the proposed model represents a ‘classical’ description of linear
uncertain ‘approximations’ of nonlinear delay systems [15]. The advantage of the
representation (3) lies in the ability to analyze stability properties via an appropriate
(simple) quadratic Lyapunov–Krasovskii candidate. A unifying formalism for large
classes of uncertain systems can be found in [7]. Note that the nonlinearity described
by the δd(·, t)-term is specific to the application presented in Section 4.

Throughout the paper, we shall say that the system (1) – (2) is robustly delay-
independent stable if it is uniformly asymptotically stable for each uncertainty ∆A,
∆B and ∆D satisfying Assumption 1 (see also [15]).

With these notation, definitions and assumptions, the stability problem can be
formulated as follows: find conditions to ensure the stability of the system (1) – (2)
for all the class of nonlinearities (3). If there exists a solution, one may introduce
a “measure” to describe how robust is the stability property with respect to the
considered nonlinearity.

3. MAIN RESULTS

With the notations given in the previous section, we have the following stability
result:

Theorem 1. The neutral system (1) – (2) satisfying Assumption 1 is delay-inde-
pendent robustly stable if

(i) A is a Hurwitz stable matrix;

(ii) D is a Schur–Cohn stable matrix;
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(iii) there exist three symmetric and positive definite matrices P, S1, S2 > 0 such
that the following LMI holds:
2
66666664

AT P + PA + S1 + S2

+W T
a Wa + W T

d Wd
PE

(PA + S1 + S2+
+W T

a Wa)D
PB

ET P −I 0 0

DT (AT P + S1 + S2+
+W T

a Wa)
0

DT (S1 + S2+
+W T

a Wa)D − S1
0

BT P 0 0 W T
b Wb − S2

3
77777775

< 0, (4)

where E = [Ea Eb Ed].

The proof is included in Appendix B, and makes use of the following Lyapunov–
Krasovskii functional:

V (xt) = (x(t)−Dx(t− τ1))T P (x(t)−Dx(t− τ1))

+
2∑

i=1

∫ 0

−τi

x(t + θ)T Six(t + θ) dθ.

Note that if τ1 = τ2, the result above becomes:

Corollary 1. [τ1 = τ2 = τ ] The neutral system (1) – (2) satisfying Assumption 1
is delay-independent robustly stable if

(i) A is a Hurwitz stable matrix;

(ii) D is a Schur–Cohn stable matrix;

(iii) there exist two symmetric and positive definite matrices P > 0 and S > 0 such
that the following LMI holds:

2
666664

AT P + PA + S+
+W T

a Wa + W T
d Wd

PE
P (AD + B) + SD+

+W T
a WaD

ET P −I 0

(BT + DT AT )P+
+DT S + DT W T

a Wa
0

DT SD − S+
+W T

b Wb + DT W T
a WaD

3
777775

< 0, (5)

where E = [Ea Eb Ed].

Remark 1. The proof of this corollary follows the same steps as Theorem 1 and
makes use of the following Lyapunov–Krasovskii functional candidate:

V (xt) = (x(t)−Dx(t− τ))T P (x(t)−Dx(t− τ)) +
∫ 0

−τ

x(t + θ)T Sx(t + θ) dθ.
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Remark 2. The Schur–Cohn stability of the matrix D ensures the stability of the
“discrete” operator D : Cn,τ → Rn:

D(φ) = φ(0)−Dφ(−τ1),

which is a necessary condition to have the stability of the neutral differential equation
(1) – (2) [10].

Note also that the Hurwitz stability of the matrix A is a necessary condition for
the existence of a symmetric positive definite solution to the LMI (5) (AT P + PA
should be negative definite), but is not a sufficient one.

Remark 3. Corollary 1 recovers the results given in [24] in the case when we have
no uncertainties, i. e. ∆A ≡ 0, ∆B ≡ 0 and ∆D ≡ 0. In this case, the corresponding
LMI is:

[
AT P + PA + S P (AD + B) + SD

DT S + (BT + DT AT )P DT SD − S

]
< 0.

Furthermore, if we suppose that the system is of retarded type, i. e. C ≡ 0, the pro-
posed result recovers the sufficient conditions for delay-independent stability given
in [2].

A different Lyapunov–Krasovskii functional to study the robust stability of sys-
tems of the form (1) – (2) is:

V (x(t), xt, ẋt) = x(t)T P1x(t) +
∫ 0

−τ2

x(t + θ)T P2x(t + θ) dθ

+
∫ 0

−τ1

ẋ(t + θ)T P3ẋ(t + θ) dθ, (6)

where Pi (i = 1, 2, 3) are symmetric and positive definite matrices satisfying some
appropriate Riccati inequalities (see [22]).

The form of the Lyapunov functional (6) includes “information” on the state
derivatives ẋt. In this case, a proper norm for this stability analysis study is given
by:

‖xt‖c1 = sup
−τ≤θ≤0

{‖x(t + θ)‖, ‖ẋ(t + θ)‖} .

Some connections between the stability results obtained using the norms ‖ · ‖c and
‖ · ‖c1 can be found in Els’golts’ and Norkin [8]. For the sake of simplicity, we do
not consider this approach here.

Due to the particular form of the LMI (5), (which is affine in the weighting factors
WT

a Wa, WT
b Wb and WT

d Wd, respectively), one may consider the following natural
way to analyze the robustness of the system in terms of weighting factors, i. e. the
following standard LMI optimization problem [2]:

maximize Tr(WT
a Wa + WT

b Wb + WT
d Wd) s.t.

(4) or (5) holds.
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Roughly speaking, this maximization problem is related to the stability radius of the
matrix A [15], that is, the uncertainty terms are not allowed to “exceed” (in norm,
or in trace) some bounds specified by this quantity. Other robustness formulations
and comments for robustness issues for delay systems can be found in [15].

Consider now a special case: the existence only of the uncertainty term ∆D.
Thus, one has:

Corollary 2. [τ1 = τ2] The neutral system (1) – (2) (with ∆A ≡ 0 and ∆B ≡ 0)
such that ∆D satisfies Assumption 1 is delay-independent robustly stable if

(i) A is a Hurwitz stable matrix;

(ii) D is a Schur–Cohn stable matrix;

(iii) there exist two symmetric and positive definite matrices P > 0 and S > 0 such
that the following LMI holds:




AT P + PA + S + WT
d Wd PEd P (AD + B) + SD

ET
d P −I 0

(BT + DT AT )P + DT S 0 DT SD − S


 < 0. (7)

4. APPLICATION TO A NONLINEAR TRANSMISSION LINE

Let us consider the following nonlinear transmission line system described by the
following set of partial differential equations [3, 10]:





L
∂i

∂t
= −∂v

∂x
, C

∂v

∂t
= − ∂i

∂x
0 < x < 1, t > 0,

with the boundary conditions:




E − v(0, t)−Ri(0, t) = 0

C1
d
dt

v(1, t) = i(1, t)− g(v(1, t)),

where g(·) is an appropriate nonlinear function [10].
Using one of the transformation techniques proposed in Hale and Verduyn Lunel [10]

(the “transformation” is not unique), this system can be rewritten in the following
form,

C1 · d
dt

[
u(t)− qu(t− 2

√
LC)

]
= −α

(
u(t) + qu(t− 2

√
LC)

)

−g
(
u(t)− qu(t− 2

√
LC)

)
+ k, (8)
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with an appropriate k and where

q =
√

L−R
√

C√
L + R

√
C

, |q| < 1

α =

√
C

L
.

Without loss of generality, consider now the equation:

d
dt
Dxt = −αx(t)− qαx(t− τ)− g(Dxt), (9)

where Dxt = x(t)− qx(t− τ).
Applying Corollary 2, we will have to find ε, γ > 0 such that the following matrix:

M(ε, γ, wd) =



−α + ε + γ wd (γ − α)q

wd −ε 0
(γ − α)q 0 −γ(1− q2)




is negative definite. Note that ε is a tuning parameter for reducing the conserva-
tiveness of the robust stability condition.

If one chooses ε =
|wd|
2

and γ = α|q|, we shall have:

Proposition 1. Supposing that the nonlinearity g satisfies the Assumption 1, then
the neutral system (9) is delay-independent robustly stable if |q| < 1 and:

g(x)2

x2
< α2

(
1− |q|
1 + |q|

)2

. (10)

5. CONCLUDING REMARKS

In this paper, we have considered the problem of robust stability of a class of neutral
systems including time-varying cone-bounded uncertainty. We have derived suffi-
cient delay-independent conditions expressed in terms of the existence of symmetric
and positive-definite solutions for some appropriate linear matrix inequalities. The
proposed results are applied for the stability study of a neutral model associated to
a nonlinear lossless transmission line. The results proposed here extend similar ones
in the literature [24].
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APPENDIX A: STABILITY THEORY

Consider the following functional differential equation of neutral type:

d
dt

[Dxt] = f(xt), (11)

with an appropriate initial condition:

xt0(θ) = φ(θ), ∀ θ ∈ [−τ, 0]; (t0, φ) ∈ R+ × Cv
n,τ , (12)

where D : Cn,τ → Rn, Dφ = φ(0)−Dφ(−τ) and x(t) ∈ Rn. We say that the operator
D is stable if the zero solution of the corresponding homogeneous difference equation
is uniformly asymptotically stable. For our choice, this condition is replaced by the
Schur–Cohn stability of the matrix D. For a general framework, see e. g. Hale and
Verduyn Lunel [10].

If V : R × Cn,τ → Rn is continuous and x(t0, φ) is the solution of the neutral
differential equation (11) through (t0, φ) defined by (12), we define:

V̇ (t0, φ) = lim sup
h→0+

1
h

[V (t + h, xt+h(t0, φ)− V (t0, φ)] .

We have the following result:

Theorem A.1. [10] Suppose D is stable, f : R× Cn,τ → Rn takes bounded sets
of Cn,τ into bounded sets of Rn and suppose u(s), v(s) and w(s) are continuous,
nonnegative and nondecreasing functions with u(s), v(s) > 0 for s 6= 0 and u(0) =
v(0) = 0.

If there is a continuous function V : R× Cn,τ → Rn such that

(i) u(‖Dφ‖) ≤ V (t, φ) ≤ v(‖φ‖c),

(ii) V̇ (t, φ) ≤ −w(‖Dφ(0)‖) then the solution x = 0 of the neutral equation (11) –
(12) is uniformly stable.

If u(s) →∞ as s →∞ the solutions are uniformly bounded.
If w(s) > 0 for s > 0, then the solution x = 0 is uniformly asymptotically stable.
The same conclusions hold if the upper bound on V̇ (t, φ) is given by −w(‖φ(0)‖).

APPENDIX B: PROOF OF THEOREM 1

Let us consider the following Lyapunov–Krasovskii functional candidate:

V (xt) = (x(t)−Dx(t− τ1))T P (x(t)−Dx(t− τ1))

+
2∑

i=1

∫ 0

−τi

x(t + θ)Six(t + θ) dθ, (13)

where P and Si are solutions of the linear matrix inequality (4).
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It is easy to see that the functional V satisfies the condition:

u(|Dφ|) ≤ V (φ) ≤ v(‖φ‖c), (14)

where u(s) = λmin(P )s2 and v(s) = [λmax(P ) +
∑

τiλmax(Si)]]s2. The derivative of
V (·) along the trajectory of the neutral system (1) is given by:

V̇ (xt) = (Ax(t)+Bx(t−τ2)+∆A(xt(0), t)+∆B(xt(−τ2))+∆D(Dxt, t))T PDxt

+(x(t)−Dx(t−τ1))T P (Ax(t)+Bx(t−τ2)+∆A(xt(0), t)+∆B(xt(−τ2))

+g(Dxt, t)) +
2∑

i=1

[
x(t)T Six(t)− x(t− τi)]T Six(t− τi)]

]
. (15)

Using the following inequality [15]:

2DxT
t Fh(y, t) ≤ DxT

t FFTDxt + h(y, t)T h(y, t), (16)

for any matrix F and function h (of appropriate dimensions), we have (via Assump-
tion 1):

2DxtPEaδa(xt(0), t) ≤ DxT
t PEaET

a PDxt + x(t)T WT
a Wax(t),

2DxtPEbδb(xt(−τ2), t) ≤ DxT
t PEbE

T
b PDxt + x(t− τ2)T WT

b Wbx(t− τ2),
2DxtPEdδd(Dxt, t) ≤ DxT

t PEdE
T
d PDxt +DxT

t WT
d WdDxt.

Using additions and subtractions of appropriate terms, we can rewrite each expres-
sion containing the quantity “x(t)” as an expression containing “Dxt” and “x(t−τ1).”
For example,

x(t)T Sx(t) = DxT
t SDxt + x(t− τ1)T DT SDx(t− τ1)

+(Dxt)T SDx(t− τ1) + x(t− τ1)T DT SDxt.

With all these inequalities and transformations, simple computations allow to obtain
the following form from (15) and (16):

V̇ (xt) =
ˆ DxT

t x(t− τ1)
T x(t− τ2)

T
˜ ·

·

2
6666664

AT P + PA + S1 + S2+
W T

a Wa + W T
d Wd+

+PEET P

(PA + S1 + S2+
+W T

a Wa)D
PB

DT (AT P + S1 + S2+
+W T

a Wa)
DT (S1 + S2)D − S1+

+DT W T
a WaD

0

BT P 0 W T
b Wb − S2

3
7777775
·

·
2
4

Dxt

x(t− τ1)
x(t− τ2)

3
5 . (17)

Thus, if the matrix inequality (4) holds, it follows (via an appropriate Schur trans-
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formation) that:
2
6666664

AT P + PA + S1 + S2+
W T

a Wa + W T
d Wd+

+PEET P

(PA + S1 + S2+
+W T

a Wa)D
PB

DT (AT P + S1 + S2+
+W T

a Wa)
DT (S1 + S2)D − S1+

+DT W T
a WaD

0

BT P 0 W T
b Wb − S2

3
7777775

< 0.

In conclusion, there exists some β > 0 such that:

V̇ (xt) ≤ −β‖Dxt‖2. (18)

The inequalities (14) and (18) allow us to conclude the uniform asymptotic sta-
bility of the trivial solution of the neutral differential equation 1 (see Appendix A
above or [10], Theorem 8.1, pp. 292–293).

Furthermore, the negativity of the Lyapunov functional candidate does not use
any information about the delay size and in conclusion, we have the delay-independent
robust stability property. 2

(Received November 22, 2000.)
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