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STABILITY IN STOCHASTIC PROGRAMMING —
THE CASE OF UNKNOWN LOCATION PARAMETER

Vlasta Kaňková

The assumption of a complete knowledge of the distribution in stochastic optimization
problem is only seldom justified in real-life situations. Consequently, statistical estimates
of the unknown probability measure, if they exist, can be only utilized to obtain some
estimates of the optimal value and the optimal solution.

The empirical distribution function is usually used everywhere when the theoretical
distribution function is fully unknown [1], [5], [17]. This substitution leads to the “good”
statistical estimates [2], [9], [10], [14], [16]. However, unfortunately, it is also well-known
that the corresponding approximative problem need not be a concave problem even in the
case when the theoretical original one possesses this property. In particular, this happens
rather often in the case of the chance constrained stochastic programming problems.

If we can assume that the theoretical distribution function belongs to a parametric fam-
ily, then we can employ estimates of the unknown parameter to get some estimates of the
optimal value and the optimal solution [3], [16]. In this paper, we shall consider the case
when the unknown parameter can be introduced as a location parameter. We obtain the
estimates of the optimal value and the optimal solution with statistical properties fully
determined by the properties of the original parameter estimates. Moreover, the approxi-
mative problems belong to the same type of the optimization problems as the original one.
However, to obtain these results we have to study the stability problem with respect to the
location parameter, first.

At the end of the paper we shall try to apply some obtained results to stochastic opti-
mization problem considered with respect to the discrete time interval 1÷N. Namely surely,
the main importance of the former results will be found just in such dynamic models.

1. INTRODUCTION

Let (Ω, S, P ) be probability space, ξ = ξ(ω) = [ξ1(ω), . . . , ξs(ω)] be an s-dimensional
random vector defined on (Ω, S, P ), gi(x, z), i = 0, 1, 2, . . . , `, be real-valued, contin-
uous functions defined on En × Es, X ⊂ En be a nonempty set (En, n ≥ 1 denotes
an n-dimensional Euclidean space).

The general optimization problem with random elements can be introduced as
the problem to find

max{g0(x, ξ(ω)) |x ∈ X : gi(x, ξ(ω)) ≤ 0, i = 1, 2, . . . , `}. (1)
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If the solution x has to be found without knowing realization of the random vector
ξ(ω), then it is necessary, first, to determine the decision rule. This means to assign
to the original stochastic optimization problem (1) some deterministic one, called
the deterministic equivalent. Two well-known types of deterministic equivalents can
be introduced as the following problems (cf. [4]):

I. Find
max{E g(x, ξ(ω))|x ∈ X}.

This type includes, among others, the problems with penalty function and two-stage
stochastic programming problems.

II. Find

max{E g(x, ξ(ω)) |x ∈ X(α)},
such that X(α) = {x ∈ X : P{ω : gi(x, ξ(ω)) ≤ 0, i = 1, 2, . . . , `} ≥ α} .

This deterministic equivalent is called the chance constrained stochastic program-
ming problem in the literature.

In what follows, α ∈ 〈0, 1〉 is a parameter, g(x, z), g(x, z) are some real-valued
functions defined on En ×Es, E denotes the operator of mathematical expectation.

Remark. In detail, the introduced definitions of deterministic equivalents are
given in [4] for linear case only.

We shall restrict our investigation to the special form of the function gi(x, z),
i = 1, 2, . . . , `, in the case of the deterministic equivalent II. In detail, we shall
assume in this case that

` = s, gi(x, z) = fi(x)− zi, i = 1, 2, . . . , `, z = (z1, . . . , z`), (2)

where fi(x), i = 1, 2, . . . , `, are real-valued, continuous functions defined on En.

If (generally) A ⊂ Es is a nonempty parametric set,
F0(z) is an s-dimensional distribution function,
Pa, a ∈ A, denotes a parametric family of distribution functions such that

Fa ∈ Pa, a ∈ A ⇐⇒ Fa(z) = F0(z − a), (3)

then we can denote the set X(α) by Xa(α), that is

X(α) = Xa(α) = {x ∈ X : Pa{ω : fi(x) ≤ ξi(ω), i = 1, 2, . . . `} ≥ α}, (4)

where Pa is the probability measure corresponding to the distribution function Fa.

Remark. It is evident that there exists an inaccuracy in relation (4). The exact
form should be

X(α) = Xa(α) = {x ∈ X : Pa{ω : fi(x) ≤ ξa
i (ω), i = 1, 2, . . . , `} ≥ α},
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where ξa(ω) = (ξa
1 (ω), . . . , ξa

` (ω)) is some random vector with the distribution func-
tion Fa(z).

If in addition â(N) = â(N,ω), N = 1, 2, . . ., denote some statistical estimates of
the parameter a ∈ A, then it is easy to see that max

x∈X
Eâ(N) g(x, ξ(ω)) estimates the

value max
x∈X

Ea g(x, ξ(ω)) in the case of the deterministic equivalent I. In the case of

the deterministic equivalent II the theoretical value max
Xa(α)

Ea g(x, ξ(ω)) can be esti-

mated by the value max
Xâ(N)(α)

Eâ(N) g(x, ξ(ω)) (Ea denotes mathematical expectation

considered with respect to the distribution function Pa).
The aim of this paper is to study the just introduced estimates, first. (Of course,

it will be done under the assumptions that the theoretical distribution function of the
random vector ξ(ω) belongs to the parametric family of the distributions given by
(3).) Further, we shall apply these results to time dependent sequences of stochastic
optimization problems.

Remarks.

1. The choice of the functions g(·, ·) and g(·, ·) depends on the character of the
original stochastic problem.

2. It can generally happen that some symbols mentioned above are not reasonable.
However, this situation cannot appear under the assumptions considered in this
paper.

2. SOME AUXILIARY ASSERTIONS AND DEFINITIONS

Lemma 1. Let X ⊂ En, A ⊂ Es be nonempty sets. If

1. g(x, z) is a continuous function on X × Es,

2. for every x ∈ X, g(x, z) is a Lipschitz function of z ∈ Es with Lipschitz constant
L̄ independent of x ∈ En,

3. for every x ∈ X there exists a finite E0 g(x, ξ(ω)),

then ∣∣Ea(1) g(x, ξ(ω))− Ea(2) g(x, ξ(ω))
∣∣ ≤ L · ‖a(1)− a(2)‖

for every x ∈ X, a(1), a(2) ∈ A (‖ · ‖ denotes the Euclidean norm in Es).

P r o o f . First, it follows from the assumptions 2, 3 of Lemma 1 that for every
x ∈ X, a ∈ A there exists a finite Ea g(x, ξ(ω)). Furthermore, we get immediately
from the definition of mathematical expectation that in virtue of (3)

∣∣Ea(1) g(x, ξ(ω))− Ea(2) g(x, ξ(ω))
∣∣ =

=
∣∣∣∣
∫

g(x, z) dFa(2)(z + a(2)− a(1))−
∫

g(x, z) dFa(2)(z)
∣∣∣∣ ,

and hence we obtain the assertion of Lemma 1 on the bases of the assumption 2. 2
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Lemma 2. If α ∈ (0, 1), X = E+
n , a, a ∈ A are arbitrary such that a ≤ a compo-

nentwise, then
Xa(α) ⊂ Xa(α). (5)

(E+
n = {x ∈ En : x = (x1, . . . , xn), xi ≥ 0, i = 1, 2, . . . , n}.)
P r o o f . Let a = (a1, . . . , a`), a = (a1, . . . , a`), α be arbitrary fulfilling the

assumptions of Lemma 2.
If Xa(α) = ∅ relation (5) is trivially fulfilled, so in the rest of the proof we assume
that Xa(α) 6= ∅. To verify the assumption (5) (in this case) it is sufficient to prove
the validity of the implication

x ∈ Xa(α) =⇒ x ∈ Xa(α). (6)

However, since for every x ∈ Xa(α) it holds

α ≤ Pa{ω : fi(x) ≤ ξi(ω), i = 1, 2, . . . , `} =
= Pa{ω : fi(x) + ai − ai ≤ ξi(ω), i = 1, 2, . . . , `} (7)

and since a − a ≥ 0 componentwise, we obtain the validity of the implication (6)
immediately. 2

Lemma 3. Let α ∈ (0, 1), a, a ∈ A, a = (a1, . . . , a`) , a = (a1, . . . , a`), X = E+
n .

If
1. there exists a ∈ E+

1 , a > 0 such that ai + a = ai, i = 1, 2, . . . , `,
2. there exists real-valued constant γ1 > 0, such that fi(x′)− fi(x) ≥ γ1

∑n
j=1(x

′
j −

xj), i = 1, 2, . . . , `, for every x = (x1 . . . , xn), x′ = (x′1, x
′
2, . . . , x

′
n) ∈ En, x ≤ x′

componentwise,
3. the probability measure corresponding to the distribution function F0(·) is abso-
lutely continuous with respect to the Lebesgue measure in E`,
4. Xa(α) 6= ∅,
then Xa(α) 6= ∅, and

4[Xa(α), Xa(α)] ≤ a

γ1

√
n.

(4[·, ·] denotes the Hausdorff distance of sets, see e. g. [10].)

P r o o f . It follows from the definition of the Hausdorff distance and from the
assertion of Lemma 2 that to prove the assertion of Lemma 3 it is enough to prove
the following inequality

sup
x∈Xa(α)

inf
x′∈Xa(α)

ρ(x, x′) ≤ a

γ1

√
n, (8)

where ρ(·, ·) denotes the Euclidean metric in En.
So let x ∈ Xa(α) be arbitrary. It is easy to see that to prove relation (8) it is

sufficient to find x′ = x′(x), x′ ∈ Xa(α) such that

ρ(x, x′) ≤ a

γ1

√
n.
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If x ∈ Xa(α), x = (x1, . . . , xn), then we can set x′ = x, evidently. It remains to
consider the case x 6∈ Xa(α). If we define in this case the point x∗ = (x∗1, x

∗
2, . . . , x

∗
n)

by x∗i = xi − a
γ1

, i = 1, 2, . . . , n, we get ‖x − x∗‖ ≤ √
n a

γ1
. Two different cases can

happen

a) there exists an r ∈ {1, 2, . . . , n} such that x∗r ≥ 0,
b) x∗j < 0 for every j ∈ {1, 2, . . . , n}.
Let us, first, consider the case a). In this case we can define the point x′ =
(x′1, x

′
2, . . . , x

′
n) by

x′r = x∗r , x′j = xj for j 6= r.

It follows from the assumptions that fi(x′) < fi(x), i = 1, 2, . . . , `, and moreover

fi(x)− fi(x′) ≥ a, i = 1, 2, . . . , `.

However, it means
fi(x′) ≤ fi(x)− a, i = 1, 2, . . . , `.

Furthermore, since x ∈ Xa(α) we obtain

α ≤ Pa{ω : fi(x) ≤ ξi(ω), i = 1, 2, . . . , `} ≤
≤ Pa{ω : fi(x′) + a ≤ ξi(ω), i = 1, 2, . . . , `} =

= Pa{ω : fi(x′) ≤ ξi(ω), i = 1, 2, . . . , `}
and so also

x′ ∈ Xa(α).

Since ρ(x, x′) = a
γ1

we have finished the proof of the assertion in the case a).
Now we shall consider the case b). However, since then ‖x‖ ≤ √

n a
γ1

, the assertion
of Lemma 3 follows from the assumptions 3, 4 and the properties of the probability
measure. 2

Lemma 4. Let α ∈ (0, 1), a(1), a(2) ∈ A be arbitrary, Xa(1)(α) 6= 0, Xa(2)(α) 6= ∅,
X = E+

n . Let, further, the assumptions 2, 3 of Lemma 3 be fulfilled. If there exist
vectors a, a ∈ A, a = (a1, . . . , a`), a = (a1, . . . , a`) such that ai − ai = a1 − a1,
i = 1, 2, . . . , `, Xa(α) 6= ∅, Xa(α) 6= ∅ and simultaneously a ≤ a(1) ≤ a, a ≤ a(2) ≤ a
componentwise, then

4[Xa(1)(α), Xa(2)(α)] ≤ √
n

a

γ1
where a = a1 − a1.

P r o o f. First, it follows from Lemma 2 that Xa(α) ⊂ Xa(1)(α) ⊂ Xa(α) and
simultanously Xa(α) ⊂ Xa(2)(α) ⊂ Xa(α).

Moreover, it follows from the above facts and from the definition of the Hausdorff
distance that

4[Xa(1)(α), Xa(2)(α)] ≤ 4[Xa(α), Xa(α)],

and hence the assertion of Lemma 4 follows immediately from the assertion of
Lemma 3. 2
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Lemma 5. Let X = E+
n and A ⊂ E` be a nonempty set. Let further α ∈ (0, 1),

a ∈ A be arbitrary such that Xa(α) 6= ∅. If the assumptions 2, 3 of Lemma 3 are
fulfilled, then Xa(α) is a compact set.

P r o o f . Let a, α fulfil the assumptions of Lemma 5. Since it follows from Lemma
4 of [9] that Xa(α) is a bounded set, the assertion of Lemma 5 will be proved if we
verify the validity of the implication

xN ∈ Xa(α), N = 1, 2, . . . , lim
N→∞

xN = x =⇒ x ∈ Xa(α). (9)

It follows immediately from the assumptions that for every ε > 0 there exists N0 =
N0(ε) such that

α ≤ Pa{ω : fi(xN ) ≤ ξi(ω), i = 1, 2, . . . , `} ≤
≤ Pa{ω : fi(x) ≤ ξi(ω), i = 1, 2, . . . , `}+

+
∑̀
i=1

Pa{ω : ξi(a)∈ [fi(x)−ε, fi(x)+ε], ξj(ω)>fj(x)−ε, j 6= i, j =1, 2, . . . , `}

for N > N0(ε).
However, since according to the assumptions it follows from the former inequality
that α ≤ Pa{ω : fi(x) ≤ ξi, i = 1, 2, . . . , `} too, we see that the assertion of Lemma 5
holds. 2

At the end of this part we shall present one result of convex analysis. However,
first, we shall recall the definition of strongly concave functions [13], [15].

Definition 1. Let h(x) be a real-valued function defined on a convex set
K ⊂ En. h(x) is a strongly concave function with a parameter ρ > 0 if

h(λx1 + (1− λ) x2) ≥ λh(x1) + (1− λ)h(x2) + λ(1− λ)ρ ‖x1 − x2 ‖2

for every x1, x2 ∈ K, λ ∈ 〈0, 1〉.

Lemma 6. Let K ⊂ En be a non-empty, compact, convex set. Let further h(x) be
strongly concave with a parameter ρ > 0, continuous, real-valued function defined
on K. If x0 ∈ K is defined by the relation

x0 = arg max
x∈K

h(x) (10)

then
‖x− x0 ‖2 ≤ 2

ρ
[h(x0)− h(x)],

for every x ∈ K.

P r o o f . Since it follows from the definition of strongly concave functions with a
parameter ρ > 0 that

h(λx1 + (1− λ)x2) ≥ λh(x1) + (1− λ)h(x2) + λ(1− λ)ρ ‖x1 − x2‖2
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for every x1, x2 ∈ K, λ ∈ 〈0, 1〉, we get

λ(1− λ)ρ ‖x− x0‖2 ≤ λ(h(x0)− h(x)) + h(λx + (1− λ)x0)− h(x0)

for x0 given by (10) and x ∈ K arbitrary. Since further

h(λx + (1− λ)x0)− h(x0) ≤ 0 for every λ ∈ (0, 1)

we can see that the assertion of Lemma 6 holds. 2

Remarks.
1. An assumptions under which a quadratic form is a strongly concave (respectively
strongly convex) function are introduced for example in [13].
2. The assertion of Lemma 6 has been already presented for example in [15].

3. STABILITY RESULTS

Let a(1), a(2) ∈ A, α ∈ (0, 1) be arbitrary. In this section we shall present an upper
bound on the expression

∣∣∣∣max
x∈X

Ea(1) g(x, ξ(ω))−max
x∈X

Ea(2) g(x, ξ(ω))
∣∣∣∣

in the case of the deterministic equivalent I and further an upper bound on the
expression ∣∣∣∣ max

Xa(1)(α)
Ea(1) g(x, ξ(ω))− max

Xa(2)(α)
Ea(2) g(x, ξ(ω))

∣∣∣∣
in the case of the deterministic equivalent II. We shall see that similar upper bounds
also exist for the optimal solution in some special cases.

First, we shall deal with the deterministic equivalent I. To this end, let us assume

i) g(x, z) is a continuous function on X × Es,
ii) for every x ∈ X, g(x, z) is a Lipschitz function of z ∈ Es with Lipschitz constant
L independent of x ∈ E+

n ,
iii) a) X is a convex set,

b) for every z ∈ Es, g(x, z) is a strongly concave function of x ∈ En with a
parameter ρ > 0.

We shall define the point x̄a (if it exists) for a ∈ A by

xa = arg max
x∈X

Ea g(x, ξ(ω)).

(It is easy be see that the point x̄a for a ∈ A is uniquely defined, under the assump-
tion iii.)

We shall present the following theorem.
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Theorem 1. Let X ⊂ En be a nonempty, compact set, A ⊂ Es be a nonempty
set and let the assumptions i), ii) be fulfilled. If there exists a finite Ea g(x, ξ(ω)) for
a = a(1), a = a(2), a(1), a(2) ∈ A, x ∈ X, then

∣∣∣∣max
x∈X

Ea(1) g(x, ξ(ω))−max
x∈X

Ea(2) g(x, ξ(ω))
∣∣∣∣ ≤ L ‖a(1)− a(2)‖. (11)

If, moreover, the assumption iii) is fulfilled, then

‖xa(1) − xa(2)‖2 ≤
4
ρ

L ‖a(1)− a(2)‖. (12)

P r o o f . First, it follows from Lemma 1 that |Ea(1) g(x, ξ(ω)) − Ea(2) g(x, ξ(ω))|
is uniformly bounded by the constant L ‖a(1) − a(2)‖. Consequently, the assertion
given by relation (11) is valid.

So it remains to prove the assertion given by (12). Since it follows from Lemma 1
and from (just proven) relation (11) that

|Ea(1) g(x, ξ(ω))− Ea(2) g(x, ξ(ω))| ≤ L ‖a(1)− a(2)‖

for every x ∈ X, and simultaneously

|Ea(1) g(xa(1), ξ(ω))− Ea(2) g(xa(2), ξ(ω))| ≤ L ‖a(1)− a(2)‖,

we obtain, employing the triangular inequality successively,

|Ea(1) g(xa(1), ξ(ω))− Ea(1) g(xa(2), ξ(ω))| ≤
≤ |Ea(1) g(xa(1), ξ(ω))− Ea(2) g(xa(2), ξ(ω))|+
+ |Ea(2) g(xa(2), ξ(ω))− Ea(1) g(xa(2), ξ(ω))|
≤ L ‖a(1)− a(2)‖+ L ‖a(1)− a(2)‖.

However, since further it follows from Lemma 6 that

‖xa(1) − xa(2)‖2 ≤
2
ρ

[ Ea(1) g(xa(1), ξ(ω))− Ea(1) g(xa(2), ξ(ω))]

we can see that the relation (12) is valid, too. 2

Theorem 1 presents stability results in the case of the deterministic equivalent I.
Further, we shall try to present similar results for the deterministic equivalent II.

To get some results in the case of the deterministic equivalent II, we shall assume
that
i’) g(x, z) is

a) a continuous function on X × E`,
b) for every z ∈ E` a Lipschitz function on E+

n with Lipschitz constant L′ inde-
pendent of z ∈ E`,

c) for every x ∈ X a Lipschitz function of z ∈ E` with Lipschitz constant L
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independent of x ∈ En,

ii’) gi(x, z), i = 1, 2, . . . , `, fulfil relations (2) with continuous functions fi(x), i =
1, 2, . . . , `, for which there exists a real-valued constant γ1 > 0 such that

fi(x′)− fi(x) ≥ γ1

n∑
j=1

(x′j − xj), i = 1, 2, . . . , n

for every x = (x1, . . . , xn), x′ = (x′2, . . . , x
′
n) ∈ En, x ≤ x′ componentwise,

iii’) the probability measure corresponding to the distribution function F0(·) is ab-
solutely continuous with respect to the Lebesque measure in E`,

iv’) for a ∈ A, α ∈ (0, 1), Xa(α) is a convex set,

v’) there exists a convex set X∗ such that Xa(α) ⊂ X∗ for α ∈ (0, 1), a ∈ A and
further for every z ∈ E` g(x, z) is a strongly concave function of x ∈ X∗ with a
parameter ρ > 0,

vi’) there exists a convex set X∗ such that Xa(α) ⊂ X∗ for α ∈ (0, 1), a ∈ A and, fur-
ther, for every z ∈ E`, g(x, z) is a strictly concave function, i. e. g(λx1 +(1−λ)x2) >
λg(x1) + (1− λ)g(x2) for every x1, x2 ∈ X, λ ∈ (0, 1).

If the points xa, for a ∈ A, fulfil the relation

xa ∈ arg max
Xa(α)

Ea g(x, ξ(ω)), (13)

then the following theorem takes place.

Theorem 2. Let X = E+
n , A ⊂ E` be nonempty sets, α ∈ (0, 1). If the assump-

tions i’), ii’), iii’) are fulfilled and if for x ∈ X, a = a(1), a = a(2), a(1), a(2) ∈ A a
finite Ea g(x, ξ(ω)) exists and simultaneously Xa(α) 6= ∅,
then
∣∣∣∣ max
Xa(1)(α)

Ea(1) g(x, ξ(ω))− max
Xa(2)(α)

Ea(2) g(x, ξ(ω))
∣∣∣∣ ≤ [L+

L′
√

n

γ1
] ‖a(1)−a(2)‖. (14)

Furthermore, there exist points x′ ∈ Xa(1)(α), x′′ ∈ Xa(2)(α) such that

‖xa(1) − x′′‖ ≤ √
n ‖a(1)−a(2)‖

γ1
,

‖xa(2) − x′‖ ≤ √
n ‖a(1)−a(2)‖

γ1

(15)

and simultaneously
∣∣∣Ea(1) g(xa(1), ξ(ω))− Ea(2) g(x′′, ξ(ω))

∣∣∣ ≤
[
L + L′

√
n

γ1

]
‖a(1)− a(2)‖,

∣∣∣Ea(1) g(x′, ξ(ω))− Ea(2) g(xa(2), ξ(ω))
∣∣∣ ≤

[
L + L′

√
n

γ1

]
‖a(1)− a(2)‖.
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If, moreover, the assumptions iv’), v’) are fulfilled and a(1) ≤ a(2) component-
wise, then also

‖xa(1) − xa(2)‖2 ≤
4
ρ

[
L +

L′
√

n

γ1

]
‖a(1)− a(2)‖.

P r o o f . First, we shall prove relation (14). To this end we employ the triangular
inequality

∣∣∣∣ max
Xa(1)(α)

Ea(1) g(x, ξ(ω))− max
Xa(2)(α)

Ea(2) g(x, ξ(ω))
∣∣∣∣ ≤

≤
∣∣∣∣ max
Xa(1)(α)

Ea(1) g(x, ξ(ω))− max
Xa(1)(α)

Ea(2) g(x, ξ(ω))
∣∣∣∣ + (16)

+
∣∣∣∣ max
Xa(1)(α)

Ea(2) g(x, ξ(ω))− max
Xa(2)(α)

Ea(2) g(x, ξ(ω))
∣∣∣∣ .

Since it follows from Lemma 5 and Theorem 1 that
∣∣∣∣ max
Xa(1)(α)

Ea(1) g(x, ξ(ω))− max
Xa(1)(α)

Ea(2) g(x, ξ(ω))
∣∣∣∣ ≤ L ‖a(1)− a(2)‖,

to prove (14) it is sufficient to prove that
∣∣∣∣ max
Xa(1)(α)

Ea(2) g(x, ξ(ω))− max
Xa(2)(α)

Ea(2) g(x, ξ(ω))
∣∣∣∣ ≤ L′

√
n
‖a(1)− a(2)‖

γ1
. (17)

If we define vectors a, a ∈ E`, a = (a1, . . . , a`), a = (a1, . . . , a`) by

ai = ai(1)− ‖a(1)− a(2)‖,
ai = ai(1) + ‖a(1)− a(2)‖, i = 1, 2, . . . , `,

a(1) = (a1(1), . . . , a`(1)),
a(2) = (a1(2), . . . , a`(2)),

we get a ≤ a(1) ≤ a, a ≤ a(2) ≤ a componentwise.

Two cases can happen

a) a, a ∈ A, Xa(α) 6= ∅,
b) either a, a 6∈ A for at least one element from the pair (a, a) or Xa(α) = ∅.
First we shall consider the case a).

Since it follows from the assumptions that Ea(2) g(x, ξ(ω)) is a Lipschitz function
with Lipschitz constant L′, we shall obtain relation (17) on applying Lemma 4. So
we have finished the proof of the assertion given by (14) in the case a). It remains
to consider the case b). However, it is easy to see that on the transformation bases
we obtain the assertion in this case, too.

Now, we shall give the proof of relation (15). But this follows immediately from
Lemma 1, Lemma 3, Lemma 4, Lemma 5 and the assumptions.



90 V. KAŇKOVÁ

We have finished the proof of the first part of the assertion of Theorem 2. It
remains to verify the validity of the second part. Since it follows from Lemma 2,
Lemma 5 and Lemma 6 that

‖xa(2) − xa(1)‖2 ≤
2
ρ

∣∣∣Ea(2) g(xa(2), ξ(ω))− Ea(2) g(xa(1), ξ(ω))
∣∣∣ ,

we see that the assertion will be proved if we verify the validity of the inequality

∣∣∣Ea(2) g(xa(2), ξ(ω))− Ea(2) g(xa(1), ξ(ω))
∣∣∣ ≤ 2

[
L +

L′
√

n

γ1

]
‖a(1)− a(2)‖.

To this end we shall employ the triangular inequality

∣∣∣Ea(2) g(xa(2), ξ(ω))− Ea(2) g(xa(1), ξ(ω))
∣∣∣ ≤

≤
∣∣∣∣ max
Xa(2)(α)

Ea(2) g(x, ξ(ω))− max
Xa(1)(α)

Ea(1) g(x, ξ(ω))
∣∣∣∣ +

+
∣∣∣∣ max
Xa(1)(α)

Ea(1) g(x, ξ(ω))− Ea(2) g(xa(1), ξ(ω))
∣∣∣∣ .

However, since it follows from the assertion of relation (14) that

∣∣∣∣ max
Xa(2)(α)

Ea(2) g(x, ξ(ω))− max
Xa(1)(α)

Ea(1) g(x, ξ(ω))
∣∣∣∣ ≤

[
L +

L′
√

n

γ1

]
‖a(1)− a(2)‖

and since it follows from Lemma 1 and Lemma 5 that
∣∣∣∣ max
Xa(1)(α)

Ea(1) g(x, ξ(ω))− Ea(2) g(xa(1), ξ(ω))
∣∣∣∣ ≤ L ‖a(1)− a(2)‖

we can see that we have verified also the last assertion of Theorem 2. 2

Remark. Evidently, if we omit the assumption a(1) ≤ a(2), then it is possible to
prove some similar assertion to the one presented in the second part of Theorem 2,
too.

The results obtained in this section will be the foundation for convergence results
of statistical estimates.

4. CONVERGENCE RESULTS

If we denote by â(N) = â(N,ω), N = 1, 2, . . . , a sequence of statistical estimates of
the parameter a, then we can already present the following theorem.



Stability in Stochastic Programming – the Case of Unknown Location Parameter 91

Theorem 3. Let X ⊂ En be a nonempty, compact set, A ⊂ Es be a nonempty
set, and let a finite Ea g(x, ξ(ω)) exist for a ∈ A, x ∈ X. Let, further, assumptions i),
ii) be fulfilled. If â(N) = â(N,ω), N = 1, 2, . . . , is a sequence of statistical estimates
of the parameter a ∈ intA, then

p lim
N→∞

â(N, ω) = a =⇒ p lim
N→∞

max
X

Eâ(N,ω) g(x, ξ(ω)) =

= max
X

Ea g(x, ξ(ω))

and

lim
N→∞

â(N, ω) = a a.s. =⇒
lim

N→∞
max

X
Eâ(N,ω) g(x, ξ(ω)) = max

X
Ea g(x, ξ(ω)) a.s.

If moreover, the assumption iii) holds, then also

p lim
N→∞

â(N, ω) = a =⇒ p lim
N→∞

‖xâ(N,ω) − xa‖2 = 0,

lim
N→∞

â(N, ω) = a a.s. =⇒ lim
N→∞

‖xâ(N,ω) − xa‖2 = 0 a.s.

P r o o f . The assertion of Theorem 3 follows immediately from Theorem 1 and
elementary properties of the probability measure. 2

Theorem 3 deals with the deterministic equivalent I. There are presented the
assumptions under which the convergence of parameter estimates to the theoretical
parameter value in some sense vouches the convergence of the optimal value estimates
and the optimal solution estimates in the same sense. Further, we shall try to
introduce similar results for the deterministic equivalent II.

Theorem 4. Let X = E+
n , A ⊂ E` be a nonempty set and α ∈ (0, 1). Let, further,

the assumptions i’), ii’), iii’) be fulfilled and a finite Ea g(x, ξ(ω)) exists for a ∈ A,
x ∈ X. If â(N) = â(N, ω), N = 1, 2, . . . , is a sequence of statistical estimates of
the parameter a ∈ intA such that there exists neighbourhood U(a) ⊂ A for which
Xa′(α) 6= ∅, a′ ∈ U(a), then

p lim
N→∞

â(N,ω) = a =⇒ p lim
N→∞

max
Xâ(N,ω)(α)

Eâ(N,ω) g(x, ξ(ω)) =

= max
Xa(α)

Ea g(x, ξ(ω))

and

lim
N→∞

â(N, ω) = a a.s. =⇒ lim
N→∞

max
Xâ(N,ω)(α)

Eâ(N,ω) g(x, ξ(ω)) (18)

= max
Xa(α)

Ea g(x, ξ(ω)) a.s.

Moreover, if the assumptions iv’), vi’) are fulfilled, then also

lim
N→∞

â(N, ω) = a a.s. =⇒ lim
N→∞

‖xâ(N,ω) − xa‖ = 0 a.s. (19)



92 V. KAŇKOVÁ

P r o o f . The assertion given by relation (18) follows immediately from Theorem 2
and elementary properties of the probability measure. So, it remains to prove the
assertion given by relation (19).

First, it follows from the assumptions iv’), vi’) that the xâ(N,ω), xa, N = 1, 2, . . . ,
ω ∈ Ω, a ∈ A are uniquely defined for enough large N . So, if we denote

Ω′ = {ω ∈ Ω : lim
N→∞

â(N, ω) = a and simultaneously

lim
N→∞

max
Xâ(N,ω)(α)

Eâ(N,ω) g(x, ξ(ω)) = max
Xa(α)

Ea g(x, ξ(ω)) },

then, according to Lemma 1 of [16] and relation (18), it is easy to see that relation
(19) will be proved if we verify the implication

ω ∈ Ω′ =⇒ lim
N→∞

‖xâ(N,ω) − xa‖ = 0.

We shall prove this implication by contradiction. We shall assume that there exists
ω′ ∈ Ω′ such that

lim
N→∞

‖xâ(N,ω′) − xa‖ 6= 0.

It follows from Lemma 4 and Lemma 5 that there exists a compact set X ⊂ X and
a natural number N0 = N0(ω′) such that

Xâ(N,ω′)(α) ⊂ X, Xa(α) ⊂ X for N > N0.

Since X is a compact set we can see that there exists a subsequence {â(Nk, ω′)}+∞Nk=1

of the sequence {â(N, ω′)}+∞N=1 and a point x′ ∈ X, x′ 6= xa such that

lim
N→∞

‖xâ(Nk,ω′) − x′‖ = 0.

According to Lemma 4 and Lemma 5 it must hold that

x′ ∈ Xa(α)

and further, since Ea g(x, ξ(ω)) is a strictly concave function, it also holds that

Ea g(x′, ξ(ω)) 6= Ea g(xa, ξ(ω)). (20)

Employing the triangular inequality and Lemma 1, we obtain simultaneously
∣∣∣Eâ(Nk,ω′) g(xâ(Nk,ω′), ξ(ω))− Ea g(x′, ξ(ω))

∣∣∣ ≤
∣∣∣Eâ(Nk,ω′) g(xâ(Nk,ω′), ξ(ω))− Ea g(xâ(Nk,ω′), ξ(ω))

∣∣∣

+
∣∣∣Ea g(xâ(Nk,ω′), ξ(ω))− Ea g(x′, ξ(ω))

∣∣∣ ≤

L ‖â(Nk, ω′)− a‖+
∣∣∣Ea g(xâ(Nk,ω′), ξ(ω))− Ea g(x′, ξ(ω))

∣∣∣ .

(21)
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Since, further, we can easily see that Ea g(x, ξ(ω)) is a continuous function we get

lim
N→∞

Ea g(xâ(Nk,ω′), ξ(ω)) = Ea g(x′, ξ(ω))

and employing (21) also that

lim
N→∞

∣∣∣Eâ(Nk,ω′)k
g(xâ(Nk,ω′), ξ(ω))− Ea g(x′, ξ(ω))

∣∣∣ = 0.

However, according to (20) this contradicts with ω′ ∈ Ω′. 2

Further, we shall study the convergence rate. It is easy to see that the conver-
gence rate of the â(N, ω) fully determines the convergence rate of the optimal value
estimates. Moreover, a similar assertion also holds for optimal solution estimate in
the case of the deterministic equivalent I.

Theorem 5. Let X ⊂ En be a nonempty, compact set, A ⊂ Es be a nonempty
set, and a finite Ea g(x, ξ(ω)) exists for a ∈ A, x ∈ X. If assumptions i), ii) are
fulfilled and if â(N) = â(N, ω), N = 1, 2, . . . , is a sequence of statistical estimates
of the parameter a ∈ int A such that there exists a real-valued sequence νN , N =
1, 2, . . . , νN → +∞ as (N → ∞) and one dimensional distribution function G(·)
fulfilling the relation

lim inf
N→∞

P{ω : νN‖â(N,ω)− a‖ < c} ≥ G(c)

for every c ∈ E1,
then

lim inf
N→∞

P

{
ω : νN

∣∣∣∣max
x∈X

Eâ(N,ω) g(x, ξ(ω))−max
x∈X

Ea g(x, ξ(ω))
∣∣∣∣ < c

}
≥

≥ G

(
c

L

)
for every c ∈ E1.

Moreover, if the assumption iii) is fulfilled, then also

lim inf
N→∞

P
{

ω : νN‖xâ(N,ω) − xa‖2 < c
}
≥ G

(
ρ · c
4 · L

)
for every c ∈ E1.

P r o o f. The assertion of Theorem 5 follows immediately from Theorem 1, the
assumptions of Theorem 5 and the elementary properties of the probability measure.

2

Theorem 6. Let X = E+
n , A ⊂ Es be nonempty set, α ∈ (0, 1) and a finite

Ea g(x, ξ(ω)) exists for a ∈ A, x ∈ X. If the assumptions i’), ii’), iii’) are fulfilled
and if

1. â(N) = â(N, ω), N = 1, . . . is a sequence of statistical estimates of the parameter
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value a ∈ int A for which
a) there exists a neighbourhood U(a) such that Xa′(α) 6= ∅ for all a′ ∈ U(a),
b) there exists a real-valued sequence νN , N = 1, 2 . . . , such that lim

N→∞
νN = +∞,

and one-dimensional distribution function G(·) fulfilling the relation

lim inf
N→+∞

P {ω : νN‖â(N, ω)− a‖ < c} ≥ G(c)

for every c ∈ E1,
then

lim inf
N→∞

P

{
ω : νN

∣∣∣∣ max
Xâ(N,ω)

Eâ(N,ω) g(x, ξ(ω))− max
Xa(α)

Ea g(x, ξ(ω))
∣∣∣∣ < c

}
≥

≥ G

(
c/

(
L +

L′
√

n

γ1

))
for every c ∈ E1.

P r o o f . The assertion of Theorem 6 follows immediately from Theorem 2, the
assumptions and elementary properties of the probability measure. 2

Remarks.
1. It follows from Theorem 1 and Theorem 2 that the optimal value is a Lipschitz
function of the parameter a, in both cases under considered assumptions. Conse-
quently, we can obtain the first part of the assertion of Theorem 5 and the assertion
of Theorem 6 immediately from Theorem 15 in [11], too.

2. If a) fi(x), i = 1 . . . , `, are convex functions on En,
b) the probability measure, corresponding to the distribution function F0(·) is log-

aritmic concave,
then it follows from [12] that X0(α) is a convex set. Consequently, the approxima-
tive sets are convex, too. (The definition of logaritmic concave probability measure
is given for example in [12].)

3. It happens rather often that the estimate of the unknown parameter a can be
introduced as a sample average. Then it is easy to see that to obtain a converge
rate we can utilize the method of large deviations in the case of independent random
sample [10]. The case of dependent sample is discussed in [10], too.

4. Theorem 5 and Theorem 6 present some convergence results. It is easy to see
that some similar results can be also introduced for finite natural numbers N .

5. APPLICATIONS TO SEQUENCES OF STOCHASTIC OPTIMIZATION
PROBLEMS

It is well-known that many practical problems repeat in time. It is also well-known
that if we solve such optimization problems with respect to time dependence, we
often obtain rather better results than by solving the corresponding separated prob-
lems. In particular, this appears in the case of stochastic optimization problems.
Namely, there often exists a stochastic dependence of random elements.
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Let ξj(ω) = ξj = (ξj
1(ω), . . . , ξj

s(ω)), j = 1, 2, . . . , be s-dimensional random
vectors defined on (Ω, S, P ),
g1(x, z) be a real-valued, continuous function defined on En × Es,
gj(xj , zj−1, zj), j = 2, . . . , be real-valued, continuous functions defined on En ×
Es × Es,
Xj(zj−1) = Xj , j = 2, . . . , be mappings of Es into the space of non-empty, compact
subsets of En, and X1 ⊂ En be a non-empty, compact set.

We shall introduce the stochastic optimization problem (w.r.t. the discrete time
interval 1÷N) as a problem of finding (x1, x2, . . . , xN ), x1 ∈ X1, xj = xj(ξj−1(ω)) ∈
Xj(ξj−1(ω)), j = 2, . . . , N, for which

E



g1(x1, ξ1(ω)) +

N∑

j=2

gj(xj , ξj−1(ω), ξj(ω))



 (22)

is maximal.

The aim of this section is to utilize the former results to obtain some estimates
of the optimal value and the optimal solution of (22) under very special conditions.
In detail, we shall consider the case when there exist s-dimensional random vectors
ηj(ω) = ηj , j = 1, 2, . . . , defined on (Ω, S, P ) such that

ξj(ω) =
j∑

i=1

ηi(ω), j = 1, 2, . . . . (23)

In what follows
F ηj

aj (·) denotes the distribution function of the random vector ηj(ω), j = 1, 2, . . . ,

F ξj

bj (·) denotes the distribution function of the random vector ξj(ω), j = 1, 2, . . . ,

F
ξj |ξj−1

bj ,bj−1 (·) and E
ξj |ξj−1

bj ,bj−1
denote the conditional distribution function and the con-

ditional mathematical expectation of the random vectors ξj(ω) by ξj−1(ω), j =
1, 2, . . . , respectively,
aj ∈ A, bj ∈ A are parameters, j = 1, 2, . . .,
F ξ1,...,ξN

b1,...,bN (·) denotes the common distribution function of ξ1(ω), ξ2(ω), . . . , ξN (ω),

Eξ1,...,ξN

b1,...,bN denotes the operator of mathematical expectation corresponding to the dis-

tribution function F ξ1,...,ξN

b1,...,bN .
Moreover, we shall assume that there exist s-dimensional distribution functions
F ηj

0 (·), F ξj

0 (·), j = 1, 2, . . . , such that

F ηj

aj (z) = F ηj

0 (z − aj), j = 1, 2, . . . ,

F ξj

bj (z) = F ξj

0 (z − bj), bj =
j∑

i=1

ai.
(24)

It is easy to see that under our assumptions it holds

F
ξj |ξj−1

bj ,bj−1 (zj) = F ηj

aj (zj − ξj−1(ω)). (25)
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Remark. If for example, ηj(ω), j = 1, 2 . . . , are independent normal distributed
random vectors with the average aj , j = 1, 2, . . . , then relations (24), (25) are
fulfilled.

First, the following lemma is proved in [8].

Lemma 7. Let there exist a finite

E



g1(x1, ξ1(ω)) +

N∑

j=2

gj(xj , ξj−1(ω), ξj(ω))



 for every x1, x2, . . . , xN ∈ En.

If for every i = 2, . . . , N, b1, . . . , bN ∈ A

1. xi(ξi−1(ω), bi−1) = xi is a solution of the problem to find

max
xi∈Xi(ξi−1(ω))

E
ξi|ξi−1

bi,bi−1 gi(xi, ξi−1(ω), ξiω)),

2. E
ξi|ξi−1

bi,bi−1 gi(xi, ξi−1(ω), ξiω)) is a measurable function w.r.t. the σ-algebra given
by ξ1(ω), . . . , ξi−1(ω) and if x1 is a solution of the problem to find

max
x1∈X1

E g1(x1
1, ξ

1(ω)),

then (x1, x2(ξ1(ω)), . . ., xN (ξN−1(ω)) is a solution of the problem given by (22).

(We have omitted somewhere the index ξj , bj , j = 1, 2, . . . , at the symbol of
mathematical expectation. The same shorthand notation will be used also in the
sequel.)

Now we are in a position to present the following result on the stability.

Theorem 7. Let A ⊂ Es be a nonempty set. If

1. for every x1 ∈ En, g1(x1, z1) is a Lipschitz function of z1 ∈ Es with Lipschitz
constant L1 independent of x1 ∈ En,

2. for every xj ∈ En, zj−1 ∈ Es, gj(xj , zj−1, zj), j = 1, 2 . . . , are Lipschitz func-
tions of zj with Lipschitz constant L1 independent of xj ∈ En, zj−1 ∈ Es,

3. for every zj ∈ Es, gj(xj , zj−1, zj), j = 1, 2 . . . , are Lipschitz functions of xj , zj−1

with Lipschitz constant L′1 independent of zj ∈ Es,

4. there exist finite Eξ1

a1 g1(x1, ξ1(ω)), Eξj ,ξj−1

bj ,bj−1 gj(xj , ξj−1(ω), ξj(ω)), for every

aj ∈ A, bj =
j∑

i=1

ai, bj ∈ A, xj ∈ En, j = 1, 2, . . . ,

5. there exists a real-valued constant C such that

4[Xj(zj−1(1)), Xj(zj−1(2))] ≤ C‖zj−1(1)− zj−1(2)‖
for every zj−1(1), zj−1(2) ∈ Es, j = 2, . . . ,
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6. max
xi∈Xi(ξi−1)

E
ξi|ξi−1

bi,bi−1 gi(xi, ξi−1(ω), ξi(ω)), i = 2, . . . , N, bi, bi−1 ∈ A are measur-

able functions,
then

∣∣∣∣∣∣
max

K
Eξ1,...ξN

b1(1),...,bN (1)


g1(x1, ξ1(ω)) +

N∑

j=2

gj(xj , ξj−1(ω), ξj(ω))]


 −

max
K

Eξ1,...ξN

b1(2),...,bN (2)


g1(x1, ξ1(ω)) +

N∑

j=2

gj(xj , ξj−1(ω), ξj(ω))




∣∣∣∣∣∣

≤
N∑

j=1

[
L1‖aj(1)− aj(2)‖+

j−1∑

i=1

L′1(C + 1) ‖ai(1)− ai(2)‖
]

,

for K =
{
x1, x2, . . . , xN : x1 ∈ X1, x2 ∈ X2(ξ1(ω)), . . . , xN ∈ XN (ξN−1(ω))

}
,

ai(r) ∈ A,
j∑

i=1

ai(r) = bj(r) ∈ A, i = 1, 2, . . . , N, j = 1, 2, . . . , N, r = 1, 2 (
0∑

i=1

≡ 0).

P r o o f . First, according to Lemma 7, it is easy to see that

max
K

Eξ1,...,ξN

b1,...,bN


g1(x1, ξ1(ω)) +

N∑

j=2

gj(xj , ξj−1(ω), ξj(ω))


 =

= max
x1∈X1

Eξ1

a1g
1(x1, ξ1(ω)) + (26)

+
N∑

j=2

Eξj−1

bj−1 max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

bj ,bj−1 gj(xj , ξj−1(ω), ξj(ω))

for every aj ∈ A, bj =
j∑

i=1

aj ∈ A.

Further, since it follows from Lemma 1 that
∣∣∣Eξ1

a1(1) g1(x1, ξ1(ω))− Eξ1

a1(2) g1(x1, ξ1(ω))
∣∣∣ ≤ L1‖a1(1)− a1(2)‖

and simultaneously
∣∣∣Eξj |ξj−1

bj(1),bj−1(1) gj(xj , ξj−1(ω), ξj(ω))− E
ξj |ξj−1

bj(2),bj−1(2)g
j(xj , ξj−1(ω), ξj(ω))

∣∣∣ ≤
≤ L1‖aj(1)− aj(2)‖

for every
x1 ∈ X1, xj ∈ Xj(ξj−1(ω)), j = 2, . . . , N, ω ∈ Ω,

it is easy to see that also
∣∣∣∣ max
x1∈X1

Eξ1

a1(1) g1(x1, ξ1(ω))− max
x1∈X1

Eξ1

a1(2) g1(x1, ξ1(ω))
∣∣∣∣ ≤ L1‖a1(1)− a1(2)‖ (27)
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and
∣∣∣∣ max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

bj(2),bj−1(2) gj(xj , ξj−1(ω), ξj(ω))−

− max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

bj(1),bj−1(1) gj(xj , ξj−1(ω), ξj(ω))
∣∣∣∣ (28)

≤ L1‖aj(1)− aj(2)‖

for every a1(1), a1(2), bj(1), bj(2) ∈ A, j = 1, 2, . . . , N .

However, employing the triangular inequality, we obtain for j = 2, . . . , N,
∣∣∣∣Eξj−1

bj−1(2) max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

aj(2) gj(xj , ξj−1(ω), ξj(ω))

− Eξj−1

bj−1(1) max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

aj(1) gj(xj , ξj−1(ω), ξj(ω))
∣∣∣∣ ≤

≤
∣∣∣∣Eξj−1

bj−1(2) max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

aj(2) gj(xj , ξj−1(ω), ξj(ω))− (29)

− Eξj−1

bj−1(2) max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

aj(1) gj(xj , ξj−1(ω), ξj(ω))
∣∣∣∣ +

+
∣∣∣∣Eξj−1

bj−1(2) max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

aj(1) gj(xj , ξj−1(ω), ξj(ω))−

Eξj−1

bj−1(1) max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

aj(1) gj(xj , ξj−1(ω), ξj(ω))
∣∣∣∣ .

Since it follows from Lemma 2 of [7] that

max
xj∈Xj(ξj−1(ω))

E
ξj |ξj−1

aj gj(xj , ξj−1(ω), ξj(ω)), j = 2, . . . , N,

is (for every aj ∈ A) a Lipschitz function of zj−1 ∈ Es with Lipschitz constant
L′1(C +1) we get, utilizing relations (24), (26), (27), (28) and Lemma 1, the validity
of the assertion of Theorem 7. 2

Further, we shall pay attention to estimates problems. To this end we shall
restrict our consideration to the case aj = a, a ∈ A, j = 1, 2, . . .. A specific situation
arises in this case. Namely, if relation (23) is satisfied, then the random sequence
{ξj(ω)}∞j=1 is fully determined by the random sequence {ηj(ω)}∞j=1. However, then
it is obvious that an estimate of the parameter a can be obtained from one realization
of the random sequence {ξj(ω)}∞j=1, under some additional assumptions, of course.
More precisely, we can obtain an estimate on the realizations bases of the first N
members of the random sequence {ξN (ω)}∞N=1.

Theorem 8. Let A ⊂ Es be a nonempty set. If the assumptions 1, 2, 4, 6 of
Theorem 7 are fulfilled and if â(N, ω) = â(N), N = 1, 2 . . . , are statistical estimates
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of the parameter a ∈ intA obtained from the first N − 1 members of the random
sequence {ξj(ω)}∞j=1, then

â(N, ω) → a a. s. =⇒
lim

N→∞
max

xN∈XN (ξN−1(ω))
E

ξN |ξN−1

â(N,ω)
gN (xN , ξN−1(ω), ξN (ω)) = (30)

max
xN∈XN (ξN−1(ω))

EξN |ξN−1

a gN (xN , ξN−1(ω), ξN (ω)) a.s.

If, moreover, for every zj−1, zj ∈ Es, j = 1, 2, . . . ,

a) Xj(zj−1), j = 1, . . . , are convex sets,
b) for every zj−1, zj ∈ Es, gj(xj , zj−1, zj) are strongly concave functions of xj ∈ En

with a parameter ρ > 0,
c)

xN
â(N,ω) = arg max

xN∈XN (ξN−1(ω))
E

ξN |ξN−1

â(N,ω) gN (xN , ξN−1(ω), ξN (ω)), N = 1, 2, . . . ,

xN
a = arg max

xN∈XN (ξN−1(ω))
EξN |ξN−1

a gN (xN , ξN−1(ω), ξN (ω)),

are measurable functions,
then also

lim
N→∞

â(N, ω) = a a.s. =⇒ lim
N→∞

‖xN
â(N,ω) − xN

a ‖2 = 0 a. s. (31)

(EξN |ξN−1

a := E
ξN |ξN−1

bN ,bN−1 , bN = bN−1 + a)

The validity of the assertion of Theorem 8 follows immediately from the assertion
of Theorem 1.

The next corollary follows immediately from Theorem 8.

Corollary 1. Let A ⊂ Es be a nonempty set. If the assumptions 1, 2, 4, 6 of
Theorem 7 are fulfilled and if â(N, ω) = â(N), N = 1, 2 . . . , are statistical estimates
(defined in Theorem 8) of the parameter a ∈ intA, then

lim
N→∞

â(N, ω) = a a.s. =⇒

lim
M→∞

1
M

M∑

N=1

∣∣∣∣ max
xN∈XN (ξN−1)

E
ξN |ξN−1

â(N,ω) gN (xN , ξN−1(ω), ξN (ω))

− max
xN∈XN (ξN−1)

EξN |ξN−1

a gN (xN , ξN−1(ω), ξN (ω))
∣∣∣∣ = 0 a. s.

If, moreover, for every zj−1, zj ∈ Es, j = 1, 2 . . . , assumptions a), b), c) of Theorem
8 are satisfied, then also

lim
N→∞

â(N, ω) = a a. s. =⇒ lim
M→∞

1
M

M∑

N=1

∥∥∥xN
â(N)(ω) − xN

a

∥∥∥
2

= 0 a.s.
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Remark. Sufficient assumptions under which

max
Xj(ξj−1(ω))

Eξj |ξi−1

a gj(xj , ξj−1(ω), ξj(ω)), j = 2, 3, . . . ,

are measurable functions follow for example from Lemma 1 of [16].

6. CONCLUSION

In this paper we have dealt with stability of one very special problem in stochastic
programming with unknown parameters. However, it is well-known that real-life
problems satisfy not seldom only our assumptions. Moreover, the assumptions under
which even the approximative problems are concave ones follow from Remark in
Section 4 in the chance constrained case, too.

It is evident that the obtained results can be in many other ways applied to time
depedent stochastic optimization problems. The aim of this paper was only to turn
attention to this possibility.

(Received October 7, 1991.)
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[5] V. Kaňková: Optimum solution of a stochastic optimization problem with unknown
parameters. In: Trans. of the Seventh Prague Conference 1974, Academia, Prague
1977, pp. 239–244.
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[8] V. Kaňková: Sequences of stochastic programming problems with incomplete informa-
tion. In: Trans. of the Ninth Prague Conference, Academia, Prague 1983, pp. 327–332.
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