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INTRINSIC DIMENSIONALITY AND SMALL SAMPLE
PROPERTIES OF CLASSIFIERS

Šarūnas Raudys

Small learning-set properties of the Euclidean distance, the Parzen window, the min-
imum empirical error and the nonlinear single layer perceptron classifiers depend on an
“intrinsic dimensionality” of the data, however the Fisher linear discriminant function is
sensitive to all dimensions. There is no unique definition of the “intrinsic dimensionality”.
The dimensionality of the subspace where the data points are situated is not a sufficient
definition of the “intrinsic dimensionality”. An exact definition depends both, on a true
distribution of the pattern classes, and on the type of the classifier used.

1. INTRODUCTION

In statistical literature, it is well known that small sample properties of statistical
classifiers heavily depend on dimensionality of the data. Estimates exist that show
that in high-dimensional cases, the learning-set size should be very large. Practice,
however, indicates that often some of the statistical classifiers have been perfectly
trained in cases when learning-set sizes were small in comparison with a number
of dimensions [1]. Most often such comments are related with a usage of artificial
neural nets. This paper develops an idea originally presented by Duin [1] concerning
effect of the intrinsic dimensionality on the small sample properties of statistical
classifiers. We analyze known theoretical results concerning dimensionality-sample
size relationships and show that for several parametric and non-parametric classi-
fiers, as well as a non-linear single-layer perceptron not the real, but an intrinsic
dimensionality of the data should be taken into account while determining the small
sample properties.

2. SMALL SAMPLE PROPERTIES OF PARAMETRIC CLASSIFIERS

The simplest statistical classifier is the Euclidean distance (the nearest means) clas-
sifier. It is a linear discriminant function (DF) designed to classify two spherical
multivariate Gaussian populations differing in mean vectors µ1, µ2, but sharing the
same identity covariance matrix Σ = Iσ2.

In [2] the generalization error was first considered in asymptotic, when the dimen-
sionality p and learning set sizes N1, N2 are large and are increasing simultaneously.
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Moreover, true distributions of the pattern classes was considered to be Gaussian
with common covariance matrix Σ(GCCM): N(µi, Σ).

Note that while designing the EDC classifier one assumes, the covariance matrix
Σ = Iσ2, and in the analysis of the generalization error, we consider the case when
the probabilistic model of the pattern classes is different, i. e., Σ 6= Iσ2. This ap-
proach implies that asymptotically conditional distribution of the random variable
g
(
X,X

(1)
,X

(2))
tends to Gaussian distribution and allows us to obtain very simple,

however very accurate estimates.
Let N2 = N1 = N, q2 = q1. For large p and N , following expression for the

expected PMC was obtained

EP
(E)
N ≈ Φ

{
− δ∗

2
1√
T ∗µ

}
, (1)

where Φ{a} =
∫ a

−∞(2π)−1/2σ−1 exp{−t2/(2σ2)}dt, δ∗ = µ′µ√
µ′Σµ

, µ = µ1−µ2, T ∗µ =

1 + 2p∗

δ∗2N , p∗ = (µ′µ)2(trΣ2)
(µΣµ)2 is an effective dimensionality.

Asymptotically, as N →∞ ¡ Ň we obtain the asymptotic PMC of EDC: P
(E)
∞ =

Φ{−δ∗/2}. Equation (1) shows that small learning-set properties of EDC heavily
depend on true distributions of the pattern classes (parameters µ and Σ). For the
spherical Gaussian case we have Σ = Iσ2. Then p∗ = p, δ∗ = δ, where δ2 = µ′Σ−1µ
is a squared Mahalanobis distance.

In a more general case (when σ 6= Iσ2), δ∗ ≤ δ, and p∗ 6= p. In principle, p∗ can
be arbitrary large. An example is two 100-variate (p = 100) Gaussian classes with
common covariance matrix; unit variances; µ1 = −µ2 = 0.0018805 × (1, 1, . . . , 1),
correlations between all the variables ρ = −0.0101, and P

(E)
∞ = 0.03. Then p∗ ≈ 108.

From (1) for N = 200 we calculate EP
(E)
N = 0.497. We have obtained the same

result by simulation experiments too. It is a very high generalization error. Another
example is two pattern classes that are distributed on two very close parallel straight
lines in the multivariate feature space.

Theoretically, situations exist where p∗ is close to 1. It means that distribu-
tions of the pattern classes lie in a one-variate linear subspace, i. e. the intrinsic
dimensionality of the data is equal to 1. An example is two 100-variate (p = 100)
Gaussian classes sharing common covariance matrix: unit variances; correlations
between all the variables ρ = 0.3, µ1 = −µ2 = 1.042 × (1, 1, . . . , 1). For this data
p∗ ≈ 1.05, δ∗ = δ = 3.76 and P

(E)
∞ = 0.03. Due to the small effective dimensionality

p∗, for this specific choice of parameters, we can train the EDC with very small
learning-sets: from (1) for N = 5 we calculate EP

(E)
N = 0.0318. Simulation experi-

ments confirm this theoretical estimate. We see that for this very favorable case, in
spite of the high formal number of variables (p = 100), only five vectors per class
are sufficient to train the classifier.

Another popular parametric classification rule is the standard Fisher linear DF.
It is an asymptotically optimal classifier designed to classify two multivariate GCCM
populations. Its generalization error can be expressed by (1) with TµTΣ instead of
T ∗µ [5]. The term Tµ = 1+ 2p

δ2N arises from the inexact sample estimation of the mean
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vectors of the classes and the term TΣ = 1 + p
2N−p arises from the inexact sample

estimation of the covariance matrix. For GCCM model, however, the generalization
error depends on the rue dimensionality p, and not on p∗: for both above examples
with p = 100 from asymptotical formula we obtain EP

(E)
N = 0.0577.

3. SMALL SAMPLE PROPERTIES OF NON–PARAMETRIC CLASSIFIERS

The most popular version of a non-parametric Parzen window (PW) classifier is
based on following estimate of the multivariate density function

f̂PW (x|πi) =
1
Ni

Ni∑

j=1

N(x,X(i)
j , Iλ2), (2)

where N(x, µ, Σ) stands for multivariate density function and l is a smoothing con-
stant.

At the fixed point x of the multivariate feature space Ω, a value of the Parzen
window distribution density estimate depends on Ni random vectors of the learning-
set X(i)

1 , . . . ,X(i)
Ni

. Therefore it can be analyzed as a random variable. According
to the central limit theorem when Ni →∞ the sum (2) of Ni random contribution
terms N(x,X(i)

j , Iλ2) tends to the Gaussian distribution. Thus, at one particular
point x, a conditional probability of misclassification approximately is determined
by means E and variances V of estimates f̂PW (x | π1) and f̂PW (x | π2)

P (misclassification|x,x ∈ πi) ≈ Φ





Ef̂(x|π1)− Ef̂(x|π2)√
V f̂(x|π1) + V f̂(x|π2)

(−1)i



 . (3)

Consider the GCCM model with parameters µi and Σ. The conditional mean of the
nonparametric density estimate (conditioned at fixed point x) with respect to all
possible learning sets, consisting of Ni observations, is

Ef̂(x|πi) =
1
Ni

Ni∑

j=1

∫
N(X(i)

j , µi, I)N(x,X(i)
j , Iλ2) dX(i)

j =

= N(x, µj , Σ + Iλ2). (4)

For above model of the true densities the variance of the PW density estimate is

V f̂(x|πi) =
1
Ni

[ |2Σ + Iλ2|1/2

λp

(
N(x, µi, 2Σ + Iλ2)

)2 − (
Ef̂(x|πi)

)2
]
. (5)

Let T be a p ∗ p orthonormal matrix such that GΣG′ = D (D is a diagonal matrix
of eigenvalues with elements d1, d2, . . . , dp). Then

V f̂(x|πi) =
1
Ni

[
p∏

j=1

√
1 +

2dj

λ2

(
N(x, µi, 2Σ + Iλ2)

)2 − (
Ef̂(x|πi)

)2

]
. (6)
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For very small λ2, the variance of the PW estimate is determined primarily by the
term

1
Ni

∏√
1
2dj

λ2
. (7)

This term decreases with an increase in a value of the smoothing parameter λ2

and decreases with an increase in Ni, the number of learning examples. Let the
eigenvalues of covariance matrix Σ are equal: d1 = d2 = . . . = dp = d and let the
number of features p be increased. Then for small λ2 we can conclude that in order
to keep variance (6) constant, the number of learning vectors Ni should increase as
a degree of the dimensionality p:

Ni =
(

1 +
2dj

λ2

)p/2

(8)

Let now several eigenvalues of the covariance matrix Σ be very small: d1 = d2 =
. . . = dr = d, dr+1 = dr+2 = . . . = dp = ε0. We call number r, the intrinsic
dimensionality of the data for the GCCM model. For this data model instead of (8)
we have

Ni =
(

1 +
2d

λ2

)r/2

(9)

It means that small learning-set properties of the nonparametric Parzen window
density estimate (2) are determined not by the formal dimensionality of the data,
but by the true - intrinsic dimensionality r. Therefore the number of learning vec-
tors required to design this classifier should increase as a degree of the intrinsic
dimensionality r. Note definition of r differs from that of p∗.

For the GCCM model, similar conclusions can be obtained also for a k-NN clas-
sification rule that uses the Euclidean distance to determine distances between the
pattern vectors in the multivariate feature space.

4. SMALL SAMPLE PROPERTIES OF A NON–PARAMETRIC LINEAR
ZERO EMPIRICAL ERROR CLASSIFIER

The non-parametric linear zero empirical error classifier is obtained when while
training the minimum empirical error classifier, we succeed to discriminate the lear-
ning-set vectors without errors. Different criteria and optimization techniques are
used to design the classifier that classifies the learning-set with a minimal number of
misclassifications. In small learning-set analysis, a useful training model is a random
search optimization procedure.

The random search optimization procedure generates many (say, t times) random
discriminant hyperplanes according to a certain prior distribution of the weights,
determined by a priori density fprior(w, w0), and selects those that classify learning
sets LS1 and LS2, each of size N , without error.

In [4], an equation for a mean expected probability of misclassification for pattern
vectors which did not participate in the training was derived. The pattern classes
were considered to be spherical Gaussian, and the prior density fprior(w, w0) of the
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(p + 1)-variate weight vector was considered to be N(0, I). The derivation is based
on following representation

Prob
{
w′x + w0 < 0 | x ∈ πi

}
= Φ

{
(−1)i w

′µi + w0√
w′w

}
= P. (10)

Consider the GCCM model N(µi, Σ) with µ1 = −µ2 = µ, Σ = G′DG, where G
is p×p orthonormal matrix of eigen-values of Σ,D is p×p diagonal matrix of eigen-

vectors, such that D =
[
Ir 0
0 εIp−r

]
, ε is small such that (p− r)ε ¿ 1, components

m2j of (p− r)-variate vector m2, (µ′G′ = (m′,m′
2)), m2j ¿ ε, and can be ignored.

In this model of the data, we have the intrinsic dimensionality equal to r < p. Then

P = Φ
{
− w′µ1 + w0√

w′Σw

}
= Φ

{
− w′G′Gµ1 + w0

wG′GΣG′Gw

}
= Φ

{
− w′

1m/2 + w0√
w′

1w1

}
,

where w1 = Gw, a r-variate subvector of vector Gw, and G =
2
664
g
g2

3
775.

Therefore for this model with the intrinsic dimensionality equal to r, the small
learning-set properties of the zero empirical error classifier can be analyzed in the
r-variate space. In this space, r-variate vector Y = gX is Gaussian N(m/2, Ir), or
N(−m/2, Ir). It means that the small sample properties of the zero empirical error
classifier are determined not by the real but by the intrinsic dimensionality of the
data r.

5. THE NON–LINEAR SINGLE–LAYER PERCEPTRON CLASSIFIER

Recently it was shown that while training the non-linear SLP the weights are in-
creasing. Therefore during the iterative training process, a cost function used to
obtain the weights changes its statistical properties. In principle, under certain con-
ditions, the SLP pereptron can realize decision boundaries of seven known statistical
classifiers, beginning with the simplest EDC, following the regularized discriminant
analysis, the standard linear Fisher DF, a generalized Fisher linear DF, the mini-
mum empirical error and the most complex – the maximum margin classifiers [3].
Small sample properties of some of these classifiers are determined not by the real
but by the intrinsic dimensionalities of the data, p∗ or r. We performed numerous
simulation experiments with a singular multivariate Gaussian data that lies in the
linear r-variate subspace, and the nonlinear SLP classifier with a sigmoid activation
function, and targets t = 0 and 1. The experiments have confirmed that the small
sample properties of the nonlinear SLP are determined by the intrinsic dimension-
ality p∗ at the beginning, the formal dimensionality p later (if one uses non-limiting
target values, e. g. 0.1 and 0.9), and the intrinsic dimensionality r at last.

6. CONCLUDING REMARKS

It is a common belief that in real world problems, there exist comparatively small
number of “main factors” that determine a variability of patterns in the multivariate
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feature space. Thus it is postulated that pattern vectors lie in the non-linear sub-
space of low dimensionality. Abundant experimental investigations confirm this
belief. Unfortunately, in addition to the “main factors” mentioned, a number of
extra “noisy factors” influence the data. Therefore the data lies in a “non-linear
blanket of a certain thickness” [1]. Extra, non-zero width directions worsen the
small sample properties of the classification algorithms.

We have demonstrated that small learning-set properties of several classification
rules depend on the “intrinsic dimensionality” of the data. There is no unique defi-
nition of the “intrinsic dimensionality”. The dimensionality r of the subspace where
the data points are situated is not a sufficient definition of the intrinsic dimensional-
ity. An exact definition depends both, on a true distribution of the pattern classes,
and on the type of the classifier used. Therefore the definition of the “intrinsic di-
mensionality” p∗ of EDC for the GCCM model is different from the definition of
the “intrinsic dimensionality” of the Parzen window classifier for the same GCCM
model. One such example has been presented above: two Gaussian pattern classes
that are distributed on two close parallel lines in the multivariate feature space. In
this model, the data is distributed in the one-variate subspace. Only one eigenvalue
of the covariance matrix is different from zero. Thus, r ≈ 1. Nevertheless, the
effective dimensionality p∗ for EDC can be arbitrarily high.

(Received December 18, 1997.)
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