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EXISTENCE OF AVERAGE OPTIMAL POLICIES
IN MARKOV CONTROL PROCESSES
WITH STRICTLY UNBOUNDED COSTS

Onsimo Hernndez–Lerma

This paper deals with discrete-time Markov control processes on Borel spaces and strictly
unbounded one-stage costs, i. e. costs that grow without bound on the complement of
compact sets. Under mild assumptions, the existence of a minimum pair for the average
cost problem is ensured, as well as the existence of stable optimal and pathwise-optimal
control policies. It is shown that the existence of a minimum pair is equivalent to the
existence of a solution to an “optimality inequality”, which is a weaker version of the
dynamic programming (or optimality) equation.

1. INTRODUCTION

This paper is concerned with the problem of minimizing the average cost (AC)
for discrete-time Markov control processes (MCPs) with Borel state and control
processes, and strictly unbounded one-stage costs, i. e. costs that grow without bound
on the complement of compact sets. The most conspicuous example of the MCPs
we have in mind is the linear-quadratic (or LQ) problem, which consists of the linear
system equation

xt+1 = αxt + βat + ξt, t = 0, 1, . . . (1)
and the quadratic one-stage cost

c(x, a) := x′γx + a′θa, (2)

where “prime” denotes transpose. In (1.1) – (1.2), the state and control (or action)
spaces are X := Rp and A := Rq respectively, and the ξt are i. i. d. (independent
and identically distributed) random disturbances. α, β, γ and θ are matrices of
appropriate dimensions, with γ and θ symmetric and positive definite. However, the
feature we are interested in of the LQ problem is not the linearity— we may as well
take a general nonlinear system equation

xt+1 = G(xt, at, ξt), t = 0, 1, . . . . (3)

What we are interested in is the fact that the one-stage cost c is strictly unbounded ,
in the sense that (cf. Assumption 2.1 (c) and Remark 2.4 (a))

inf
|x|>n

inf
a

c(x, a) →∞ as n →∞. (4)
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Our objective is to show, under mild assumptions (Assumptions 2.1 and 3.3), the
existence of a “minimum pair” and of AC-optimal policies for a class of MCPs that
includes (1.1) – (1.2) and (1.3) – (1.2).

As noted by several authors (e. g. Hartley [12], Kushner [22]), there are vir-
tually no results in the MCP literature directly applicable to the AC problem for
(1.1) – (1.2) [or (1.3) – (1.2)], for, to begin with, most of this literature is concen-
trated on problems with (i) denumerable state space, and/or (ii) compact control
constraint sets, and/or (iii) bounded one-stage costs: [1, 6, 7, 11, 14, 20, 30,. . .]. Thus
one has to resort to “indirect” approaches or plainly to non-MCP techniques. For
instance, among the latter, to solve the AC problem for (1.1) – (1.2) one uses ad
hoc concepts from linear systems theory, such as controllability, observability, sta-
bilizability [1, 12, 22, 28]. Among the former, “indirect” approaches one may use
compactness/compactification methods [2, p. 210; 21, 29]; the “vanishing discount
factor” approach [15, 16]; the linear programming approach [17]; or combinations of
these [12, 29].

The approach we adopt in this paper, on the other hand, is a direct one, based
on the fact that an AC problem with strictly unbounded costs is necessarily well-
behaved. More precisely, if an arbitrary control policy yields a finite AC, then there
exists a (possibly randomized) stationary policy that yields a better (i. e. lower) AC
and, moreover, the latter policy is “stable” (in the sense of Definition 4.1). Thus we
are able to show the existence of stable AC-optimal policies and that, furthermore,
the existence of one such policy is essentially “equivalent” to the existence of a
solution to the “optimality inequality” (see Theorem 5.3 and Corollary 5.4) —unlike
the standard result, which shows that such an inequality is sufficient for optimality,
see e. g. [15,16].

Organization of the paper: In § 2 we introduce the basic Markov control model
and assumptions, and in § 3 we present the AC optimality criteria we are interested in
(see (3.1) – (3.4) and Definition 3.4). § 4 deals with the definition and some important
properties of stable relaxed (or randomized stationary) policies. Our main results
are presented in § 5, and their proofs are collected in § 6. Finally, in § 7 we present
two examples, one of which is the LQ problem (1.1) – (1.2), and conclude with some
brief remarks on the “optimality inequality” versus the “optimality equation”.

Remark 1.1. We use the following notation and terminology. Given a Borel space
Y (i. e. a Borel subset of a complete and separable metric space), its Borel σ-algebra
is denoted by B(Y ); “measurable” always means “Borel-measurable”. P(Y ) stands
for the space of probability measures (p. m.′s) on Y , and C(Y ) denotes the space of
real-valued, continuous and bounded functions on Y . If Y and Z are Borel spaces,
then a stochastic kernel (or conditional probability) on Y given Z is a function
P (· | ·) such that P (· | z) is a p.m. on Y for each fixed z ∈ Z, and P (B | ·) is a
measurable function on Z for each fixed B ∈ B(Y ). The family of all stochastic
kernels on Y given Z is denoted by P(Y |Z). We also use standard abbreviations,
such as p. m. = probability measure, a. s. = almost surely, a. a. = almost all.
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2. THE CONTROL MODEL

We consider the usual Markov control model (X,A, Q, c) with state space X, control
(or action) set A, transition law Q, and one-stage cost function c, which are assumed
to satisfy the following. Both X and A are Borel spaces. The set of admissible
control actions in state x ∈ X is a nonempty set A(x) ∈ B(A) (see Remark 1.1 for
notation). The set K of admissible state-action pairs, i. e.

K := {(x, a) |x ∈ X, a ∈ A(x)} (1)

is a Borel subset of X × A. The transition law Q is a stochastic kernel on X given
K, i. e. Q ∈ P(X |K). Finally, c is a real-valued measurable function on K.

The above Markov control model is standard: [2,10,11,14,19]. Here we will also
assume the following.

Assumption 2.1. (a) Q is weakly continuous, i. e.,
∫

u(y)Q(dy |x, a) is a continu-

ous and bounded function in (x, a) ∈ K for every u ∈ C(X) (recall Remark 1.1 for
the meaning of C(X)).

(b) c(x, a) is l. s. c. (lower semicontinuous) and nonnegative;

(c) c is strictly unbounded (equivalently, a moment ; see Remark 2.4 (a)), i. e., there
exists an increasing sequence of compact sets Kn ↑ K such that

lim
n

inf {c(x, a) | (x, a) 6∈ Kn} = +∞. (2)

In the remainder of this section we briefly discuss Assumption 2.1.

Example 2.2. Let S be a Borel space, and let ξt be a sequence of i. i. d S-valued
random variables with a common distribution µ. Let G : K × S → X be a given
measurable function, where K is the set in (2.1), and consider a stochastic control
system of the form

xt+1 = G (xt, at, ξt) , t = 0, 1, . . . , (3)

The corresponding transition law Q satisfies, for any nonnegative measurable func-
tion u on X,

∫

X

u(y)Q(dy |x, a) = E [u(xt+1) |xt = x, at = a]

=
∫

S

u [G(x, a, s)] µ(ds).

Clearly, Q satisfies Assumption 2.1 (a) if G(x, a, s) is continuous in (x, a) ∈ K for
every s ∈ S. In particular, Assumption 2.1 (a) holds for the linear system (1.1). On
the other hand, it is plain that the quadratic cost in (1.2) satisfies Assumption 2.1 (b)
and 2.1 (c) even if θ is only nonnegative definite (as opposed to positive definite).
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Example 2.3. Suppose that X is compact , and that there is an increasing sequence
of compact sets An ↑ A. Then Assumption 2.1 (c) trivially holds: define Kn :=
X ×An and recall that (by convention) the infimum over the empty set is +∞.

The following remarks are crucial for later developments.

Remark 2.4. (a) A nonnegative measurable function v on a Borel space Y is said
to be a moment on Y [13, 24] if there is an increasing sequence of compact sets
Yn ↑ Y such that

lim
n

inf
y 6∈Yn

v(y) = +∞.

Thus, Assumption 2.1 (c) states, in other words, that the one-stage cost c(x, a) is a
moment on K.

(b) Let M ⊂ P(Y ) be a family of p.m.’s (probability measures) on Y . If there
exists a moment v on Y such that

supµ∈M

∫
v dµ < ∞,

then M is tight (i. e. [3, p. 37] for each ε > 0 there is a compact set C in Y such
that µ(C) ≥ 1− ε ∀µ ∈ M). The proof is trivial.

(c) In §§ 4 and 6, the above remark (b) will be used in conjunction with Pro-
horov’s Theorem [3, p.37], which states the following: If M ⊂ P(Y ) is tight, then it
is relatively compact, i. e. every sequence in M contains a weakly convergent sub-
sequence. More explicitly, every sequence {µn} in M contains a subsequence {µni}
such that, for some p.m. µ on Y ,

lim
i

∫
udµni =

∫
udµ ∀ u ∈ C(Y ). (4)

(d) Let µn and µ be p. m.′s on a Borel space Y , such that µn → µ weakly, and
let v : Y → R be l. s. c. and bounded from below. Then

lim inf
n

∫
v dµn ≥

∫
v dµ. (5)

Indeed, by the assumption on v, there is a sequence of functions vk ∈ C(Y ) such
that vk ↑ v. Therefore, for all k,

lim inf
n

∫
v dµn ≥ lim inf

n

∫
vk dµn =

∫
vk dµ.

Letting k → ∞ we obtain (2.5).
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3. PERFORMANCE CRITERIA

Definition 3.1. F denotes the set of all measurable functions f : X → A such
that f(x) ∈ A(x) for all x ∈ X, and Φ stands for the set of all stochastic kernels
ϕ ∈ P(A|X) such that ϕ(A(x) |x) = 1 for all x ∈ X.

A function f ∈ F will be identified with the stochastic kernel ϕ ∈ Φ such that
ϕ(· |x) is the p. m. concentrated at f(x) ∀ x ∈ X. Thus F ⊂ Φ. By Assumption
2.1 (c), the set K in (2.1) contains the graph of a function f ∈ F (see e. g. [27]
Example 2.6). In other words, the set F (hence Φ and the set of policies defined
next) is nonempty.

Definition 3.2. As usual, a control policy (more briefly a policy) is a sequence
δ = {δt} such that, for each t = 0, 1, . . . , δt(· |ht) is a conditional probability on A
given the history ht := (x0, a0, . . . , xt−1, at−1, xt), and which satisfies the constraint
δt(A(xt) |ht) = 1. The class of all policies is denoted by ∆. A policy δ = {δt} is
said to be a:

(i) relaxed (or randomized stationary) policy if there exists ϕ ∈ Φ such that
δt(· |ht) = ϕ(· |xt) ∀ ht, t ≥ 0;

(ii) (nonrandomized or) deterministic stationary policy if there exists f ∈ F such
that δt(· |ht) is concentrated at f(xt) ∀ ht, t ≥ 0.

Following a standard convention, we will identify F (resp. Φ) with the set of all
deterministic stationary (resp. relaxed) policies. Thus F ⊂ Φ ⊂ ∆.

Let (Ω,F) be the measurable space consisting of the sample space Ω := (X×A)∞

and the corresponding product σ-algebra F . Then for each policy δ ∈ ∆ and
initial distribution ν ∈ P(X), a probability measure P δ

ν and a stochastic process
{(xt, at), t = 0, 1, . . .} are defined on Ω in a canonical way, where xt and at represent
the state and the control action at time t, respectively. The expectation operator
with respect to P δ

ν is written Eδ
ν . If ν is concentrated at (the initial state) x0 = x,

then we write P δ
ν and Eδ

ν as P δ
x and Eδ

x, respectively.

For each δ ∈ ∆ and ν ∈ P(X), define

Jn(δ, ν) := Eδ
ν

[
n−1∑
t=0

c(xt, at)

]
. (1)

Then the long-run expected average cost (AC) per unit time incurred by the policy
δ, given the initial distribution ν, is given by

J(δ, ν) := lim sup
n

n−1Jn(δ, ν). (2)

Similarly, the pathwise AC is given by

J0(δ, ν) := lim sup
n

n−1
n−1∑
t=0

c(xt, at). (3)
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Finally, let
j∗ := inf

ν
inf
δ

J(δ, ν). (4)

To ensure that the control problem is non-trivial, we suppose the following.

Assumption 3.3. J(δ̂, ν̂) < ∞ for some policy δ̂ and some initial distribution ν̂.

Assumptions 3.3 and 2.1 are supposed to hold throughout the following. (In § 7
we show two examples for which these assumptions hold.)

We are interested in several optimality criteria, one of which is the existence of a
“minimum pair” introduced by Kurano [21].

Definition 3.4. Let δ∗ be a policy and ν∗ an initial distribution. Then:

(a) (δ∗, ν∗) is called a minimum pair if J(δ∗, ν∗) = j∗;

(b) δ∗ is said to be AC-optimal if

J(δ∗, ν) = j∗ ∀ ν ∈ P(X),

and pathwise AC-optimal if

J0(δ∗, ν) = j∗ P δ∗
ν –a. s. ∀ ν ∈ P(X).

4. STABLE RELAXED POLICIES

As is well-known, when using a relaxed policy ϕ ∈ Φ the state process {xt} is an
X-valued Markov chain with time-homogeneous transition kernel

Q (· |x, ϕ) :=
∫

A

Q (· |x, a)ϕ(da |x), x ∈ X. (1)

We will also write
c(x, ϕ) :=

∫

A

c(x, a)ϕ(da |x). (2)

In particular, for a deterministic stationary policy f ∈ F, (4.1) and (4.2) reduce to

Q(· |x, f) := Q(· |x, f(x)), and c(x, f) := c(x, f(x)) (3)

respectively.

Definition 4.1. A relaxed policy ϕ is said to be stable if:

(a) There exists an invariant p.m. pϕ ∈ P(X) for Q(· | ·, ϕ), i. e.

pϕ(·) =
∫

X

Q(· |x, ϕ)pϕ(dx); (4)

(b) the average cost J(ϕ, pϕ) is finite and satisfies

J(ϕ, pϕ) =
∫

X

c(x, ϕ)pϕ(dx). (5)

The family of all stable relaxed policies is denoted by Φ0.
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Remark 4.2. (a) If ϕ ∈ Φ0, the invariant p. m. pϕ in Definition 4.1 is not
required to be unique; if it is, then the transition kernel Q(· | ·, ϕ) is said to be
ergodic. (Ergodicity holds if, e. g. Q(· | · , ϕ) is indecomposable [31, pp. 389–390]. See
also Remark 4.4 below.)

(b) If ϕ ∈ Φ0 and pϕ is as in (4.4) – (4.5), then by the Individual Ergodic Theorem
[31, p. 388], the limit (cf. (3.1), (3.2))

J(ϕ, x) = lim n−1Jn(ϕ, x) (4.6a)

exists for pϕ–a. a. (almost all) x ∈ X and satisfies
∫

J(ϕ, x)pϕ(dx) =
∫

c(x, ϕ)pϕ(dx) = J(ϕ, pϕ) (4.6 b)

(where the second equality comes from (4.5)), and moreover [9, 31],

J0(ϕ, pϕ) = lim
n

n−1
n−1∑
t=0

c(xt, ϕ) a. s. (almost surely). (7)

To state a stronger form of (4.7) we first recall the following [8, 18, 24, 26].

Definition 4.3. Let λ be a σ-finite measure on X, and for each ϕ ∈ Φ define

Lϕ(x,B) := Pϕ
x (xn ∈ B for some n ≥ 1), x ∈ X, B ∈ B(X).

Then the transition kernel Q(· | ·, ϕ) is said to be λ-irreducible if λ(B) > 0 implies

Lϕ(x,B) > 0 ∀ x ∈ X,

and λ-recurrent (of Harris recurrent) if λ(B) > 0 implies

Lϕ(x,B) = 1 ∀ x ∈ X. (8)

If X is a denumerable set (with the discrete topology) and we take λ as the
counting measure, then λ-irreducibility and λ-recurrence reduce to the standard,
elementary notions of irreducibility and recurrence in the theory of Markov chains.
In the examples in § 7 we take λ = Lebesgue measure on X = Rp.

Remark 4.4. Laws of Large Numbers [24, 26]. Let ϕ ∈ Φ0 be a stable relaxed
policy and let pϕ be as in (4.4) – (4.5). If, moreover, the transition kernel Q(· | ·, ϕ)
is λ-recurrent (for some λ), then Q(· | ·, ϕ) is ergodic and for any initial distribution
ν in P(X),

J0(ϕ, ν) = lim
n

n−1
n−1∑
t=0

c(xt, ϕ)

=
∫

c(x, ϕ)pϕ(dx) Pϕ
ν –a. s.

(4.9a)

and
J(ϕ, ν) = Eδ

νJ0(ϕ, ν) =
∫

c(x, ϕ)pϕ(dx). (4.9b)

[cf. (4.6) – (4.7).]

We conclude this section by noting two important facts.
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Proposition 4.5 Let ϕ∗ ∈ Φ0 be a stable relaxed policy with corresponding
invariant p. m. pϕ∗ . Then (ϕ∗, pϕ∗) is a minimum pair, i. e.

J
(
ϕ∗, pϕ∗

)
= j∗ (10)

if and only if
J(ϕ∗, x) = j∗ for pϕ∗–a. a. x ∈ X. (11)

P r o o f . It is obvious that (4.11) implies (4.10): see (4.6). To prove the converse
we need to show that if (4.10) holds, then the set B := {x | J(ϕ∗, x) > j∗} has
pϕ∗-measure zero. Now, by (3.4), the complement of B is Bc = {x |J(ϕ∗, x) = j∗},
so that, by (4.10) and (4.6),

j∗ =
∫

B

J(ϕ∗, x)pϕ∗(dx) + j∗pϕ∗(Bc)

or, equivalently, ∫

B

J(ϕ∗, x)pϕ∗(dx) = j∗pϕ∗(B).

This implies pϕ∗(B) = 0. 2

The following proposition states an important property of MCPs with strictly
unbounded costs: it says that, when dealing with the AC problem, we may restrict
ourselves to work with stable relaxed policies— see (4.19).

Proposition 4.6. Suppose that Assumptions 2.1 and 3.3 hold. Then for any
δ ∈ ∆ and ν ∈ P(X) such that J(δ, ν) < ∞, there exists a stable relaxed policy
ϕ ∈ Φ0 such that

J(δ, ν) ≥ J(ϕ, pϕ). (12)

P r o o f . The proof in fact uses standard arguments (see e. g. Kurano [21] Lemma
2.1), but is included here for completeness. It consists of the following steps:

(i) There exists a p. m. µ on X ×A concentrated on K such that

J(δ, ν) ≥
∫

c dµ; (13)

(ii) Decompose the p. m. µ in part (i) as µ(dx, da) = ϕ(da |x) µ̃(dx), where ϕ ∈ Φ
and µ̃ ∈ P(X) is the marginal of µ on X, i. e.,

µ(B × C) =
∫

B

ϕ(C |x)µ̃(dx) ∀B ∈ B(X), C ∈ B(A);

thus we may rewrite (4.13) as

J(δ, ν) ≥
∫

X

c(x, ϕ)µ̃(dx);
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(iii) The relaxed policy ϕ in (ii) is stable and µ̃ =: pϕ is an invariant p. m. for
Q(· | ·, ϕ).

Proof of (i). For each n = 1, 2, . . . , let µn be the p. m. on X ×A defined as

µn(Γ) := n−1
n−1∑
t=0

P δ
ν [(xt, at) ∈ Γ] , Γ ∈ B(X ×A). (14)

By definition of control policy (Definition 3.2), µn is concentrated on K and, on the
other hand, by (3.2),

J(δ, ν) = lim sup
∫

c dµn. (15)

Thus for any given ε > 0, there exists N such that

sup
n≥N

∫
c dµn ≤ J(δ, ν) + ε < ∞.

This implies, by Remarks 2.4 (a), (b), that {µn} is tight and, therefore, by Prohorov’s
Theorem (Remark 2.4 (c)), there is a subsequence {µni} of {µn} converging weakly
to a p. m. µ on X × A. Furthermore, since each µn is concentrated on K, so is µ.
Finally, from (4.15),

J(δ, ν) ≥ lim inf
i

∫
c dµni ≥

∫
c dµ, (16)

where the latter inequality is due to the weak convergence and Assumption 2.1 (b);
see Remark 2.4 (d).

Proof of (ii). This decomposition is well-known, e. g. [11, p. 89, Theorem 2], [19,
Corollary 12.7].

Proof of (iii). From (4.1) and (4.4), it suffices to show that
∫

Tv(x, a)µ(dx, da) =
∫

Tv(x, ϕ)µ̃(dx) = 0 ∀ v ∈ C(X), (17)

where
Tv(x, a) :=

∫
v(y)Q(dy |x, a)− v(x).

To begin with, observe that for any bounded measurable function v on X, the
sequence

Mn(v) := v(xn)−
n−1∑
t=0

Tv(xt, at), n ≥ 0,

with M0(v) := v(x0), is a P δ
ν -martingale with respect to the σ-algebra generated

by the history hn (introduced in Definition 3.2). Thus, in particular, for all n,
Eδ

νv(x0) = Eδ
νMn(v), i. e.,

∫
v dν = Eδ

νv(xn)− n

∫
(Tv) dµn ∀n, (18)
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where µn is the p.m. in (4.14). Observe also that, by Assumption 2.1 (a), Tv is
a continuous and bounded function on K if v ∈ C(X). Finally, in (4.18), let
v ∈ C(X), replace {µn} by the weakly convergent subsequence {µni

} in (4.16),
and then divide by ni and let i → ∞ to obtain (4.17). This completes the proof of
Proposition 4.6. 2

As a corollary of Proposition 4.6, the number j∗ in (3.4) satisfies

j∗ = inf {J(ϕ, pϕ) |ϕ ∈ Φ0} , (19)

where Φ0 is the set of all stable relaxed policies.

5. MAIN RESULTS

In this section we state our main results; their proofs are collected in § 6. We assume
throughout that Assumptions 2.1 and (3.3) hold .

Theorem 5.1. (a) There exists a stable relaxed policy ϕ∗ ∈ Φ0 such that (ϕ∗, pϕ∗)
is a minimum pair, i. e.

J
(
ϕ∗, pϕ∗

)
= j∗. (1)

(b) If the policy ϕ∗ ∈ Φ0 in (a) is such that Q (· | ·, ϕ∗) is λ-recurrent for some
σ-finite measure λ on X, then ϕ∗ is AC-optimal and pathwise AC-optimal, i. e. for
any initial distribution ν ∈ P(X),

J0(ϕ∗, ν) = j∗ Pϕ∗
ν –a. s., (2)

and
J(ϕ∗, ν) = j∗. (3)

The optimality inequality. The existence of an AC-optimal policy is sometimes
based on the following well-known result [7, 15, 16], stated here for completeness and
for comparison with our results.

Proposition 5.2. If there exists a relaxed policy ϕ and a measurable function h
on X, bounded from below, and such that

j∗ + h(x) ≥ c(x, ϕ) +
∫

h(y)Q(dy |x, ϕ) ∀x, (4)

then ϕ is AC-optimal; in fact, any policy ϕ ∈ Φ that satisfies (5.4) is AC-optimal.

Indeed, iteration of (5.4) yields

nj∗ + h(x) ≥ Eϕ
x

n−1∑
t=0

c(xt, ϕ) + Eϕ
x h(xn)

≥ Jn(ϕ, x) + L, (5)



Existence of Average Optimal Policies in Markov Control Processes 11

where L is a lower bound for h(·). This implies j∗ ≥ J(ϕ, x) ∀x and, therefore, the
AC-optimality of ϕ follows from (3.4).

It turns out that (5.4) is “almost” equivalent to the existence of a stable minimum
pair, in the following sense.

Theorem 5.3. (a) Let ϕ ∈ Φ0 be a stable relaxed policy with an invariant p.m.
pϕ. Then (ϕ, pϕ) is a minimum pair if and only if there exists a nonnegative mea-
surable function h on X such that h and ϕ satisfy (5.4) for pϕ–a. a. x ∈ X.

(b) If ϕ ∈ Φ0 is such that Q(· | ·, ϕ) is λ-recurrent, then ϕ is AC-optimal if and only
if there exists a nonnegative measurable function h on X such that (5.4) holds for
all x ∈ X.

Combining Theorems 5.1 and 5.3 we obtain the following.

Corollary 5.4. (a) There exists a stable relaxed policy ϕ∗, with invariant p. m.
pϕ∗ , and a nonnegative measurable function h on X such that

j∗ + h(x) ≥ c(x, ϕ∗) +
∫

h(y)Q(dy|x, ϕ∗), pϕ∗–a. a. x ∈ X. (6)

Moreover, there is a deterministic stationary policy f∗ ∈ F such that (using the
notation (4.3))

j∗ + h(x) ≥ c(x, f∗) +
∫

h(y)Q(dy|x, f∗), pϕ∗–a. a. x ∈ X. (7)

(b) If, in addition, ϕ∗ is such that Q(· | ·, ϕ∗) is λ-recurrent, then (5.6) – (5.7) hold for
all x ∈ X; hence (by Proposition 5.2) both ϕ∗ and the deterministic policy f∗ ∈ F
in (5.7) are AC-optimal.

To obtain the deterministic stationary policy f∗ in (5.7), starting from (5.6), it
suffices to apply the following (slight) generalization of Blackwell’s theorem [4] p. 864
(which is the same as the Lemma in [5] p. 228):

Lemma 5.5. (Blackwell). Let v : K → R be a measurable function, and ϕ ∈ Φ a
relaxed policy such that the map

x → v(x, ϕ) :=
∫

A

v(x, a)ϕ(da |x)

if finite-valued. Then there exists a deterministic stationary policy f ∈ F such that

v(x, ϕ) ≥ v(x, f(x)) ∀ x ∈ X.

Thus if we write the right-hand side of (5.6) as
∫

A

[
c(x, a) +

∫

X

h(y)Q(dy|x, a)
]

ϕ∗(da|x) =:
∫

A

v(x, a)ϕ∗(da|x),

then the existence of f∗ ∈ F satisfying (5.7) follows from Lemma 5.5. Finally, part
(b) in Corollary 5.4 follows directly from the assumption of λ-recurrence, as in the
proof below of Theorem 5.3 (b).
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Remark 5.6. (5.4) implies

j∗ + h(x) ≥ inf
a∈A(x)

[
c(x, a) +

∫
h(y)Q(dy|x, a)

]
. (8)

This is the so-called optimality inequality . If f ∈ F is such that f(x) ∈ A(x)
attains the minimum in (5.8) for all x ∈ X, then Proposition 5.2 yields that f is
AC-optimal. However, the existence of such an f is not ensured in general, unless
we strengthen the hypotheses on c, Q and A(·). This is the reason why to obtain
f∗ ∈ F satisfying (5.7) we had to resort to Blackwell’s theorem (Lemma 5.5).

In the next section we prove Theorems 5.1 and 5.3; however, the reader may wish
to read first the applications in § 7.

6. PROOFS

Proof of Theorem 5.1. (a) Recall that, by (4.19), the search for a minimum pair
may be restricted to policies ϕ ∈ Φ0.

Let 0 < εn < 1 be a sequence of numbers such that εn ↓ 0 and, for each n, let
ϕn ∈ Φ0 be such that

J (ϕn, pϕn) =
∫

c dγn ≤ j∗ + εn (1)

where γn is the p.m. on X ×A, concentrated on K, such that

γn(B × C) :=
∫

B

ϕn(C|x)pϕn(dx) ∀B ∈ B(X), C ∈ B(A).

Thus, since sup
n

∫
c dγn ≤ j∗ + 1 and c is a moment (see Remarks 2.4 (a), (b), (c)),

there is a subsequence {γni} of {γn} converging weakly to a p. m. γ∗ on X × A,
concentrated on K, and such that

j∗ ≥ lim inf
i

∫
c dγni ≥

∫
c dγ∗, (2)

where the first inequality comes from (6.1) and the second from the Remark 2.4 (d).
Finally, decompose γ∗ as in the proof of Proposition 4.6, parts (ii) and (iii), i. e.
γ∗(dx, da) = ϕ∗(da|x)pϕ∗(dx), where ϕ∗ ∈ Φ0, to obtain, from (6.2) and (4.6),

j∗ ≥
∫

c(x, ϕ∗)pϕ∗(dx) = J(ϕ∗, pϕ∗).

This yields (5.1).

(b) If the policy ϕ∗ in part (a) is λ-recurrent, then (5.2) – (5.3) follow from (5.1)
and (4.9). This completes the proof of Theorem 5.1. 2
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Proof of Theorem 5.3. (a) (Sufficiency.) Suppose that ϕ ∈ Φ0 and h(·) satisfy
(5.4) for pϕ–a. a. x ∈ X; that is,

j∗ + h(x) ≥ c(x, ϕ) +
∫

h(y)Q(dy|x, ϕ) pϕ–a. a. x ∈ X. (3)

Integrating with respect to pϕ yields, by (4.4),

j∗ +
∫

h dpϕ ≥
∫

c(x, ϕ)pϕ(dx) +
∫

h dpϕ,

which combined with (4.6) implies j∗ ≥ J(ϕ, pϕ). Thus (ϕ, pϕ) is a minimum pair.

(Necessity.) Conversely, suppose that ϕ ∈ Φ0 is such that (ϕ, pϕ) is a minimum
pair, so that, from (4.6) and Proposition 4.5,

J(ϕ, x) = lim
n

n−1Jn(ϕ, x) = j∗ for pϕ–a. a. x ∈ X. (4)

Now, define h0 := J0 := 0, and for n = 1, 2, . . . , x ∈ X,

jn(x) := Jn(ϕ, x)− Jn−1(ϕ, x), (5)
Mn := inf

x
Jn(ϕ, x),

hn(x) := Jn(ϕ, x)−Mn (≥ 0),

h(x) := lim inf
m

m−1
m−1∑
n=1

hn(x).

Notice that h(·) ≥ 0, and
m∑

n=1

jn(x) = Jm(ϕ, x). On the other hand, by the Markov

property,

Jn(ϕ, x) = c(x, ϕ) +
∫

Jn−1(y, ϕ)Q(dy |x, ϕ),

which is equivalent to

jn(x) + hn−1(x) = c(x, ϕ) +
∫

hn−1(y)Q(dy |x, ϕ).

This yields, summing over n = 1, . . . , m,

Jm(ϕ, x) +
m−1∑
n=1

hn(x) = mc(x, ϕ) +
∫ m−1∑

n=1

hn(y)Q(dy|x, ϕ).

Finally, divide by m and take lim inf as m → ∞; thus (6.4) and Fatou’s Lemma
yield

j∗ + h(x) ≥ c(x, ϕ) +
∫

h(y)Q(dy|x, ϕ) pϕ –a. a. x. (6)

This completes the proof of Theorem 5.3 (a).
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(b) If (5.4) holds for all x ∈ X, then ϕ is AC-optimal: see Proposition 5.2.
Conversely, suppose now that ϕ ∈ Φ0 is such that Q(· | ·, ϕ) is λ-recurrent. If,
moreover, ϕ is AC-optimal, then, by (4.6) and (4.9), the limit in (6.4) holds for all
x ∈ X. Therefore, the argument from (6.4) to (6.6) holds for all x ∈ X; thus (5.4)
(or (6.6)) holds for all x ∈ X. 2

7. APPLICATIONS AND FURTHER COMMENTS

Example 7.1. Consider the LQ system (1.1) – (1.2), which, for ease of reference,
is repeated here:

xt+1 = αxt + βat + ξt, t = 0, 1, . . . ; x0 given, (1)
c(x, a) := x′γx + a′θa. (2)

As in § 1, we let X := Rp, A(·) ≡ A := Rq; γ and θ are symmetric and posi-
tive definite matrices. If the initial state x0 is random, then we assume that it is
independent of the i. i. d. disturbances ξt. As already noted (see Example 2.2) As-
sumption 2.1 (a), (b), (c) trivially hold in this case. Thus, if Assumption 3.3 holds,
then with no further hypotheses whatsoever, Theorem 5.1 (a) yields the existence
of a stable relaxed policy ϕ∗ such that (ϕ∗, pϕ∗) is a minimum pair; furthermore,
Corollary 5.4 (a), together with Proposition 5.2, yields a deterministic stationary
policy f∗ ∈ F such that

J(f∗, x) = j∗ for pϕ∗–a. a. x ∈ X.

Sufficient conditions for Assumption 3.3 can be derived from Example 7.3 below (see
Proposition 7.6).

Now, to get the stronger results in Theorems 5.1 (b), 5.3 (b) and Corollary 5.4 (b),
we need Q(· | ·, ϕ∗) to be λ-recurrent, for some σ-finite measure λ on X = Rp. So,
let (e. g.) λ stand for the Lebesgue measure on X, and suppose:

Assumption 7.2. The random vectors ξt are absolutely continuous with a density
µ which is positive λ–a.e. (such as, for instance, a Gaussian density).

Then, as is well-known [8, 10, 25], Q(· | ·, ϕ∗) is λ-recurrent and, therefore, all the
results in § 5 are applicable.

Example 7.3. Let us consider again the quadratic cost (7.2), but (7.1) is now
replaced by a nonlinear (autoregressive-like) system

xt+1 = G (xt, at) + ξt. (3)

The control constraint sets A(x) ⊂ Rq are assumed to be (nonempty) closed sets
and such that K— defined in (2.1) — is convex. If, in addition, we suppose:
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Assumption 7.4. G : K → X is continuous,
then Assumption 2.1 holds.

To obtain Assumption 3.3 and λ-recurrence, let us suppose the following (essen-
tially “growth”) conditions.

Assumption 7.5. (a) G(x, ϕ) :=
∫

G(x, a)ϕ(da|x) is locally bounded for every

ϕ ∈ Φ;

(b) For some constant m > 0, G(x, a)′γG(x, a) ≤ mc(x, a) for all (x, a) ∈ K, where
γ in the coefficient matrix in (7.2);

(c) Assumption 7.2 holds and, also, E(ξ0) = 0 and E | ξ0 |2 < ∞;

(d) There is a relaxed policy ϕ̂ ∈ Φ for which the following holds: There are positive
constants ρ < 1, k1, k2 such that

(d1) E |G(x, ϕ̂) + ξ0|2 ≤ ρ|x|2 ∀ |x| ≥ k1, and

(d2)
∫

(a′θa)ϕ̂(da|x) ≤ k2|x|2 ∀x.

Then standard results on ergodicity of time series [8, 25] yield Assumption 3.3
and λ-recurrence. More precisely, we have:

Proposition 7.6 [8, 25]. (a) If Assumption 7.5 (a) and (c) hold, then Q(· | ·, ϕ) is
(aperiodic and) λ-recurrent ∀ϕ ∈ Φ;

(b) If, moreover, Assumptions 7.5 (b) and (d) hold, then when using the policy ϕ̂,
the state (Markov) process {xt} is geometrically ergodic and its unique invariant

p.m., say p̂, has a finite second moment, i. e.
∫
|x|2p̂(dx) < ∞.

It goes without saying that Assumption 7.5 was specially designed for the additive-
noise (or autoregressive-like) system (7.3). If we have instead a general MCP, say
as in (2.3), sufficient conditions for Assumption 3.3 and λ- (or Harris-) recurrence,
may be obtained in a number of ways [10, 18, 24, 26].

We conclude with a few remarks on the “optimality inequality” (5.8), which
was derived from (5.4). As shown in Theorem 5.3, the inequality (5.4) is virtually
equivalent to the existence of a minimum pair or an AC-optimal policy. The question
is: is it possible to have equality in (5.4) or in (5.8)? Some authors have found the
answer to be affirmative in settings much more restrictive than our Assumptions 2.1
and 3.3: even for linear systems [12] or for denumerable state/compact action sets
[7], additional hypotheses are required to obtain the “optimality equation”. It would
be interesting to investigate conditions under which, in our general MCP, equality
holds in (5.4), i. e. the Poisson equation [10, 26]

j∗ + h(x) = c(x, ϕ) +
∫

h(y)Q(dy |x, ϕ) ∀ x ∈ X
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would be obtained. This would yield not only that ϕ is AC-optimal, but also that
the transition kernel Q(· | ·, ϕ) satisfies nice recurrence properties, such as Doeblin’s
condition.

(Received March 19, 1992.)
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