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Bound-Based Decision Rules in Multistage Stochastic Pro-
gramming

Daniel Kuhn; Panos Parpas; Berç Rustem

Abstract: We study bounding approximations for a multistage stochastic pro-
gram with expected value constraints. Two simpler approximate stochastic
programs, which provide upper and lower bounds on the original problem, are
obtained by replacing the original stochastic data process by finitely supported
approximate processes. We model the original and approximate processes as
dependent random vectors on a joint probability space. This probabilistic cou-
pling allows us to transform the optimal solution of the upper bounding problem
to a near-optimal decision rule for the original problem. Unlike the scenario tree
based solutions of the bounding problems, the resulting decision rule is imple-
mentable in all decision stages, i.e., there is no need for dynamic reoptimization
during the planning period. Our approach is illustrated with a mean-risk port-
folio optimization model.
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