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Radim Jiroušek, Ivan Kramosil,
Rudolf Kulhavý, Milan Mareš,
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Editorial Office:
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FEATURELESS PATTERN CLASSIFICATION

Robert P.W. Duin1, Dick de Ridder and David M. J. Tax

In this paper the possibilities are discussed for training statistical pattern recognizers
based on a distance representation of the objects instead of a feature representation. Dis-
tances or similarities are used between the unknown objects to be classified with a selected
subset of the training objects (the support objects). These distances are combined into
linear or nonlinear classifiers. In this approach the feature definition problem is replaced
by finding good similarity measures. The proposal corresponds with determining classifi-
cation functions in Hilbert space using an infinite feature set. It is a direct consequence of
Vapnik’s support vector classifier [12].

1. INTRODUCTION

Research in statistical pattern recognition has traditionally been dominated by fea-
ture vector approaches: objects are represented by feature sets of equal size. These
are represented in vector spaces followed by the development of classifiers separating
as good as possible the feature vector sets of different classes.

An important drawback of this approach is that on a priori grounds (i. e. on the
physical nature of the objects) features have to be defined that are strongly related to
class differences. This set may not be too large, both, for computational reasons as
well as to preserve the generalization power of the resulting classifiers. Feature spaces
of increasing dimensionality finally deteriorate the recognition performance. This
‘curse of dimensionality’, also known as Rao’s paradox or as the peaking phenomenon
[7] makes it necessary to have enormous numbers of training examples available
for large feature sizes. Simple rules of thumb demand something like ten times
the feature size. Worst case approaches based on the VC dimension [11] demand
for almost all classifiers exponentially increasing training sets. Consequently much
research is done in finding small sets of good features on a priori grounds or in
statistical techniques to reduce initially too large feature sets.

In this study the possibility will be re-investigated of avoiding the necessity of
finding features. We will return to one of the most naive approaches: distances or
similarities between direct sensor representations of the objects. So we don’t look
for good features but directly use a similarity measure Sx(xi, xj) between objects

1This work was supported by the Foundation for Applied Sciences (STW), the Foundation for
Computer Science in the Netherlands (SION) and the Dutch Organization for Scientific Research
(NWO).
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xi and xj (these are not feature vectors but just symbolic representations of the
objects). This measure should be such that it emphasizes class differences.

Just like the feature definitions it has to be based on application knowledge. The
object representations and the way these similarities are measured are not important
for the remainder of this paper. They are application dependent. We will focus on
the possibilities of building classifiers based on these similarity measures. So we are
looking for classification functions of the type

C(x) = C(λ1, S(x, x1), λ2, S(x, x2), . . . , λj , S(x, xj), . . .) (1)

in which the objects xj ∈ L are members of the training set L and have labels
λj and in which x is the object to be classified. Traditionally this is done by the
nearest neighbor rule, in this context often called template matching: Assign the
object to the class of its nearest neighbor, i.e. the object with the highest similarity.
Its main drawback is that in case of a large training set it becomes computationally
heavy. What is needed are condensing and editing techniques [2] for reducing the
training set to a minimum subset and, moreover, a technique for building more
general classification functions than maximum or minimum selectors.

Recently Vapnik proposed a support vector classifier [12], see also [9], that com-
putes a classification function on an automatically minimized training set, the sup-
port set. Although it is based on a vector space approach, it might be used for object
similarity approaches as well. In this paper, we will discuss whether a support object
classifier based on Vapnik’s support vector classifier might be useful for building
featureless classifiers. Parts of this paper have been presented before [4, 5, 6].

2. SUPPORT OBJECT CLASSIFICATION

Let L = x1, x2, . . . , xm be a training set of objects with labels Λ = λ1, λ2, . . . , λm, λi ∈
Ω = {ω1, ω2}. Let D(xi, xj) be a user defined distance measure, e. g. a simple mea-
sure like the Euclidean distance between pixel representations. More complicated
measures can also be used provided that D(xi, xj) = 0 if and only if the objects xi

and xj are identical. The nearest neighbor rule can be based on these distances. A
distance based classifier between two classes ω1 and ω2 can be defined as:

C(x) =
m∑

j=0

αjK(D(x, xj)), C(x) > 0 then ω1, else ω2 (2)

in which K(·) is some potential function, e. g. K(z) = exp(−z/s), in which s is
a free scaling factor. This is equivalent with the potential function approach as
proposed more than 30 years ago by Aizerman et al [1]. The coefficients αj and the
scaling parameters have to be optimized by the training procedure. The function
K(z) can be interpreted as a transformation from distances to similarities. It is also
possible to define these classifiers directly on similarities: S(xi, xj) if S(xi, xj) = 1
for xi = xj and S(xi, xj) ↓ 0 for decreasing similarity. So

C(x) =
m∑

j=0

αj{S(x, xj)}p, C(x) > 0 then ω1, else ω2 (3)
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which defines a polynomial classifier of degree p. Note that the summations in 2 and
3 start for j = 0, referring to the constant contributions: S(x0, x) = 1, ∀x.

For convenience we will restrict ourselves to similarity based classifiers. By using
the appropriate transformation, this covers distance based classifiers as well. A
classifier like 3 has to be trained by optimizing the parameters αj over the training
set. Here the problem arises that there are as many parameters as there are objects
in the training set. For a general set of objects this implies that the parameter values
can always be given such values that all objects are classified correctly.

Vapnik has studied more generally the relation between classifier complexity and
the size of the training set [11]. In his recent study [12] he follows an interesting
approach in which simultaneously the classifier complexity is reduced by minimizing
the set of training objects and the performance is maximized by optimizing the
corresponding coefficients. Vapnik studies this approach for feature representations
of objects in vector spaces. Here we will investigate the applicability to Hilbert
spaces if just similarity matrices of objects are given.

There are several ways to do this. A simple criterion for two-class classifiers is

Je = ns/2 + ne. (4)

In this expression ns is the number of support objects that take part in 3 and
ne is the total number of erroneously classified objects over the entire training set.
The first term can be interpreted as the classifier complexity contribution and the
second term as the error contribution. This criterion demands a search over all
combinations of training objects. For a given support set Ls ⊂ L, however, the
computation of the classification function C(x) using 3 is straightforward. If we
demand that C(x) = 1 for x ∈ ω1 and C(x) = −1 for x ∈ ω2 and if these targets are
summarized in a vector t, this can be rewritten as

t = αSp + α0. (5)

The elements of the (ns, ns) matrix S are the similarities in the support set Ls.
If rank(S) < n, α can directly be solved. It is possible, however, that the data (the
set of similarities) is in a subspace causing S to be singular. In that case several
solutions are possible. The Moore–Penrose pseudo-inverse defining the minimum
norm classifier, may be used here as it is consistent with finding the most simple
classifier. Moreover, it maximizes the object distances.

The search for the best set of support objects can be very time consuming. Vapnik
[12] proposes a combined approach that automatically minimizes the support set
while optimizing the weight vector α:

αopt = arg min
α

{
|α| − 1

2
αT Sα

}
(6)

in which |α| is the sum of the coefficients αj . See also [10]. By using a quadratic
optimization procedure just those objects get values αj 6= 0 that are necessary for
building the classifier.

This approach is particularly suited for finding classifiers in case a zero error
solution exists. In case of class overlap it is always arbitrary how classification errors
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and object distances are combined in an optimization criterion. If for computational
reasons another measure than an error count is used then certain distance measures
and data distributions are favored.

Vapnik shows that the use of inner vector products for building the similarity
matrix S, used in 3, 5 and 6 is consistent with determining polynomial classifiers
in the original feature space. There is, however, no reason why we should not use
differently constructed similarity matrices. See also [9]. As the relation with the
feature vector space is lost this method should be called a support object classifier
instead of a support vector classifier.
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Fig. 1. (a) Condensed NN-classifier, (b) Support object classifier.

3. EXAMPLES

It is difficult to visualize datasets in infinite dimensional spaces. We will therefor use
a 2D feature space example. It is important, however, to realize that in this example
just object differences are used. In Figure 1 (a) the condensed nearest neighbor clas-
sifier [2] is shown for two non-overlapping classes. This classifier is computationally
more efficient as it uses less objects (here just 20 out of 100). Condensing, however,
might increase the generalization error.

The support object classifier based on 6 uses just 13 objects, see Figure 1 (b).
Moreover, it has, in this example, a better performance. The following classifiers
will be used:

NN: The nearest neighbor rule (template matching)
CNN: The condensed nearest neighbor rule, i. e. using just those training

samples that yield a zero error on the training set.
SOC: Support object classifier based

We used just 100 objects from each class and selected at random half for training
and half for testing. Averaged results over 50 experiments are presented in Table 1.

The proposed technique of featureless classification will be illustrated on real data,
using the hand-printed characters ‘0’ to ‘9’ from a NIST database [13]. The raw
data is given in binary images of 128×128 pixels. We also investigated subsampled
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Table 1. Artificial dataset.

Method error #sv
NN 0.085 100

CNN 0.108 19
SOC 0.056 29

characters as well as normalization on mean, size, skewness and line-width. Two
distance measures between characters are used: Hamming (counting the number
of different pixels) and modified Hausdorff on the contour (mean nearest neighbor
distance between contour points). 200 characters per class were used, randomly
separated into 100 for training and 100 for testing.

The averaged results over 100 experiments are summarized in Table 2. These
results are not optimized for p. We found however, that this scaling parameter
might highly influence the results [5]. It can be observed that the support object
classifier performs similar to the nearest neighbor rule. Condensing of the nearest
neighbor rule, however, deteriorates the performances.

Table 2. Character recognition errors and support set sizes.

Data NN CNN #sv SOC #sv
128*128 0.412 0.435 54 0.310 88
64 * 64 0.420 0.451 55 0.322 88
32 * 32 0.448 0.473 57 0.343 86
16 * 16 0.583 0.619 69 0.521 75

Normalized 0.129 0.220 33 0.130 73
Contours 0.160 0.242 37 0.149 33

4. DISCUSSION

The goal of this study is to argue and illustrate that it is possible to build classifiers
on object (dis)similarities. This opens a new type of applications in which feature
representations are replaced by distance measures. This has several consequences:

The type of application knowledge for specifying features might be entirely dif-
ferent from the knowledge to define distance measures. In some areas feature de-
scriptions do not arise naturally. Character recognition might be a good example
as during the years many different types of features have been proposed and tried.
Distance measures might be a good alternative.

While we leave the vector space approach, we also leave the possibility of using
density functions and thereby the Bayes theory. A new type of probabilistic theory
has to be developed, if possible.

The support object classifier we used reduces the training set to a small number
of essentially needed examples. These support objects are really different from the
classically used prototypes. Prototypes can be considered as cluster centers: typical
examples. Support vectors support the classification boundary, they are the typical
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boundary objects: the last objects before a new class region is entered. It is thereby
to be expected that the support objects are close to confusion. Erroneously labeled
objects and outliers are likely to become support objects. In applying the support
object classifier it might be advantageous to reconsider the labeling of the support
vectors.

(Received December 18, 1997.)
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J. Novovičová and J. Grim, eds.), Prague 1997, pp. 37–42.

[7] A.K. Jain and B. Chandrasekaran: Dimensionality and sample size considerations
in pattern Recognition practice. In: Handbook of Statistics (P.R. Krishnaiah and
L.N. Kanal, eds.), Vol. 2, North–Holland, Amsterdam 1987, pp. 835–855.

[8] S. Raudys: Evolution and generalization of a single neurone. I. Single layer perceptron
as seven statistical classifiers. Neural Networks, to be published.

[9] B. Schölkopf: Support Vector Learning. Ph.D. Thesis, Techn. Universität Berlin 1997.
[10] D.M. J. Tax, D. de Ridder and R.P.W. Duin: Support vector classifiers: a first look.

In: ASCI’97, Proc. Third Annual Conference of the Advanced School for Computing
and Imaging, 1997.

[11] V.N. Vapnik: Estimation of Dependences Based on Empirical Data. Springer–Verlag,
New York 1982.

[12] V.N. Vapnik: The Nature of Statistical Learning Theory. Springer–Verlag, Berlin
1995.

[13] C. L. Wilson, M. D. Marris: Handprinted Character Database 2. National Institute of
Standards and Technology; Advanced Systems division, 1990.

Robert P.W. Duin, Pattern Recognition Group, Faculty of Applied Physics, Delft

University of Technology, P.O.Box 5046, 2600 GA Delft. The Netherlands.

e-mail:bob@ph.tn.tudelft.nl

Dick de Ridder and David M. J. Tax, Faculty of Applied Sciences, Delft University of

Technology, P.O. Box 5046, 2600 GA Delft. The Netherlands.

nc

e-mails:


	INTRODUCTION
	 SUPPORT OBJECT CLASSIFICATION
	 EXAMPLES
	 DISCUSSION

