
Kybernetika
VOLUME 34 (1998), NUMBER 4

The Journal of the Czech Society for
Cybernetics and Information Sciences

Published by:

Institute of Information Theory
and Automation of the Academy
of Sciences of the Czech Republic

Editor-in-Chief:

Vladimı́r Kučera

Editorial Board:

Jǐŕı Anděl, Marie Demlová, Petr Hájek,
Eva Hajičová, Jan Hlavička, Jan Ježek,
Radim Jiroušek, Ivan Kramosil,
Rudolf Kulhavý, Milan Mareš,
Jan Štecha, Olga Štěpánková, Igor Vajda,
Jaroslav Vlček, Pavel Źıtek, Pavel Žampa

Managing Editors:

Karel Sladký

Editorial Office:

Pod Vodárenskou věž́ı 4, 182 08 Praha 8

Kybernetika is a bi-monthly international journal dedicated for rapid publication of
high-quality, peer-reviewed research articles in fields covered by its title.

Kybernetika traditionally publishes research results in the fields of Control Sciences,
Information Sciences, System Sciences, Statistical Decision Making, Applied Probability
Theory, Random Processes, Fuzziness and Uncertainty Theories, Operations Research and
Theoretical Computer Science, as well as in the topics closely related to the above fields.

The Journal has been monitored in the Science Citation Index since 1977 and it is
abstracted/indexed in databases of Mathematical Reviews, Current Mathematical Publi-
cations, Current Contents ISI Engineering and Computing Technology.

Ky b e r n e t i k a . Volume 34 (1998) ISSN 0023-5954, MK ČR E4902.

Published bi-monthly by the Institute of Information Theory and Automation of the
Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
— Address of the Editor: P.O. Box 18, 182 08 Prague 8, e-mail: kybernetika@utia.cas.cz.
— Printed by PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions
should be placed with: MYRIS TRADE Ltd., P.O.Box 2, V Št́ıhlách 1311, 142 01 Prague 4,
Czech Republic, e-mail: myris@myris.cz. — Sole agent for all “western” countries: Kubon
& Sagner, P.O. Box 34 01 08, D-8 000 München 34, F.R.G.

Published in September 1998.

c© Institute of Information Theory and Automation of the Academy of Sciences of the
Czech Republic, Prague 1998.

http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/344.html

KY BERNET I K A — V OL UME 3 4 (1 9 9 8) , N UM B ER 4 , PAGE S 3 6 9 – 3 7 4

CASCADING CLASSIFIERS

Ethem Alpaydın and Cenk Kaynak1

We propose a multistage recognition method built as a cascade of a linear parametric
model and a k-nearest neighbor (k-NN) nonparametric classifier. The linear model learns a
“rule” and the k-NN learns the “exceptions” rejected by the “rule.” Because the rule-learner
handles a large percentage of the examples using a simple and general rule, only a small
subset of the training set is stored as exceptions during training. Similarly during testing,
most patterns are handled by the rule -learner and few are handled by the exception-learner
thus causing only a small increase in memory and computation. A multistage method like
cascading is a better approach than a multiexpert method like voting where all learners are
used for all cases; the extra computation and memory for the second learner is unnecessary
if we are sufficiently certain that the first one’s response is correct. We discuss how such
a system can be trained using cross validation. This method is tested on the real-world
application of handwritten digit recognition.

1. INTRODUCTION

A great percentage of the training cases in many applications can be explained
by a simple rule with a small number of exceptions. Our previous experience on
handwritten digit recognition [2] shows a small difference in accuracy between linear
models and nonlinear multilayer perceptron type neural network models with many
hidden units, indicating that digits are almost linearly separable. Instead of finding
a complex rule that explains all the cases, our idea is to have a simple, e. g., linear,
model that explains a large percentage of the cases, keeping also a list of the cases
not covered by the rule as exceptions. This is a multistage pattern recognition
approach [5] where inputs rejected by the first stage are handled by a second stage
using costlier features or decision making mechanism that is too expensive to use
for all inputs.

In Section 2, we discuss how to learn the rule and exceptions. Section 3 gives the
results on the application of handwritten digit recognition and Section 4 concludes.
The appendix gives an upper bound on the complexity of the exception-learner for
the overall system to decrease average risk.

1Supported by Tübitak Grant EEEAG-143. The form processing routines are by NIST.

370 E. ALPAYDIN AND C. KAYNAK

2. LEARNING THE RULE AND EXCEPTIONS

Assume we are given a training set X = {xt, yt}N
t=1 of input xt ∈ <d and associated

class index y ∈ {0, 1}c where yt
i = 1 implies that xt ∈ ωi. We define linear dis-

criminants using the softmax nonlinearity and estimate class posteriors P (ωi|x) [3]

µi(x|U) =
exp UT

i x∑c
k=1 exp UT

k x
(1)

and find parameters U = {Ui}c
i=1 that minimize the cross-entropy on the training

set
E(X ;U) = −

∑
t

∑

i

yt
i log µi(xt|U). (2)

This corresponds to maximizing the log likelihood of the sample under a multi-
nomial logit model P (yt|xt) =

∏c
i=1 µyi

i . Assuming Gaussian density for p(yt|xt),
the model can also be applied to the case of approximation of continuous functions
[1].

Given a validation set V, separate from X with which we trained the discriminants
µi, we check if the model is certain of its output. In pattern recognition, a classifier
is certain if the highest posterior is higher than a threshold 0 < θ < 1. That is for
(x′,y′) ∈ V, we check if P (y′|x′) > θ

µi(x′) = max
k

µk(x′) and y′i = 1 and µi(x′) > θ.

If this is not the case, the learned model is not confident and rejects the sample
and thus it should be taken as an exception. In this case, we add (x′, y′) to our
table of exceptions Z. When we do this for all patterns in V, learning is over.

During test, for a test pattern x, we first check if

µi(x′) = max
k

µk(x′) and µi(x′) > θ.

If this holds, we choose class ωi as output otherwise we do k-nn on Z to find the
output.

If a separate validation set is not available, we do k-fold cross-validation to have
a division of V and X . Note that these two sets should be distinct as otherwise with
a complex rule we may have high confidence on all data which is misleading; we
should get an idea about where the rule can be trusted and this can only be done
with data different from the training data.

The linear model is fast and if it is certain for a large percentage of the cases,
the overall speed is high. The k-nn is slow due to finding the k closest neighbors
but it is only used for cases rejected by the linear model and even when it is used,
the k nearest neighbors are searched for in a smaller set. In multistage classification
methods [5], classifiers using simpler to extract features are used to recognize well-
formed cases before those that use features that are more complex and costly to
extract are used to recognize patterns of poorer quality. In our approach, it is not
the features that get more complex but the classifier.

Cascading Classifiers 371

0.7 0.8 0.9 1
0

2

4

6

8
Digit: (a)

θ

%
 tr

ai
ni

ng
 s

et
 s

to
re

d

0.7 0.8 0.9 1
0

5

10

15

20
(b)

%
 k

−
N

N
 c

al
le

d
du

rin
g

W
I t

es
t

0.7 0.8 0.9 1
90

92

94

96

98
(c)

 lp

 knn

A
cc

ur
ac

y
on

 W
I t

es
t

0.7 0.8 0.9 1
0

0.5

1

1.5
(d)

%
 d

is
ta

nc
e

co
m

p
on

 W
I t

es
t

Fig. 1. Results by cascading for θ ∈ {0.70, 0.80, 0.90, 0.95, 0.99, 1.00}. (a) % training

patterns stored, (b) % k-NN called during test, (c) % accuracy on the WI test set with

one standard error bars (linear model ‘lp’ and 3-NN proper are given for comparison) and

(d) % of distance computations made (d=a*c). When θ = 1, (a), (b) and (d) are 100 % ;

this is a simple vote over ‘lp’ and k-nn proper.

3. EMPIRICAL COMPARISON

The database we use to test performance contains handwritten digits created using
the set of programs made available by NIST [4]. The 32 by 32 normalized bitmaps
are low-pass filtered and undersampled to get 8 by 8 matrices where each element is
an integer in the range 0 to 16. 44 people filled in forms which are randomly divided
into two clusters of 30 and 14 forms. From the first 30, three sets are generated:
A training set of 1,934 examples, a validation set of 946 examples and awriter-
dependent set of 943 examples. The other 14 forms containing 1,797 examples from
distinct writers make up the writer-independent (WI) test set. We use k = 3.

With cascading, the number of exceptions during training increase when θ is in-
creased (Figure 1 (a)). But even for θ as large as 0.99, the exceptions are only 7

372 E. ALPAYDIN AND C. KAYNAK

% showing that the linear model does find a good underlying rule explaining the
majority of the cases with sufficient confidence. We also see that this small extra set
of stored patterns significantly increases the accuracy on the test set (Figure 1 (c)).
During testing, the slow and cumbersome exception-learner is rarely consulted (Fig-
ure 1 (b)) and even when it is, response is faster because the table is much smaller
(Figure 1 (d)). For example on this dataset, normal k-nn requires 1,934 distance
computations for each test character and we have 1,797 WI test characters. With
cascading when θ = 0.99, the exception table stores on the average 7 % of the
cases and only 18 % of the test set uses the exception-learner k-NN thus we need
0.07 ∗ 0.18 = 1.3% computations of k-nn proper (Figure 1 (d)).

4. CONCLUSIONS

The method we propose, namely the cascading algorithm, is a multistage method
which handles a large majority of the cases with the rule found by a simple method,
resorting to the more complicated only for the cases that cannot be dealt with
by the rule with enough certainty. We think that this is a better approach than
multiexpert methods like voting [6] where multiple learners are used for all cases;
the extra computation and memory required for the second learner is unnecessary
if we are sufficiently sure that the first one’s response is correct. The designer can
choose between speed and accuracy by selecting the certainty threshold θ fitting best
to the constraints set by the application. If high accuracy is required, we suggest to
use a high θ value though this uses more memory and is slower. For a fast recognizer,
we propose to use a lower θ to handle the large majority by the rule-learner. The
optimal θ that balances these partially contradicting aims depends on the application
and the losses of actions as given in the Appendix.

In this short paper, we explain the algorithm briefly and cite results on only one
application; a more detailed discussion of the method, its variants and its comparison
with similar models and applications to other domains is given in [1].

APPENDIX

By αi, i = 1, . . . , c, we denote assigning input to class ωi and by αc+1 we denote the
action of rejecting. Let

λ(αi|ωj) =





0 i = j i, j = 1 . . . c

λ i = c + 1

1 otherwise

(3)

where λ is the loss incurred for rejecting (0 < λ < 1). Then the risk of using the
exception-learner is:

R(αc+1|x) =
c∑

j=1

λP (ωj |x) = λ (4)

Cascading Classifiers 373

and the risk of choosing class i with the rule-learner is:

R(αi|x) =
∑

j 6=i

P (ωj |x) = [1− P (ωi|x)]. (5)

We decide ωi if P (ωi|x) > P (ωj |x) for all j 6= i, j, i = 1 . . . c and if P (ωi|x) > 1− λ.
Otherwise we reject. θ of cascading is equivalent to 1 − λ defining the threshold of
decision.

We aim finding a bound on the complexity of the second classifier that guarantees
decreasing average risk. We follow work done by Pudil et al [5] here. We are
interested in using a second classifier to classify those rejected by the first. This
second classifier may use costlier features or a more expensive classification scheme
and thus is to be used as rarely as possible. This depends on: (i) How much
additional cost the second classifier requires, let’s call this c2, and (ii) How good the
second classifier is compared to the first.

If the first classifier does not reject, defining Ri as the region where x is assigned
to class ωi, the average risk is given as (λij is short for λ(αi|ωj))

R =
c∑

i=1

c∑

j=1

∫

Ri

λijP (ωj |x)p(x) dx =
c∑

i=1

c∑

j=1

λijP (ωj)
∫

Ri

p(x|ωj) dx. (6)

If we do reject, there is also the additional action of reject (i = 0). Defining R′i as
the region where x is assigned to class ωi after reject

R′ =
c∑

i=0

c∑

j=1

λijP (ωj)
∫

R′i

p(x|ωj) dx (7)

which can be broken into a sum of making an assignment to one of the classes,
i = 1, . . . , c and that of rejecting, i = 0

R′ =
c∑

i=1

c∑

j=1

λijP (ωj)
∫

R′i

p(x|ωj) dx +
c∑

j=1

λ0jP (ωj)
∫

R′0

p(x|ωj) dx (8)

We note that we can write Ri as the sum of two regions: Of x that would not be
rejected and of x that would be if we used reject. Thus we can write R as

R =
c∑

i=1

c∑

j=1

λijP (ωj)

[∫

R′i

p(x|ωj) dx +
∫

R′0i

p(x|ωj) dx

]
(9)

R′i is the region of x that would not be rejected and R′0i is the region of x that
would be rejected if we used reject but assigned to class i if we did not reject. ∪iR

′
0i

contain x that are rejected. For rejection to be use ful, R′ < R or R−R′ > 0 and

R−R′ =
c∑

i=1

c∑

j=1

λijP (ωj)
∫

R′0i

p(x|ωj) dx−
c∑

j=1

λ0jP (ωj)
∫

R′0

p(x|ωj) dx (10)

374 E. ALPAYDIN AND C. KAYNAK

If we use a second classifier to handle the rejections, we replace λ0j with the risk of
that second classifier

λ0j ≡
c∑

i=1

(c2 + λij)
∫

R2i

p2(x|ωj) dx = c2 +
c∑

i=1

λij

∫

R2i

p2(x|ωj) dx (11)

c2 is the constant overhead due to using a second classifier and the second term is
the average loss conditioned on x being from ωj . p2(x|ωj) is the class-conditional
probability of the second classifier and R2i are its decision regions.

By replacing Eq. (11) in Eq. (10) and requiring that R−R′ > 0, a bound for c2

can be found that guarantees decreasing average risk

c2 <

∑
i

∑
j

λijP (ωj)
∫

R′0i
p(x|ωj) dx−∑

i

∑
j

λijP (ωj)
∫

R2i
p2(x|ωj) dx

∫
R′0

p(x|ωj) dx

∑
j

P (ωj)
∫

R′0
p(x|ωj) dx

.

(12)
The first term in the numerator is the risk of not rejecting and the second term is
using the second classifier after the first rejects. The second term should be less
than the first to satisfy c2 > 0. The denominator is the normalizing term that is the
overall probability of reject.

(Received December 18, 1997.)

REFE REN CES

[1] E. Alpaydın: 1997. REx: Learning A Rule and Exceptions. International Computer
Science Institute TR-97-040 Berkeley.

[2] E. Alpaydın and F. Gürgen: Comparison of kernel estimators, perceptrons and radial–
basis functions for OCR and speech classification. Neural Computing Appl. 3 (1995),
38–49.

[3] C.M. Bishop: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford 1995.

[4] M.D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S.A.
Janet, and C. L. Wilson: NIST Form–Based Handprint Recognition System, NISTIR
5469, 1994.

[5] P. Pudil, J. Novovičová, S. Bláha and J. Kittler: Multistage pattern recognition with
reject option. In: 11th IAPR International Conference on Pattern Recognition B, 1992,
vol. II, pp. 92–95.

[6] L. Xu, A. Krzyżak, and C.Y. Suen: Methods of combining multiple classifiers and
their applications to handwriting recognition. IEEE Trans. Systems Man Cybernet.
22 (1992), 418–435.

Ethem Alpaydın, PhD, Associate Professor and Cenk Kaynak, MSc., Department of

Computer Engineering, Boğaziçi University, Istanbul TR-80815. Turkey.

e-mails: alpaydin@bound.edu.tr

	INTRODUCTION
	LEARNING THE RULE AND EXCEPTIONS
	EMPIRICAL COMPARISON
	CONCLUSIONS

