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CONVERGENCE OF PRIMAL–DUAL SOLUTIONS
FOR THE NONCONVEX LOG–BARRIER METHOD
WITHOUT LICQ

Christian Grossmann,∗ Diethard Klatte and Bernd Kummer

This paper is dedicated to our colleague, friend and teacher Frantǐsek Nožička
on the occasion of his 85th birthday.

This paper characterizes completely the behavior of the logarithmic barrier method un-
der a standard second order condition, strict (multivalued) complementarity and MFCQ
at a local minimizer. We present direct proofs, based on certain key estimates and few
well-known facts on linear and parametric programming, in order to verify existence and
Lipschitzian convergence of local primal-dual solutions without applying additionally tech-
nical tools arising from Newton–techniques.

Keywords: log-barrier method, Mangasarian–Fromovitz constraint qualification, conver-
gence of primal-dual solutions, locally linearized problems, Lipschitz estimates

AMS Subject Classification: 90C30, 65K10, 49K40, 49M37

1. INTRODUCTION

We consider the nonlinear programming problem

f(x) → min !

subject to x ∈ G = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . , m },
(1)

where the functions f, gi : Rn → R, i = 1, . . . ,m are twice continuously differen-
tiable. In the log-barrier method, the original problem (1) is embedded into a family
of auxiliary problems with positive embedding parameter s,

F (x, s) = f(x)− s
m∑

i=1

ln(−gi(x)) → min !

subject to x ∈ G0 = {x ∈ Rn : gi(x) < 0, i = 1, . . . , m }.
(2)

For any local solution x(s) of problem (2), the necessary optimality condition yields

∇f(x(s))−
m∑

i=1

s

gi(x(s))
∇gi(x(s)) = 0. (3)

∗This author was supported by DFG grant GR 1777/2–2.
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Hence, with L(x, y) = f(x) +
∑m

i=1 yigi(x), the Lagrange condition

DxL(x(s), y(s)) = 0 (4)

holds with the so-called log-barrier multipliers defined by

yi(s) = − s

gi(x(s))
, i = 1, . . . ,m. (5)

Given a stationary solution x∗ of (1), suitable second order conditions yield that
x∗ is an isolated local minimizer. If, in addition, the linear independence constraint
qualification (LICQ) and the strict complementarity condition are fulfilled, then,
by a classical result (cf. Fiacco and McCormick [4, Thm. 14]), a differentiable
local primal-dual path (x(s), y(s)) leading to (x∗, y∗) is generated by the log-barrier
method as well as by several further barrier-penalty methods (cf. [4]). Under the
same assumptions, this result can be extended to rather wide classes of barrier-
penalty methods (cf., e. g., [6, 7, 13]).

However, if LICQ does not hold, the associated dual solution is not uniquely
defined and is hence often called degenerate. In the literature of the last decade, there
is a growing interest in the convergence behavior of numerical methods in the case
of degenerate solutions. As examples let us refer to recent papers [5, 16, 18, 19, 20]
on interior methods and modified SQP methods.

The aim of the present paper is to analyze the behavior of local primal-dual
solutions of the log-barrier method for s ↓ 0 under the Mangasarian-Fromovitz con-
straint qualification, some second-order sufficient optimality condition and some
complementarity condition.

First we study the log-barrier method applied to the linear program constructed
by a reduced local linearization of problem (1). For these auxiliary problems we
obtain that the uniquely defined barrier multiplier converges to some well-defined
multiplier µ of (1) associated with x∗. In fact, this is the analytic center of the
multiplier set, and so our result corresponds to a similar observation in linear pro-
gramming [1].

Next we show, for small s, the existence of a global minimizer x(s) of F (·, s) on
the set of strictly feasible points of some neighborhood of x∗ such that x(s) is a
locally isolated stationary point of F (·, s) and defines a continuously differentiable
primal trajectory. Moreover, the associated multipliers y(s) converge to the limit µ
obtained via the reduced linearization. This partially recovers results recently pre-
sented in [5, 21], where similar properties of the primal-dual path under MFCQ were
derived. However, our approach is significantly different, and we derive some addi-
tional insights into the nature of the log-barrier method: The particular linearization
gives a useful formula for the limit multiplier µ, and the Lipschitz estimate for the
dual solutions given in Theorem 2 as well as the corresponding proof technique are
new.

So we present a straightforward, complete and rather short convergence analysis
of the primal-dual solutions. Our main tools consist in the subtle estimate of the
values gi(x) on line-segments between two stationary points and of a basic fact on
Lipschitzian behavior of primal-dual solutions for parametric nonlinear problems,
compare estimate (33).
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Our ideas might be of interest also for a bigger class of penalty-barrier methods.
Finally, it turns out that parametric optimization presents us some powerful tools,
see, e. g., [2, 4, 8, 9, 14, 17].

Throughout this paper, the following hypotheses are imposed.

(A1) x∗ is some local minimizer of (1).

(A2) The Mangasarian-Fromovitz constraint qualification (MFCQ) is satisfied
at x∗, i. e., the set

U0 = {u ∈ Rn : ∇gi(x∗)T u < 0 ∀ i ∈ I0} (6)

is not empty where I0 = {i : gi(x∗) = 0}.
We put I1 = {1, . . . , m} \ I0 and suppose that the set I0 of active constraints at x∗

is not empty, too. As a consequence of (A1) and (A2) the Karush–Kuhn–Tucker
(KKT) conditions

∇f(x∗) +
m∑

i=1

yi∇gi(x∗) = 0, y ≥ 0, g(x∗) ≤ 0, yTg(x∗) = 0, (7)

are satisfied with some nonempty and bounded set Y ∗ of Lagrange multipliers y ∈
Rm. Note that MFCQ ensures G0 6= ∅. Hence, the feasible region of the log-barrier
auxiliary problem (2) is nonempty. Further, we suppose throughout that

(A3) the strict complementarity condition w.r. to Y ∗ holds, i. e.,

some y∗ ∈ Y ∗ satisfies y∗i > 0 ∀ i ∈ I0. (8)

Let us introduce some further notation. The gradient and the Hessian of F (·, s)
with respect to x are denoted by ∇F (x, s) and ∇2F (x, s), respectively. Further, the
Landau symbols O(·) and o(·) are used in the sense that t = O(τ) means |t| ≤ cτ
for some constant c > 0 and τ ↓ 0, while o(·) means o(τ)/τ → 0 as τ ↓ 0.

2. LOCALLY LINEARIZED PROBLEMS

In this section, we consider the linear program

f̃(x) = ∇f(x∗)T (x− x∗) → min !

s. t. g̃i(x)=∇gi(x∗)T (x− x∗)≤0, i∈I0, x− x∗∈span {∇gi(x∗)}i∈I0
.

(9)

Throughout this section,

we suppose the general assumptions (A1), (A2) and (A3).

Though condition (A3) (i. e., strict complementarity w.r. to some y ∈ Y ∗) is cer-
tainly restrictive, we cannot avoid this, and it is rather natural in the context of
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log-barrier methods as its role for superlinear convergence and good sensitivity prop-
erties (even in linear programming) is well-known (cf. [3, 5, 10, 21]). Let

A = ( . . .∇gi(x∗) . . . )i∈I0 (column-wise) (10)

denote the (n,m0)-matrix which assembles the gradients ∇gi(x∗), i ∈ I0, of the
constraints being active at x∗.

Further, let R(A) and N (AT) denote the range of A and the null space of AT,
respectively. Recall that the direct sum R(A) ⊕N (AT) coincides with Rn. Substi-
tuting d = x−x∗ and taking into account that span {∇gi(x∗)}i∈I0

= R(A), problem
(9) can be equivalently given by

∇f(x∗)T d → min ! s. t. d ∈ R(A), AT d ≤ 0. (11)

Lemma 1. The point x∗ is the unique solution of problem (9).

P r o o f . Obviously, x∗ solves (9) uniquely if and only if

d ∈ R(A), AT d ≤ 0, d 6= 0 =⇒ ∇f(x∗)T d > 0. (12)

Because Rn = R(A)⊕N (AT ) we have R(A)∩N (AT ) = {0}. This implies, for some
c > 0,

‖AT d ‖∞ ≥ c ‖d‖, ∀ d ∈ R(A). (13)

Thus, with the multiplier y∗ of (A3), already the assertion follows

d ∈ R(A), AT d ≤ 0, d 6= 0 ⇒ −∇f(x∗)T d = 〈y∗, AT d〉 < 0. 2

Next, for the sake of comparison we study the log-barrier method to the reduced
problem (11) (or (9), respectively), i. e. we investigate auxiliary problems

ϕs(d) = ∇f(x∗)T d− s
∑

i∈I0

ln(−∇gi(x∗)T d) → min !

subject to d ∈ D0 = { d ∈ R(A) : AT d < 0 }.
(14)

By MFCQ and R(A)⊕N (AT) = Rn, D0 is nonempty. Obviously, the objective ϕs

(for any fixed s > 0) of (14) is strictly convex on D0.

Lemma 2. For any s > 0 problem (14) possesses a unique solution d̃(s). Further,
there is a unique solution d∗ of the problem

∏

i∈I0

−∇gi(x∗)T d

∇f(x∗)T d
→ max ! s. t. d ∈ D0, ‖d‖ = 1, (15)

and it holds d̃(s) = tsd
∗ with some ts > 0 for all s > 0 as well as ‖d̃(s)‖ = O(s).
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P r o o f . With (A3), we have (12) as shown in the proof of Lemma 1. Together
with the growth of the logarithmic function this guarantees the existence of a solution
of problem (14). The strict convexity of the objective function then implies the
uniqueness of the solution.

To show the second statement, let s > 0 be fixed. Because of the cone–structure
of D0, any d ∈ D0 can be represented by

d = t d̂ with some d̂ ∈ D0, ‖ d̂ ‖ = 1 and t > 0.

First, let us fix some arbitrary d̂ ∈ D0 with ‖ d̂ ‖ = 1. Along the related ray, (14)
becomes

ϕs(td̂) = t∇f(x∗)T d̂− s
∑

i∈I0

ln(t (−∇gi(x∗)T d̂)) → min t ! s. t. t > 0. (16)

This has a unique minimizer

t̂ = t̂(d̂) =
sm0

∇f(x∗)T d̂
, where m0 = card I0.

Inserting t̂ = t̂(d̂) into the objective of (16), this yields

ϕs(t̂d̂) = sm0 − s
∑

i∈I0

ln

(
sm0

−∇gi(x∗)T d̂

∇f(x∗)T d̂

)
.

Thus, the minimum ν(s) of ϕs(t̂d̂) with respect to all d̂ ∈ D0 satisfying ‖d̂‖ = 1
(which corresponds to the minimum of (14)) is attained, and hence a solution d∗ of
(15) exists and realizes ν(s). By applying the above arguments to d̂ = d∗, one has
that

d̃(s) = tsd
∗, with ts =

sm0

∇f(x∗)T d∗
, (17)

solves (14). Since problem (14) has a unique solution, this guarantees also the
uniqueness of the solution of (15). Finally, (17) immediately implies ‖d̃(s)‖ = O(s).

2

Note that (14) is equivalent to

F̃ (x, s) = f̃(x)− s
∑

i∈I0

ln(−g̃i(x)) → min ! subject to x ∈ {x∗}+ D0. (18)

With d̃(s) from Lemma 2, x̃(s) = x∗ + d̃(s) is of course the unique solution of (18)
for all s > 0 and satisfies ‖x̃(s) − x∗‖ = O(s). Moreover, for d ∈ N (AT ) the KKT
conditions at x∗ yield ∇f(x∗)T d = 0 and hence

(∇F̃ (x̃(s), s)T d = (∇f(x∗)−
∑

i∈I0

s

g̃i(x̃(s))
∇gi(x∗))T d = 0.

On the other hand, ∇F̃ (x̃(s), s)T d = 0 obviously holds for all d ∈ R(A). Therefore,
x̃(s) also satisfies ∇F̃ (x̃(s), s) = 0 for s > 0.
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Theorem 1. The log-barrier method (14) yields for the barrier multipliers ỹ(s)
related to the solutions x̃(s) that

ỹi(s) =
−s

g̃i(x̃(s))
≡ µi, i ∈ I0, (19)

where

µi = − 1
m0

∇f(x∗)T d∗

∇gi(x∗)T d∗
, i ∈ I0 and d∗ solves (15). (20)

Setting µi = 0 ∀ i ∈ I1 , µ is a multiplier of the original problem (1).

P r o o f . From the definition of ỹi(s) and d̃(s) = tsd
∗ in the proof of Lemma 2,

one has
ỹi(s) = − s

g̃i(x̃(s))
= − s

∇gi(x∗)T d̃(s)
= − s

∇gi(x∗)T (tsd∗)
.

Now, from ts = sm0

∇f(x∗)T d∗
according to (17) the formula (19) directly follows.

To see the last assertion, we notice that without the normalization ‖d‖ = 1,
problem (15) is equivalent to

∑

i∈I0

ln(−∇gi(x∗)T d) − m0 ln(∇f(x∗)T d) → max ! s. t. d ∈ D0.

The related optimality condition

−
∑

i∈I0

1
∇gi(x∗)T d

∇gi(x∗) + m0
1

∇f(x∗)T d
∇f(x∗) = 0

yields
∑

i∈I0

−1
m0

∇f(x∗)T d

∇gi(x∗)T d
∇gi(x∗) + ∇f(x∗) = 0.

With d = d∗ ∈ D0, this is just a specific realization of the KKT-conditions of the
original problem. 2

Remark 1. The multiplier µ appearing in (20) is the analytic center of the set
Y ∗, i. e., it is the solution of the problem

Π i∈I0 yi → max ! subject to y ∈ Y ∗. (21)

In game theory, such problems are used for describing Nash-bargaining solutions over
convex sets, cf. [15]. Note that (A2) and (A3) guarantee the existence of a solution
ŷ of (21) which is uniquely characterized by ŷ ∈ Y ∗ and the Lagrange condition

ŷ−1
i = −∇gi(x∗)Tλ̂ > 0 for some λ̂ and all i ∈ I0. (22)

Setting λ̂ = td∗ with t = m0(∇f(x∗)Td∗)−1 in the above theorem shows µ = ŷ. This
recovers a known result (cf., e. g., [1, 21]) by giving a concrete form and computa-
tional rule.



Convergence of Primal–Dual Solutions for the Nonconvex Log–Barrier Method . . . 577

3. THE NONLINEAR PROBLEM

In this section, we study the local convergence of primal and dual solutions in the
log-barrier method (2) near x∗,

F (x, s) = f(x)− s
m∑

i=1

ln(−gi(x)) → min !

subject to x ∈ Gε = {x ∈ Rn : gi(x) < 0, i = 1, . . . , m, ‖x− x∗‖ < ε},
for solving the original problem (1). We assume throughout that the assumptions
(A1), (A2) and (A3) are satisfied, and in addition

(A4) the following second-order optimality condition holds:

uTD2
xL(x∗, y)u > 0 for all y ∈ Y ∗ and all u ∈ U∗, u 6= 0,

where
U∗ =

{
u : ∇f(x∗)Tu = 0, ∇gi(x∗)Tu ≤ 0 ∀ i ∈ I0

}

is the critical cone for x∗.

Recall that L(x, y) means the Lagrange function, I0 is the active index set at x∗,
and Y ∗ is the multiplier set associated with x∗. Note that assumption (A3) implies
that U∗ has the form

U∗ =
{
u ∈ Rn : ∇gi(x∗)Tu = 0 ∀ i ∈ I0

}
. (23)

The stationary points x(s) of F (·, s) on Gε are the zeros of

∇F (x, s) = DxL(x, y) with yi = −s/gi(x) > 0 ∀ i. (24)

To see that the related log-barrier multipliers y(s) are bounded for small s and ε,
consider any u ∈ U0 (6). If ε was small enough, we have ∇gi(x(s))Tu < −ru < 0
∀ i ∈ I0 and

∇F (x(s), s)Tu = ∇f(x(s))Tu +
∑

i∈I0

yi(s)∇gi(x(s))Tu +
∑

k∈I1

yk(s)∇gk(x(s))Tu = 0.

Since also

yk(s) ≤ 2s

/∣∣∣∣max
k∈I1

gk(x∗)
∣∣∣∣ → 0 (25)

is valid for k ∈ I1 and small ε (if I1 6= ∅), one obtains that

yi(s) = −s/gi(x(s)) < Cg and gi(x(s)) < −s/Cg ∀ i (26)

hold with some constant Cg > 0 and for sufficiently small s, ε. Further (26) and
I0 6= ∅ imply (since g is locally Lipschitz)

‖x(s)− x∗‖ ≥ Cs with some constant C. (27)

So the convergence x(s) → x∗, if valid at all, is not very fast. In what follows we
will show
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Theorem 2. There are s̄ > 0 and ε > 0 such that for all s ∈ (0, s̄), the function
F (·, s) on Gε has a global minimizer x(s) which is the unique stationary point of
F (·, s) on Gε. The associated multipliers y(s) (5) converge to µ given in Theorem 1
where

dist ((x(s), y(s)), (x∗, Y ∗)) ≤ C∗s with some constant C∗, (28)

the Hessian ∇2F (x(s), s) is uniformly positive definite and x(·) is continuously dif-
ferentiable on (0, s̄). Theorem 2 will be proved via several lemmata. Our main tools
consist of elementary (but quite sharp) estimates of the values gi(x) on line-segments
between two stationary points x(s) and ξ(s) and of an basic fact on Lipschitzian solu-
tions for parametric problems, cf. (33). Notice that different approaches of dealing
with barrier (and penalty) methods in the framework of parametric optimization
(but under different hypotheses) can be found, e. g., in [8, 11, 12, 13].

Lemma 3. There is some ε > 0 such that, for sufficiently small s, the following
holds:

(i) The function F (·, s) has a global minimizer on Gε, and each stationary solution
x(s) ∈ Gε of F (·, s) and its associated multiplier y(s) according to (5) satisfy
a Lipschitz estimate

‖x(s)− x∗‖ = O(s) and dist (y(s), Y ∗) = O(s). (29)

(ii) Moreover, there are positive constants K,K1, K2 such that, for any (possibly
second) stationary solution ξ(s), the points x of the connecting line-segment
[x(s), ξ(s)] belong to Gε and satisfy

‖x− x∗‖ ≤ Ks and −K1s ≤ gi(x) ≤ −K2s ∀ i ∈ I0. (30)

P r o o f . First we derive the existence result and lim dist ((x(s), y(s)), x∗×Y ∗) = 0.
Then we prove (29), and finally the estimates (30) are shown. For brevity, we write
in this proof xs, ys and ξs instead of x(s), y(s) and ξ(s), respectively.

Part 1, (i). Under (A2) and (A4) the point x∗ is an isolated local minimizer
(even an isolated stationary solution) of the original problem (1), see [17]. Having
this, the proof of the existence of a global minimizer xs of F (,̇s) on Gε such that
xs → x∗ as s ↓ 0 is standard, see, e. g., Fiacco and McCormick [4, Thm. 10], and
will be omitted.

By (26) we know that all ys
i = −s/gi(xs) are bounded. Thus, accumulation

points (x0, y0) of arbitrary stationary pairs (xs, ys) as s ↓ 0 exist and are KKT-
points (even if gi(x0) < 0 for some i ∈ I0) for the initial problem (1). As mentioned
above, x∗ is an isolated stationary point for (1), cf. [17]. Hence, for small ε, we have
x0 = x∗ = lim xs and, in consequence, also limdist (ys, Y ∗) = 0.

Part 2, (i). Now we estimate the quantities ‖xs− x∗‖ and dist (ys, Y ∗) in terms
of s and g(xs): Given (xs, ys), put

a(s) =
∑

i 6∈I0

ys
i∇gi(xs), bi(s) =

{
gi(xs), if i ∈ I0

0, if i 6∈ I0.
(31)



Convergence of Primal–Dual Solutions for the Nonconvex Log–Barrier Method . . . 579

Then ∇f(xs) +
∑

i∈I0
ys

i∇gi(xs) + a(s) = 0 yields that (xs, ȳ(s)) with

ȳi(s) = ys
i if i ∈ I0, ȳk(s) = 0 if k ∈ I1,

is a KKT point for problem

f(x)− a(s)Tx → min ! s. t. g(x) ≤ b(s). (32)

By (25) we have ‖a(s)‖ ≤ sCa with some constant Ca and, as just shown for the
crucial components i ∈ I0, lim b(s) = 0. By Corollary 2.9 and Theorem 8.36 in [11]
or by the Theorems 2.2, 2.4, 3.1, 3.2 and 4.2 in Robinson’s basic paper [17], this
ensures, for small s, that xs is a local minimizer of (32) and that, since ||(a, b)|| → 0
as s ↓ 0, some Lipschitz estimate

dist ((xs, ȳ(s)), (x∗, Y ∗)) ≤ CKKT ‖(a(s), b(s))‖ (33)

holds true for small s and some constant CKKT . Recalling (25) the estimate (33) is
also valid (possibly with a new constant) for (xs, ys).

In this moment, we do not know whether also b(s) from (31) satisfies a Lipschitz
estimate. In fact, this statement is more involved and needs the extra assumption
(A3).

Put τ = ‖xs − x∗‖, and let y∗ be the multiplier in (A3); then y∗i > 0 ∀ i ∈ I0.
Since DxL(x∗, y∗) = 0, we obtain

L(xs, y∗)− L(x∗, y∗) = o(τ)

Because of y∗Tg(x∗) = 0, this means

f(xs)− f(x∗) +
∑

i

y∗i gi(xs) = o(τ). (34)

Similarly, dist (ys, Y ∗) → 0 ensures L(xs, ys)− L(x∗, ys) = o(τ) , i. e.,

f(xs)− f(x∗) +
m∑

i=1

ys
i gi(xs)−

m∑

i=1

ys
i gi(x∗) = o(τ).

Since
∑m

i=1 ys
i gi(xs) = −ms (compare (5)) and gi(x∗) = 0 ∀ i ∈ I0, the latter is

f(xs)− f(x∗) = ms +
∑

k∈I1

ys
kgk(x∗) + o(τ). (35)

Comparing (34) and (35) and using
∑

k∈I1
ys

kgk(x∗) = O(s), we finally obtain

−
∑

i∈I0

y∗i gi(xs) = O(s) + o(τ). (36)

Since all y∗i , i ∈ I0, are positive, the sum −∑
i∈I0

y∗i gi(xs) can be taken as the norm
of b(s), defined in (31). Now (33) yields

dist ((xs, ys), (x∗, Y ∗)) ≤ CKKT ‖(a(s), b(s))‖ = O(s) + o(τ) (37)
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and, in particular, τ = O(s) + o(τ). For small s such that ‖o(τ)‖ < 1
2
τ we thus

conclude τ < 2O(s) = O(s), and since g is locally Lipschitz, gi(xs) = O(s) ∀ i ∈ I0,
too. Therefore, under (A3), the estimate (33) holds in the form (28)

dist ((xs, ys), (x∗, Y ∗)) ≤ C∗s (s small).

Taking (26) into account, we thus obtain (30) for sufficiently small s and related
stationary points xs.

Part 3, (ii). Now let x ∈ [xs, ξs] where xs, ξs are stationary solutions for small
s. To show x ∈ Gε, it suffices to study all gi, i ∈ I0, and to verify (30) for the
related points x with possibly new constants. Clearly, since xs and ξs fulfill (30),
the first estimate holds for x with constant K ′ = K, too. Using a local Lipschitz
rank L of g near x∗, we may put K ′

1 = LK due to −LKs ≤ gi(x). For verifying the
third inequality, put ts = ‖ξs − xs‖, us = (ξs − xs)/ts, x = xs + tus and suppose
gi(xs) ≤ gi(ξs) (without loss of generality). We have to deal with the case of

gi(x) = gi(xs + tus) /∈ J(s) = [gi(xs), gi(ξs)] for some i ∈ I0 and t ∈ (0, ts), (38)

otherwise nothing remains to prove. Hence assume that

max
0≤t≤ts

gi(xs + tus) /∈ J(s) or min
0≤t≤ts

gi(xs + tus) /∈ J(s)

We consider the first case, the other one can be handled analogously. Since any
maximizer t∗ fulfills 0 < t∗ < ts, we obtain ∇gi(xs + t∗us)Tus = 0. So it follows
with some local Lipschitz rank L′ of Dg near x∗,

|∇gi(xs + θus)Tus| ≤ L′ts ∀ θ ∈ (0, ts).

By the mean value theorem, some θ ∈ (0, ts) satisfies

|gi(xs + t∗us)− gi(xs)| = t∗|∇gi(xs + θus)Tus| ≤ t∗L′ts ≤ L′t2s. (39)

Since ts ≤ ‖ξs − x∗‖+ ‖xs − x∗‖ ≤ 2Ks, the latter implies

|gi(x)− gi(xs)| ≤ 4L′K2s2 (40)

and guarantees (30) with the third new constant K ′
2 = 1

2
K2. 2

Our proof in Part 3 has been made in such a way that the following conclusion
becomes evident: If x ∈ [x(s), ξ(s)] fulfills (38) then (40) holds true. This yields the
next lemma as a direct application of (30).

Lemma 4. Let zi(x, s) = s/gi(x) for x ∈ Gε, i ∈ I0. If, under the assumptions
of Lemma 3, there is a common limit z∗i = lims↓0 zi(x, s) for the two settings x =
x(s) and x = ξ(s), then the limit exists and remains the same for all x ∈ [x(s), ξ(s)].
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Lemma 5. For sufficiently small s ↓ 0, let xs belong to a line-segment [x(s), ξ(s)]
connecting stationary points of F (·, s) on Gε as in Lemma 3. Then the multipliers
ys with ys

i = −s/gi(xs) ∀ i converge to µ given by Theorem 1.

P r o o f . We suppose first that xs = x(s) is stationary. For any sequence of
certain s = sk ↓ 0, let η be some accumulation point of the related duals ys which
are bounded due to (25) and (30) and fulfill ys

k → 0 for k ∈ I1. Let i ∈ I0 and put

τs = ‖xs − x∗‖ and λs = (xs − x∗)/τs.

Without loss of generality let ys → η and λs → λ already hold for the initial
sequence of s = sk. Then gi(x∗) = 0 and λs → λ yield with (30)

gi(xs) = τs∇gi(x∗)Tλs + o(τs) and τ−1
s gi(xs) → ∇gi(x∗)Tλ < 0.

Further (taking a subsequence if necessary), τs/s has, by (30) and (27), a limit γ > 0.
So it follows

gi(xs)
s

=
gi(xs)

τs

τs

s
→ γ∇gi(x∗)Tλ, (41)

η−1
i = −γ∇gi(x∗)Tλ > 0. (42)

In addition, η ∈ Y ∗ follows from stationarity DxL(xs, ys) = 0. Therefore, Remark 1
ensures η = µ. Since (42) was obtained for any sequence of s = sk ↓ 0, and the
analytic center is unique, the statement of the present lemma holds for xs = x(s)
and xs = ξ(s). Taking Lemma 4 into account, the proof is complete. 2

Completing the Proof of Theorem 2:

Because of the preceding lemmata, it remains to show that x(s) is the unique station-
ary solution of F (·, s) on Gε, and, moreover, the Hessian ∇2F (x(s), s) is uniformly
positive definite and x(·) is continuously differentiable on (0, s̄).

Let Gε be according to Lemma 3 and let all derivatives and function values be
taken at x ∈ Gε and z = z(x, s) with zi(x, s) = −s/gi(x) ∀ i. The Hessian ∇2F (x, s)
(w.r. to x) becomes

∇2F (x, s) = ∇2f(x)−∑
i

s
gi(x)

∇2gi(x) +
∑

i
s

g2
i (x)

∇gi(x)∇gi(x)T

= D2
xL(x, z) + 1

s

∑
i(zi∇gi(x))(zi∇gi(x)T).

(43)

Next we ask for uniform positive definiteness of ∇2F (x, s) for small s and ε where x
belongs to some line-segment x ∈ [x(s), ξ(s)] connecting two stationary points x(s)
and ξ(s) of F (·, s) on Gε. The crucial matrix C(x, z) =

∑
i(zi∇gi)(zi∇gi)T is a

(positive semidefinite) dyadic product. Row p consists of the elements

cp,q =
∑

i

zi∂gi(x)
∂xp

zi∂gi(x)
∂xq

.
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We are going to analyze regularity and limits of C(x, z) now. For s ↓ 0, we have
x → x∗ according to Lemma 3 while Lemma 5 ensures that all z(x, s) converge to
z∗ = µ in Theorem 1. The related matrices C(x, z) then converge to

C∗ =
∑

i

(z∗i Ai)(z∗i AT
i ) where Ai = ∇gi(x∗).

This matrix fulfills
kerC∗ =

⋂

i: z∗i >0

kerAi. (44)

Indeed, if w ∈ kerC∗ then 0 = wTC∗w =
∑

i(z
∗
i )2〈Ai, w〉2. Therefore, z∗i 6= 0

implies Aiw = 0. Conversely, if w ∈ ∩i: z∗i >0 kerAi then C∗w = 0 holds trivially.
This proves (44).

Since z∗i > 0 iff i ∈ I0, the kernel of C∗ is as small as possible

kerC∗ = ∩i∈I0 kerAi = U∗. (45)

Next we apply continuity of D2
xL and C(x, z) at (x∗, z∗).

Provided that ε and s are small enough, the second order condition (A4) and
(45) ensure that there are positive β, γ such that dist (u,U∗) < β and ‖u‖ = 1
yield uTD2

xL(x, z)u ≥ γ > 0 for all x ∈ Gε ∪ [x(s), ξ(s)] and z = z(x, s). Further,
uTC(x, z)u ≥ 0 is always true. Hence we obtain

uT∇2F (x, s)u = uTD2
xL(x, z)u +

1
s
uTC(x, z)u ≥ γ.

For the remaining normalized u (with dist (u,U∗) ≥ β) and the same (x, z), it holds
both uTC(x, z)u ≥ γ′ with some γ′ > 0, and uTD2

xL(x, z)u ≥ q with some fixed q.
This ensures

uT∇2F (x, s)u = uTD2
xL(x, z)u +

1
s
uTC(x, z)u ≥ q +

γ′

s
.

Since these constants do not depend of s, the matrix

∇2F (x, s) is uniformly positive definite for small s and x ∈ [x(s), ξ(s)].

Notice that Lemma 3 guarantees [x(s), ξ(s)] ⊂ Gε. So, if x(s) 6= ξ(s), we may
use that ∇F is continuously differentiable on the the segment. Writing ξ(s) =
x(s)+t(s)u(s), ‖u(s)‖ = 1, t(s) ↓ 0 one finally obtains∇F (ξ(s), s) = ∇F (x(s), s) = 0
as well as

t(s)∇2F (x(s), s)u(s) = o(t(s)).

For s ↓ 0, so ∇2F (xs, s)u(s) vanishes, a contradiction to uniform definiteness. This
tells us that x(s) = ξ(s).

Evidently, the uniform positive definiteness particularly says that the assumptions
of the implicit function theorem for the system of equations∇F (x, s) = 0 are satisfied
at each x = x(s) if s ∈ (0, s̄). Hence x(·) is continuously differentiable on (0, s̄). 2
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As shown in the literature (cf. e. g. [16, 19]) primal-dual interior point methods
based on log-barriers approximate the primal-dual path. Hence, the results derived
here for the primal-dual path are also applicable to these methods and provide a
convergence analysis of the generated log-barrier multipliers.

(Received November 14, 2003.)
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