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INFERENCE ABOUT STATIONARY DISTRIBUTIONS

OF MARKOV CHAINS BASED ON DIVERGENCES

WITH OBSERVED FREQUENCIES∗

Maŕıa Luisa Menéndez, Domingo Morales, Leandro Pardo

and Igor Vajda

For data generated by stationary Markov chains there are considered esti-
mates of chain parameters minimizing φ–divergences between theoretical and
empirical distributions of states. Consistency and asymptotic normality are
established and the asymptotic covariance matrices are evaluated. Testing of
hypotheses about the stationary distributions based on φ–divergences between
the estimated and empirical distributions is considered as well. Asymptotic dis-
tributions of φ–divergence test statistics are found, enabling to specify asymp-
totically α-level tests.

1. INTRODUCTION

Methods of statistical inference established for stationary independent
data are often applied to dependent data. The effect of dependence on
the Pearson goodness of fit tests using the Pearson statistics has been
studied by Moore [11] and Glesser and Moore [6, 7]. Tavaré and Altham
[15] evaluated for stationary Markov observations, under simple hypothe-
ses about the state space distributions, asymptotic distribution of the
corresponding Pearson statistic X2. Moore [11] evaluated the asymptotic
distribution of the maximum likelihood and minimum chi–square esti-
mators of parameters of discrete distributions defined by a quantization
in the state space of some stationary stochastic processes. Glesser and
Moore [6, 7] evaluated for “positively dependent” observations, and for
maximum likelihood estimators of parameters, asymptotic distribution of
Pearson X2 in the case where the hypotheses about the state space distri-
bution are composite. They also mentioned possible extensions of their
results to the Pearson–type statistic obtained as special φ–divergences
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(the so–called power divergences) between the estimated and empirical
distributions. These divergences have been previously studied in the case
of independence observations by Cressie and Read [4] (cf. also Read and
Cressie [13], Salicrú et al [14] and Menéndez et al [9]). In Menéndez et al
[10], we applied the φ–divergences in testing simple hypotheses about sta-
tionary irreducible aperiodic Markov chains. In this manner we extended
the results of Tavaré and Altham to an infinite variety of φ–divergence
goodness-of-fit test statistics. We also proposed a method for choice a
best φ–divergence test statistic and numerically illustrated it by an ex-
ample.

In this paper we study simple as well as composite hypotheses about
irreducible aperiodic Markov observations. For arbitrary regular convex
functions φ and φ∗ we evaluate asymptotic distributions of the minimum
φ∗–divergence estimator, and of the φ–divergence statistic employing the
minimum φ∗–divergence estimator if the hypothesis is composite. This
paper thus significantly extends the previous results of Menéndez et al
[10], and precises and in some sense also extends the ideas of Glesser and
Moore [6, 7].

2. BASIC CONCEPTS AND EXAMPLES

We consider a stationary irreducible aperiodic Markov chain X = (X0, X1, . . .)
with the state space {1, . . . ,m}. By P = (pij)m

i,j=1 we denote the matrix
of transition probabilities of this chain and by p = (p1, . . . , pm) a station-
ary distribution, i. e. solution of the equation p = pP . Thus the Markov
chains under consideration are described by pairs 〈p, P 〉.

Assumption 1. P is from the class P of all irreducible aperiodic stochas-
tic matrices with one ergodic class.

The aperiodicity and ergodicity imply the existence and unicity of the
solution of equation p = pP . The irreducibility means that the solution p
belongs to the set

Πm = {(p1, . . . , pm) : pi > 0, p1 + · · ·+ pm = 1}
which is an open subset of a hyperplane in Rm.

Assumption 2. On an open subset Θ ⊂ Rs, there is given a continuous
invertible mapping

θ 7→ p(θ) = (p1(θ), . . . , pm(θ)) ∈ Πm

with a continuous inverse p 7→ θ(p) ∈ Θ.

Under this Assumption, p(θ) and θ(p) are one-to-one mappings between
Θ and an open subset Π ⊂ Πm.
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Assumption 3. The stationary distribution p belongs to Π considered in
Assumption 2.

The set Π represents a basic hypothesis about the distribution p, Θ is a
parameter space of distributions belonging to Π, and θ(p) ∈ Θ is a parameter
corresponding to p ∈ Π.

For every parameter θ ∈ Θ we denote by P θ the set of all matrices
P ∈ P such that their stationary distribution p coincides with p(θ). If p(θ)
is uniform then P θ is the class of all doubly stochastic m×m matrices.

Example 1. Let s=m−1, Θ = {θ=(θ1, . . . , θm−1)∈(0, 1)m−1 : θ1+· · ·+θm−1<1}
and p(θ) = (θ1, . . . , θm−1, 1−

∑m−1
i=1 θi). Then Π = Πm and the parameters θ(p)

of distributions p ∈ Πm are their first m−1 coordinates p1, . . . , pm−1. In the
particular case of m = 2 we obtain Θ = (0, 1) and Π2 = {(θ, 1− θ) : θ ∈ (0, 1)}.
Here P is the set of all matrices

P =
(

1− β β
γ 1− γ

)
for 0 < β, γ ≤ 1 and β + γ < 2,

with the stationary distributions p = (p1, p2) = (θ, 1 − θ) given by the for-
mula

θ =
γ

β + γ
.

Therefore P θ is the set of all matrices
(

1− β β
θβ
1−θ 1− θβ

1−θ

)
for 0 < β ≤ min

{
1,

1− θ

θ

}
, β 6= 1.

This means that for every fixed 0 < β < 1 these matrices belong to P θ for
all 0 < θ ≤ 1

1+β . In particular, P 1
2

is the set of all matrices
(

1− β β
β 1− β

)
for 0 < β < 1.

Example 2. Let s = m − 1 and Θ = {θ = (θ1, . . . , θm−1) : θi ∈ (0, 1), 1 ≤ i ≤
m− 1}, and let p(θ) = (p1(θ), . . . , pm(θ)) be given for every θ ∈ Θ by

p1 =
1

1 + θ1 + θ1θ2 + · · ·+ θ1 · · · θm−1
, pi = θ1 · · · θi−1 p1 for 1 ≤ i ≤ m.

Here Π is an (m−1)–dimensional variety in Πm and θ(p1, . . . , pm) = (p2/p1, . . .
. . . , pm/pm−1). One of the matrices contained in P θ is P (θ) = (pij) with
pm,1 = 1 and

pi,1 = 1− θi, pi,i+1 = θi, for 1 ≤ i ≤ m− 1.

Under Assumptions 1 – 3 and the basic hypothesis Π, the true station-
ary distribution of chain states is some p0 = (p01, . . . , p0m) ∈ Π. This means
that the true chain parameter is θ0 = θ(p0) from Θ.
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Assumption 4. The true chain distribution is specified by an arbitrary
initial distribution p(θ0) and by a transition matrix P (θ0) ∈ P θ0 .

A basic statistical problem is how to estimate in a consistent and
asymptotically normal way the unknown true parameter θ0 ∈ Θ by us-
ing the data Sn = (X1, . . . , Xn) about the states of the chain, i. e. how to
find a measurable mapping

θ̂n = θ̂n(Sn) (1)

taking on values in Θ such that

θ̂n → θ0 in probability

n1/2(θ̂n − θ0) → N(0, V0) in law,
(2)

and how to evaluate the s×s matrix V0 (note that all convergences in this
paper are considered for n→∞).

Another important statistical problem is how to test a hypothesis
about θ0 by using the data Sn. The hypothesis may be represented by a
subset Θ0 ⊂ Θ or, equivalently, by Π0 = {p(θ) : θ ∈ Θ0} ⊂ Π. The alterna-
tive is Θ1 = Θ − Θ0 or Π1 = Π − Π0. The problem is to find a measurable
test statistic and a measurable critical region in the target space of this
statistics,

Tn = Tn(Sn) and Kn,α for 0 < α < 1, (3)

such that the tests (Tn, Kn,α) are asymptotically of α-size in the sense

Pr {Tn ∈ Kn,α|P (θ0)} → α for all θ0 ∈ Θ0. (4)

Preferences between various tests satisfying (4) are usually based on the
power functions

πn(θ) = Pr {Tn ∈ Kn,α|P (θ)} for θ ∈ Θ1. (5)

Most preferred are those with a maximum test power where the “test
power” means an asymptotic or nonasymptotic variant of the power func-
tion (5).

Both these problems, of estimation and testing, are solved in this pa-
per. The solution is based on relative frequencies observed in the data
Sn,

p̂n =

(
1
n

n∑

k=1

I(1)(Xk), . . . ,
1
n

n∑

k=1

I(m)(Xk)

)
, (6)

i. e., it in fact uses the ordered version of Sn and ignores the information
about transitions contained in the original statistics Sn. This means a
considerable loss of efficiency on the one hand, but also a considerable
relative simplicity on the other hand.
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By the strong law of large numbers, p̂n = (p̂n1, . . . , p̂nm) may be assumed
to belong to the same open set Πm as p(θ0). We show that there exist an
estimator (1) satisfying (2) and a test (3) satisfying (4), both based on
the φ-divergences

Dφ(p̂n, p(θ)) =
m∑

i=1

pi(θ)φ
(
p̂ni

pi(θ)

)
(7)

of stationary distributions p(θ) with the observed frequencies p̂n.

The φ–divergences of probability distributions specified by convex func-
tions
φ : (0,∞) 7→ R have been used in the statistics by many authors, see the
references in Liese and Vajda [8] and Read and Cressie [13]. Properties of
φ-divergences were systematically studied in Liese and Vajda [8], where
we refer for the details.

Our estimator θ̂n = θ̂
(φ)
n minimizes the φ-divergence (7) over Θ, i. e.

θ̂n = argminDφ(p̂n, p(θ)). (8)

For the particular function φ∗(t) = t ln t, θ̂
(φ∗)
n is the partial maximum

likelihood estimator (partial MLE), where “partial” means that it is using
only the partial information contained in the ordered version of Sn. If
the data are independent then it becomes to be the standard MLE. In
the model of Example 1 with p(θ) ≡ θ for all θ ∈ Θ, we obtain θ̂

(φ)
n = p̂n for

any φ.

Our test statistics Tn = T
(φ,φ∗)
n are defined for arbitrary convex φ, φ∗,

with φ twice continuously differentiable in an open neighbourhood of 1,
φ(1) = 0 and φ′′(1) 6= 0, by

Tn = 2nφ′′(1)−1Dφ(p̂n, p(θ̂(φ∗)n )). (9)

Here, obviously, θ̂(φ∗)n is defined by (8) with φ replaced by φ∗. Sometimes
it is convenient to employ this estimator in the version with the mini-
mization in (8) restricted to the null space Θ0. Then, if the hypothesis is
simple, i. e. Θ0 = {θ0}, (9) reduces to

Tn = 2nφ′′(1)−1Dφ (p̂n, p(θ0)) . (10)

For example, if φ(t) = (t− 1)2 then (10) is the Pearson statistic

X2 (p̂n, p(θ0)) = n

m∑

i=1

(p̂ni − pi(θ0))2

pi(θ0)

and (9) the Pearson statistic with θ̂
(φ∗)
n plugged-in for the unknown θ0.
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Various particular cases of the mentioned φ-divergence estimators and
φ-divergence tests have been extensively used in the literature dealing
with discrete independent observations, in particular with testing hy-
potheses concerning such observations, cf. Read and Cressie [13], Salicrú
et al [14], Morales et al [12], and further references therein. Versions im-
portant from our point of view, applicable to positive recurrent Markov
chains, have been considered by Tavaré and Altham [15]. These authors
solved among others the testing problem under consideration for the sim-
ple hypothesis Π0 = {p0} by using the Pearson test statistic Tn = X2(p̂n, p0).
Using known facts about asymptotic distributions of irreducible aperiodic
Markov chains, they found that for every model under consideration and
every θ0 ∈ Θ, the statistic Tn = X2(p̂n, p(θ0)) satisfies the asymptotic rela-
tion

Tn →
m∑

i=1

ρi Z
2
i in law, (11)

where Zi are independent N(0, 1) and ρi are the eigenvalues of the matrix
D−1

0 Ω0 for D0 = diag p(θ0), (i. e. dii = pi(θ0) and dij = 0 for i 6= j),

Ω0 = D0 C0 + Ct
0D0 −D0 − p(θ0)t p(θ0), C0 =

(
I − P (θ0) + 1t p(θ0)

)−1

(here, obviously, I is the identity m×m matrix, i. e. I = diag1 where 1 is
the row vector of m units).

In the present paper we are interested in the validity of (11) for more
general test statistics (9) and (10). A generalization of (11) will lead us
to the family of asymptotically α-level tests

T = {(Tn, Kn,α = Kα = (Qα(ρ1, . . . , ρm), ∞)) : φ ∈ Φ} , (12)

where Tn are the statistics (9) or (10) and the critical region Kn,α = Kα is
the interval (Qα,∞) for the (1 − α)–quantile Qα(ρ1, . . . , ρm) of the random
variable

∑m
i=1 ρi Z

2
i . In the sequel, the tests (Tn,Kα) figuring in (12) will

be explicitly indexed by the elements φ of the class Φ of convex functions
considered there.

3. TESTING SIMPLE HYPOTHESES

In Menéndez et al [10] we studied the simple hypothesis, i. e. the case
Θ0 = {θ0}. We obtained the following extension of the Tavaré and Altham
[15] version of (11). This extension also exploits the possibility of simpler
evaluation of parameters ρi figuring in (11) for reversible chains. Remind
that a chain P under consideration is said to be reversible if the proba-
bility of inverse transition qij (i. e. the conditional probability that the
previous state was j given that the present state is i, formally pj pji/pi)
coincides with the probability of ordinary transition pij, i. e. if for every
1 ≤ i, j ≤ m

pj pji = pi pij
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or, equivalently, DP = P tD.

Theorem 1. (Menéndez et al [10]) Let Assumptions 1 – 4 hold. Then re-
lation (11) takes place for all statistics (10). If the chain P (θ0) is reversible
then the parameters ρi in (11) are given by the formula

ρi =
1 + λi

1− λi
for 1 ≤ i ≤ m− 1, ρm = 0, (13)

where λ1, . . . , λm−1 are the non-unit eigenvalues of P (θ0).

This result was obtained in [10] by proving that for every φ under
consideration the statistic (10) is expansible as follows

Tn = X2(p̂n, p(θ0))(1 + op(1)), (14)

and by a subsequent application of the mentioned special result of Tavaré
and Altham [15]. Let us briefly mention some consequences useful in the
sequel.

Corollary 1. If P has identical rows (i. e. P = 1tp where p = (p1, . . . , pm) is
a stochastic vector) then it is reversible and all its nonunit eigenvalues are
zero. Thus Theorem 1 implies that if the data X1, . . . , Xn are independent
then all statistics (10) are asymptotically χ2-distributed with m−1 degrees
of freedom (in symbols, χ2

m−1). More generally, if P = (1−π)I+π1tp where
0 < π ≤ 1 then the nonunit eigenvalues of P are all equal to 1−π. Therefore
all statistics (10) tend in law to χ2

m−1(2− π)/π.

Remark 1. Using Theorem 1 one can argue that (12) with the statistics
Tn defined by (10) is a family of asymptotically α-level tests. This is
true however only if the matrix P (θ0) ∈ P θ0 is known, i. e. only if the
eigenvalues ρ1, . . . , ρm needed to specify the critical value Qα are available.
If this assumption is not satisfied then one can use the relative frequencies

p̂nij =
∑n

k=2 I(i,j)(Xk−1, Xk)∑n
k=2 I(i)(Xk−1)

as consistent estimates of elements pij(θ0) of the matrix P (θ0) (cf. Billings-
ley [1]). Since the eigenvalues ρ1, . . . , ρm are continuous functions of ele-
ments of the matrix P , the eigenvalues ρn1, . . . , ρnm obtained by replacing
pij(θ0) by p̂nij are consistent estimates of the unknown values ρ1, . . . , ρm.
This together with Theorem 1 implies the following fact.

Corollary 2. All tests in the family (12) with Tn given by (10) and Qn,α =
Qα(ρn1, . . . , ρnm) are asymptotically α-level tests of the simple hypothesis
{θ0} under consideration.
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Corollary 2 provides a variety of tests. In Menéndez et al [10] we con-
sidered a class of φa–divergence tests, using the φa–statistics for functions

φa(t) =
ta − 1
a(a− 1)

for a 6= 0, a 6= 1, (15)

leading to the Hellinger–type divergences

Da(p̂, p) =
∑m

i=1 p̂
a
i p

1−a
i − 1

a(a− 1)
for a 6= 0, a 6= 1.

The limits

D1(p̂, p) =
m∑

i=1

p̂i ln
p̂i

pi

and

D0(p̂, p) =
m∑

i=1

pi ln
pi

p̂i

of these divergences for a ↑ 1 and a ↓ 0 are the φa–divergences for functions
φ1(t) = t ln t and φ0(t) = − ln t. From (10) one obtains in this manner the
statistics

T a
n =

2n
a(a− 1)

(
m∑

i=1

p̂a
nipi(θ0)1−a − 1

)
for a 6= 0, 1, (16a)

T 1
n = 2n

m∑

i=1

p̂ni ln
p̂ni

pi(θ0)
, (16b)

T 0
n = 2n

m∑

i=1

pi(θ0) ln
pi(θ0)
p̂ni

. (16c)

We see that T 1
n and T 0

n are the likelihood ratio statistics, sometimes
called G2 and modified G2. T 2

n and T−1
n are the Pearson X2 and Neyman

modified X2, and T
1/2
n is a Freeman–Tukey statistic. Thus the class of

statistics (16) for −6 ≤ a ≤ 6 seems to be rich and interesting enough to
be able to represent all convex functions in the statistical experimenta-
tion under consideration. A similar restriction has been recommended
by Drost et al [5] on the basis of power considerations in the case of
independent observations.

In [10] we also suggested Monte Carlo approximations to the test pow-
ers and sizes

πn(θ, a) = πn(θ, φa) = Pr(T a
n > Qn,α|P (θ)) (17)

for a from a reasonable interval around 0, by the relative frequencies
πn,M (θ, a) of the event T a

n > Qn,α in M independent realizations. We pro-
posed a method of choice of a leading to a best test statistic T a

n , based on
these approximations.
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In the following two sections we extend Theorem 1 to composite hy-
potheses Θ0 ⊂ Θ. The statistics of our interest will be for example the
members of family (9) obtained from (16) by replacing the true proba-
bilities pi(θ0) by their estimates pi(θ̂

(φ∗)
n ), in particular by the estimates

obtained for φ∗ = φa∗ given by (15). To this end we need at the first place
appropriate results concerning estimators θ̂(φ)

n , φ ∈ Φ. Therefore we start
in the next section with the estimation problem.

4. ESTIMATION

In this section we consider the minimum φ–divergence estimators θ̂n = θ̂
(φ)
n

defined by (8). If φ(t) = t ln t then θ̂n is the MLE discussed above. Let us
introduce the following regularity conditions.

(A1) p(θ) is continuously differentiable in the neighbourhood of θ0 and

(p(θ)− p(θ0))t = J0(θ − θ0)t + o(‖θ − θ0‖) for θ → θ0,

where J0 = J(θ0) is the Jacobian defined by

J(θ)t =
(

∂

∂θ1
, . . . ,

∂

∂θs

)t

p(θ).

(A2) At
0A0 is positive definite for

A0 = diag
(
p1(θ0)−1/2, . . . , pm(θ0)−1/2

)
J0.

Hereafter we consider the matrix

B0 = diag p(θ0)−1/2Ω0 diag p(θ0)−1/2,

where Ω0, defined at the end of Section 2, is the asymptotic covariance
matrix of the asymptotically normal zero mean random vector

√
n (p̂n1 − p1(θ0), . . . , p̂nm − pm(θ0))

(for the asymptotic normality see Billingsley [1] or (2.2) in Tavaré and
Altham [15]), and diag p(θ0)−1/2 denotes the same diagonal matrix as in
the formula for A0 above. Put for brevity

∆0 = A0(At
0A0)−1, Σ0 = ∆0A

t
0 = A0(At

0A0)−1At
0.

The following theorem summarizes the properties of minimum φ-divergence
estimators of parameters of stationary distributions of Markov chains. It
extends similar results for the maximum likelihood and other estimators
with independent observations in Birch [2], Bishop, Fienberg and Holland
[3], Read and Cressie [13] and Morales et al [12].
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Theorem 2. Let φ satisfy the assumptions considered in (9) and let (A1),
(A2) hold. Then the minimum φ–divergence estimator θ̂n satisfies the
following asymptotic relations:

θ̂n → θ0 a. s., (18)

θ̂n = θ0 + (p̂n − p(θ0)) diag p(θ0)−1/2∆0(1 + op(1)), (19)

n1/2(θ̂n − θ0) → N
(
0,∆t

0B0∆0

)
in law, (20)

p(θ̂n) = p(θ0) + (p̂n − p(θ0)) diag p(θ0)−1/2Σ0 diag p(θ0)1/2(1 + op(1)), (21)

n1/2(p(θ̂n)− p(θ0)) → N
(
0, diag p(θ0)1/2Σ0B0Σ0 diag p(θ0)1/2

)
in law. (22)

P r o o f . (I) By the strong law of large numbers holding for the chains
under consideration (cf. Billingsley [1]) p̂n → p(θ0) a. s., so that also
Dφ(p̂n, p(θ0)) → 0 a. s. Further, by the definition of θ̂n,

0 ≤ Dφ(p̂n, p(θ̂n)) ≤ Dφ(p̂n, p(θ0))

which implies Dφ(p̂n, p(θ̂n)) → 0 a. s. Hence, by Proposition 9.49 in Liese
and Vajda [8],

m∑

i=1

|p̂ni − pi(θ̂n)| → 0 a. s.

But
|pi(θ0)− pi(θ̂n)| ≤ |pi(θ0)− p̂ni|+ |p̂ni − pi(θ̂n)|

so that the above convergences imply

m∑

i=1

|pi(θ0)− pi(θ̂n)| → 0 a. s.,

or briefly p(θ̂n) → p(θ0) a. s. By the assumed continuity of the mapping
p 7→ θ(p), this is equivalent to (18).

(II) Let us consider in the neighbourhood of θ0 the function

Ψ(p, θ) = ∇Dφ(p, p(θ)) = ψ(p, θ)J(θ)

where ψ(p, θ) = (ψ1(p, θ), . . . , ψm(p, θ)) has the components

ψi(p, θ) = φ

(
pi

pi(θ)

)
− pi

pi(θ)
φ′

(
pi

pi(θ)

)
, p = (p1, . . . , pm) ∈ Πm.

By taking into account the asymptotic normality of n1/2(p̂n − p(θ0)) one
obtains from the Taylor theorem

Ψ(p̂n, θ̂n)−Ψ(p(θ0), θ̂n) =
m∑

i=1

(
∂Ψ(p, θ̂n)

∂pi

)

p=p(θ0)

(p̂ni − pi(θ0)) + op(n−1/2).
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But
∂Ψ(p, θ)
∂pi

=
− pi

pi(θ)2
φ′′

(
pi

pi(θ)

)
∇pi(θ)

so that

Ψ(p̂n, θ̂n)−Ψ(p(θ0), θ̂n) = −φ′′(1)
m∑

i=1

∇pi(θ0)
pi(θ0)

(p̂ni − pi(θ0)) + op(n−1/2)

= −φ′′(1) (p̂n − p(θ0)) diag p(θ0)−1/2A0 + op(n−1/2).

It follows from the definition of θ̂n that Ψ(p̂n, θ̂n) = 0. Therefore

Ψ(p(θ0), θ̂n) = φ′′(1) (p̂n − p(θ0))diag p(θ0)−1/2A0 + op(n−1/2).

On the other hand, we obtain in a similar way as above

ψi(p(θ0), θ̂n)− ψi(p(θ0), θ0) = φ′′(1)
∇pi(θ0) (θ̂n − θ0)t

pi(θ0)
(1 + op(1)),

i. e.

ψ(p(θ0), θ̂n)− ψ(p(θ0), θ0) = φ′′(1) (θ̂n − θ0)At
0diag p(θ0)−1/2(1 + op(1)).

Multiplying both sides by J(θ̂n) we obtain

Ψ(p(θ0), θ̂n)−ψ(p(θ0), θ0)J(θ̂n) = φ′′(1)(θ̂n − θ0)At
0diag p(θ0)−1/2J(θ̂n) (1 + op(1)).

Since 1J(θ) = 0 for all θ under consideration and ψ(p(θ0), θ0) = −φ′(1)1,
it holds ψ(p(θ0), θ0)J(θ̂n) = 0. This together with (18) implies that the last
formula is equivalent to

Ψ(p(θ0), θ̂n) = φ′′(1)(θ̂n − θ0)At
0diag p(θ0)−1/2J(θ0) (1 + op(1))

= φ′′(1)(θ̂n − θ0)At
0A0(1 + op(1)).

From here and the former formula for Ψ(p(θ0), θ̂n), we obtain

(θ̂n − θ0)At
0A0 = (p̂n − p(θ0))diag p(θ0)−1/2A0(1 + op(1)).

Since At
0A0 is positive definite by (A2), this implies (19).

(III) The convergence (20) follows directly from the definitions of Ω0, B0

and ∆0 and from (19). Further, by employing the Taylor theorem as in
(II) and using (19) and (20), one obtains (21). The convergence in (22)
follows directly from (21) and from the definition of Ω0, B0 and Σ0. 2

Remark 2. The matrix Ω0, and consequently the matrices B0, ∆0 and
Σ0 figuring in Theorem 2, are known only if P (θ0) ∈ P θ0 is specified.
If this is not the case and the values of these matrices are needed to
obtain confidence intervals or critical regions of statistical tests, then
we can estimate the matrices B0, ∆0 and Σ0 consistently by replacing
the unknown elements pij(θ0) of P (θ0) in Ω0 by their estimates p̂nij as in
Remark 1 of the previous section.
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Example 4. Let us consider the binary version of the model of Example
2 with θ ∈ Θ = (0, 1),

P (θ) =
(

1− θ θ
1 0

)
∈ P and p(θ) =

(
1

1 + θ
,

θ

1 + θ

)
.

We shall estimate a true parameter θ0 ∈ (0, 1). We get

J(θ0)t =
d

dθ
p(θ0) =

1
(1 + θ0)2

(−1, 1),

D0 = diag p(θ0) =
1

1 + θ0

(
1 0
0 θ0

)
,

At
0 = J(θ0)tD−1/2 =

1
(1 + θ0)3/2

(−1, θ−1/2
0 ),

At
0A0 =

1
θ0(1 + θ0)2

,

∆t
0 = (At

0A0)−1At
0 = [θ0(1 + θ0)]

1/2 (−θ1/2
0 , 1),

Σ0 = A0(At
0A0)−1At

0 = A0∆t
0 =

θ
1/2
0

1 + θ0

(
θ
1/2
0 −1
−1 θ

−1/2
0

)
,

C−1
0 = I − P0 + 1tp(θ0) =

(
1 0
0 1

)
−

(
1− θ0 θ0

1 0

)
+

1
1 + θ0

(
1 θ0
1 θ0

)

=
1

1 + θ0

(
θ20 + θ0 + 1 −θ20

−θ0 1 + 2θ0

)
,

Ω0 = D0C0 + Ct
0D0 −D0 − p(θ0)tp(θ0) =

θ0(1− θ0)
(1 + θ0)3

(
1 −1
−1 1

)

and

B0 = D
−1/2
0 Ω0D

−1/2
0 =

1− θ0
(1 + θ0)2

(
θ0 −θ1/2

0

−θ1/2
0 1

)
.

The asymptotic variance of n1/2(θ̂n−θ0) is ∆t
0B0∆0 = θ0(1−θ20). The asymp-

totic variance–covariance matrix of n1/2(p(θ̂n)− p(θ0)) is

D
1/2
0 Σ0B0Σ0D

1/2
0 =

θ0(1− θ0)
(1 + θ0)3

(
1 −1
−1 1

)
.

The asymptotic variance–covariance matrix of n1/2(p̂n−p(θ0)) is Ω0, which
coincides in this example with D1/2

0 Σ0B0Σ0D
1/2
0 . The minimum φ–divergence

estimator is

θ̂n = argmin
0<θ<1

Dφ(p̂n, p(θ)) = argmin
0<θ<1

1
1 + θ

{
φ(1 + θ)p̂n1 + θφ

(
θ + 1
θ

p̂n2

)}
.
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For the class of functions φa defined in (15), we have

θ̂n = argmin
0<θ<1

(1 + θ)a−1{p̂a
n1 + θ1−ap̂a

n2} =
p̂n2

p̂n1
if 0 <

p̂n2

p̂n1
< 1,

which coincides with the estimator obtained by the method of moments.
Thus we did not obtain a new estimator but, on the other hand, this result
indicates that the minimum φ–divergence estimators are in general not
bad.

5. TESTING COMPOSITE HYPOTHESES

In this section we consider statistical tests of composite hypothesis Θ0 ⊂ Θ
introduced in Section 1 using the divergence statistics (9). The assump-
tions (A1) and (A2) of Section 3 are supposed to be fulfilled. Moreover,
both convex functions φ and φ∗ figuring in (9) are supposed to verify the
assumptions imposed on φ in (9). The regularity assumptions concerning
φ∗ allow to extend the properties established in Theorem 2 of Section 4
to the estimator θ̂n = θ̂

(φ∗)
n figuring in (9).

We consider the matrices Ω0 introduced in Section 2 and A0 and
Σ0 = A0(At

0A0)−1At
0 introduced in Section 4 and we put for brevity

W+ = diag p(θ0)1/2Σ0 diag p(θ0)−1/2,

W− = diag p(θ0)−1/2Σ0 diag p(θ0)1/2,

and
L0 = diag p(θ0)−1/2 [I −W+] Ω0 [I −W−] diag p(θ0)−1/2.

Theorem 3. Under the above considered assumptions all statistics (9)
satisfy the asymptotic relation

Tn →
m∑

i=1

ρiZ
2
i in law, (23)

where Zi are independent N(0, 1) and ρi are the eigenvalues of the matrix
L0.

P r o o f . By (21),

p(θ̂n) = p(θ0) + (p̂n − p(θ0))W− + op(n−1/2).

Therefore
p̂n − p(θ̂n) = (p̂n − p(θ0)) (I −W−) + op(n1/2).

It follows from here and from the relation

n1/2(p̂n − p(θ0)) → N(0,Ω0) in law (cf. Section 3)



278 M.L.MENÉNDEZ, D. MORALES, L. PARDO AND I. VAJDA

that
n1/2(p̂n − p(θ̂n)) → N(0, (I −W−)tΩ0(I −W−)) in law.

Since (I −W−)t = I −W+, it follows from here

n1/2(p̂n − p(θ̂n))diag p(θ0)−1/2 → N(0, L0) in law.

Further, it follows from there

(p̂n − p(θ̂n)) diag p(θ̂n)−1/2 = (p̂n − p(θ̂n)) diag p(θ0)−1/2 + op(n−1/2)

so that also

n1/2(p̂n − p(θ̂n))diag p(θn)−1/2 → N(0, L0) in law.

Finally, since Un = n1/2(p̂n − p(θ̂n)) diag p(θ̂n)−1/2 satisfies the relation
UnU

t
n = X2(p̂n, p(θ̂n)) where X2(p̂n, p(θ̂n)) is defined in accordance with Sec-

tion 2, the last relation implies

X2(p̂n, p(θ̂n)) →
m∑

i=1

ρiZ
2
i in law

for ρi and Zi considered in Theorem 3. The desired relation (23) follows
from here and from the fact that under (18) it holds p̂ni/pi(θ̂n) = 1 + op(1)
so that, for the statistics (9), (14) can be extended into the form

Tn = X2(p̂n, p(θ̂n))(1 + op(1)). 2

Remark 3. Theorem 3 leads to the family of asymptotically α-level tests
(12) for the eigenvalues ρ1, . . . ρm figuring in (23). These eigenvalues de-
pend not only on the unknown chain transition matrix P (θ0) = (pij(θ0)),
but also on the unknown stationary distribution p(θ0). Replacing the ma-
trix by the consistent estimate P̂n = (p̂nij) defined in Remark 1 (cf. also
Remark 2) and p(θ0) by the consistent estimate p̂n defined by (6), we ob-
tain an estimate L̂n of the matrix L0. Similarly as in Remark 1, we can
argue that the eigenvalues ρn1, . . . , ρnm of L̂n are consistent estimates of
the eigenvalues figuring in (23) and in the formula

Qα = Qα(ρ1, . . . , ρm)

for critical values of the tests (12). Therefore the empirical (1−α)-quantile

Qnα = Qα(ρn1, . . . , ρnm) (24)

tends in probability to Qα.
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Corollary 3. All tests in the family (12) with Tn given in (9) and Qnα

given by (24) are asymptotically α-level for the composite hypothesis Θ0

under consideration.

We demonstrate practical applicability of Theorem 3 and Corollary 3
by two examples, which at the same time illustrate practical advantages
as well as disadvantages of the testing method proposed in this section.

Example 5. Let us consider a composite hypothesis Θ0 = (a, b) ⊂ (0, 1) in
the model of Example 4. It follows from the results of Example 4 that

I −W+ =
1

1 + θ0

(
1 1
θ0 θ0

)
, I −W− = (I −W+)t

and

L0 =
(

0 0
0 0

)

with both eigenvalues ρ1 = ρ2 = 0. By employing the results of Example 4
we see that the statement of Theorem 3 is in this case true. Further, the
(1− α)–quantile Qα(ρ1) = 0 and all tests of Corollary 3 are asymptotically
0-level. Hence the statement of Corollary 3 is true too. Of course the
practical significance of the tests (12) is in this case doubtful as their
powers tend exponentially to zero.

Example 6. Let us consider the ternary version of the model of Example
2, with θ = (β, γ) ∈ Θ = (0, 1)2,

P (β, γ) =




1− β β 0
1− γ 0 γ

1 0 0


 ∈ P β,γ

and with the stationary distribution p(β, γ) = (1, β, βγ)/(1 + β + βγ). Let
the composite hypothesis be

Θ0 =
{
(β, γ) ∈ (0, 1)2 : γ = β, 1/2 ≤ β < 1

}

and consider a true parameter θ0 = (β0, β0) with 0 < β0 < 1. Here, of the
eigenvalues ρ1, ρ2 and ρ3 of the matrix L0, only ρ1 = ρ(β0) is nonzero. The
values of ρ(β0) are given for various β0 in Table 1.

Table 1. The nonzero eigenvalue of L0 for the transition matrix P (β0, β0).

β0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ(β0) 11.78 3.2 1.37 0.7 0.38 0.2 0.09 0.03 0.008
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Therefore, under the chain transition matrix P (β0, β0) given above, the
asymptotic distribution of all statistics (9) is ρ(β0)χ2

1. Consequently

Qα(ρ1, ρ2, ρ3) = ρ(β0)χ2
1(1− α),

where χ2(α) denotes the α-quantile of the random variable χ2
1. Let us

denote by ρ̂n1, ρ̂n2 and ρ̂n3 the eigenvalues of the estimate P̂n of P (β0, β0)
considered in Corollary 3. Then

Qnα = Qα(ρ̂n1, ρ̂n2, ρ̂n3)

under the hypothesis tends to ρ(β0)χ2
1(1− α) with 1/2 ≤ β0 < 1. By using

the maximal value ρ(β0) = 0.38 from Table 1, we obtain a family of tests
T = {(Tφ

n , 0.38χ2
1(1 − α)) : φ ∈ Φ} which are asymptotically α-level for the

composite hypotheses under consideration.

(Received June 17, 1998.)
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