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ON APPROXIMATION IN MULTISTAGE STOCHASTIC
PROGRAMS: MARKOV DEPENDENCE1

Vlasta Kaňková and Martin Šḿıd

A general multistage stochastic programming problem can be introduced as a finite
system of parametric (one-stage) optimization problems with an inner type of dependence.
Evidently, this type of the problems is rather complicated and, consequently, it can be
mostly solved only approximately. The aim of the paper is to suggest some approximation
solution schemes. To this end a restriction to the Markov type of dependence is supposed.

Keywords: multistage stochastic programming problem, approximation solution scheme,
deterministic approximation, empirical estimate, Markov dependence

AMS Subject Classification: 90C15, 90C59

1. INTRODUCTION

A general multistage stochastic programming problem can be in a rather general
form introduced recursively (see e. g. [4, 12, 16]) as the problem:

Find
ϕF (M) = inf {EF ξ0 g0

F (x0, ξ0)| x0 ∈ K0}, (1)

where the function g0
F (x0, z0) is given recursively

gk
F (x̄k, z̄k) = inf{EF ξk+1|ξ̄k=z̄k gk+1

F (x̄k+1, ξ̄k+1) |xk+1 ∈ Kk+1
F (x̄k, z̄k)},

k = 0, 1, . . . , M − 1,

gM
F (x̄M , z̄M ) := gM

0 (x̄M , z̄M ). (2)

ξj = ξj(ω), j = 0, 1, . . . , M are s-dimensional random vectors defined on a pro-
bability space (Ω, S, P ), ξ̄k = ξ̄k(ω) = [ξ0, . . . , ξk], z̄k = [z0, . . . , zk], zj ∈ Rs,

xj ∈ Rn, x̄k = [x0, . . . , xk], j = 0, 1, . . . , k, k = 0, 1, . . . , M, F ξj

(zj), F ξ̄j

(z̄j), j =
0, . . . , M, denote the distribution functions of the ξj and ξ̄j , F ξk|ξ̄k−1

(zk| z̄k−1), k =
1, . . . , M, denotes the conditional distribution function (ξk conditioned by ξ̄k−1).

1The research was supported by the Grant Agency of the Czech Republic under Grants
402/01/0539, 402/02/1015 and 402/04/1294.
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gM
0 (x̄M , z̄M ) is a function defined on Rn(M+1) × Rs(M+1), Kk+1

F (x̄k, z̄k) :=
Kk+1

F ξk+1|ξ̄k (x̄k, z̄k), k = 0, 1, . . . , M − 1, is a multifunction mapping Rn (k+1) ×
Rs (k+1) into the space of (mostly compact) subsets of X . See that for every gi-
ven k ∈ {0, . . . , M − 1} the multifunction Kk+1

F (x̄k, z̄k) can generally depend on
the probability measure P

F ξk+1|ξ̄k (·|z̄k) corresponding to the conditional distribution
function F ξk+1|ξ̄k

(·|z̄k). X , K0 ⊂ Rn are nonempty sets, K0 ⊂ X . Zj
F ⊂ Rs, j =

0, 1, , . . . , M, denote the supports corresponding to F ξj

(·), Z̄k
F = Z0

F × . . . × Zk
F ,

X̄ k = X × . . . × X , k = 0, 1, . . . , M. The symbol EF is reserved for the opera-
tor of mathematical expectation corresponding to the distribution function F (·).
(Rn, n ≥ 1, denotes the n-dimensional Euclidean space.)

Evidently, it can be very complicated numerical problem to solve the multistage
stochastic programming programs exactly. The aim of the paper is to suggest ap-
proximative (deterministic and stochastic) solution schemes. To this end we restrict
our consideration to the case when the system

F = {F ξ0
(z0), F ξk|ξ̄k−1

(zk|z̄k−1), k = 1, . . . , M} (3)

corresponds to special types of the Markov dependence and to the case when there
exist multifunctions K̄k+1(x̄k, z̄k), k = 0, . . . , M − 1 defined on R(k+1)n × R(k+1)s

such that

Kk+1
F (x̄k, z̄k) = K̄k+1(x̄k, z̄k) independently of the system F . (4)

2. PROBLEM ANALYSIS

If we replace the system (3) by another system

G = {Gξ0
(z0), Gξk|ξ̄k−1

(zk|z̄k−1), k = 1, . . . , M} (5)

we obtain a new multistage stochastic programming problem.
Of course, the problem (1) (for k = 0) is one-stage (nonparametric) stochastic

programming problem. Moreover, if we fix successively k ∈ {0, 1, . . . , M − 1},
x̄k ∈ X̄ k, z̄k ∈ Z̄k

F in the relations (2) and set

x := xk+1, z := zk+1, ξ := ξk+1 with F ξ(·) := F ξk+1|ξ̄k=z̄k

(·|z̄k),

g(x, z) := gk+1
F (x̄k+1, z̄k+1), X := K̄k+1(x̄k, z̄k), ZF ξ := Z

ξk+1|ξ̄k=z̄k

F ,

then we obtain (also) one-stage (parametric) stochastic programming problems:
Find

ϕ̄(F ξ) = inf{EF ξg(x, ξ)|x ∈ X}. (6)

(Zξk+1|ξ̄k=z̄k

F denotes the measure support corresponding to F ξk+1|ξ̄k=z̄k

(·|z̄k).)
The system F is determined by M + 1 of (mostly) conditional distribution func-

tions. If F corresponds to a Markov sequence, then under some additional assump-
tions there exists an s-dimensional distribution function F I(·) that can determine
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F . Consequently, it is possible to assume that a relationship between two systems F
and G can be (under the assumption of the Markov dependence) “determined” by
the relationship between two “corresponding” s-dimensional distribution functions
F I , GI (for more details see e. g. [12] or [13]). Consequently, in this case, to investi-
gate the “deterministic” approximation, stability and “statistical” estimates of the
problem (1), (2) the corresponding results achieved for one-stage problems (see e. g.
[3, 7, 10, 18, 19, 20, 23, 25, 26]) can be employed.

3. ONE–STAGE PROBLEMS

In this section, first, we recall and generalize some auxiliary assertions on the stability
and empirical estimates achieved for one-stage problems. Employing these results
we introduce deterministic and empirical approximation schemes. To this end we
employ the symbols of the problem (6).

3.1. Stability and “deterministic” approximation

Proposition 1. Let X be a nonempty, compact set. If

1. there exist ai, bi ∈ R1, ai < bi, i = 1, . . . , s such that ZF ξ ⊂ ∏s
i=1〈ai, bi〉,

2. G is a system of functions defined on X × ZF ξ such that

a. g ∈ G =⇒ g(x, z) is a uniformly continuous function on X × ZF ξ ,
b. g ∈ G =⇒ g(x, ·) is a Lipschitz function on Qs

i=1〈ai, bi〉 with the
Lipschitz constant L̄g (w.r.t. L2 norm) not depending
on x ∈ X,

then for every δ > 0 there exist a natural number N := N(δ) and a discrete
distribution Gδ function with at most N atoms such that

|ϕ̄(F ξ)− ϕ̄(Gδ)| ≤ L̄g δ for every g ∈ G.

P r o o f. Since a very similar results to Proposition 1 has been already proven in
[8] we can omit the proof. 2

Remark 1. It follows from the proof of Proposition 1 that for every natural
m there exists a jump distribution function ḠN (·) with the number of jumps not
greater then N = ms for which

lim
m→+∞

m1−c|ϕ̄(F ξ)− ϕ̄(ḠN )| = 0 for every c > 0 . (7)

To investigate the stability of the problem (6) w.r.t. a probability measures space
different “distances” in the space of the probability measures can be employed (see
e. g. [6, 17]). In this paper we focus on the Wasserstein metrics ds

W1
(·, ·) in the space
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of s-dimensional probability measures, especially in the space M1(Rs). To this end
we define the system Mr(Rs), r ≥ 1 by

Mr(Rs) =
{

ν ∈ P(Rs) :
∫

Rs

‖z‖rν(dz) < ∞
}

,

where P(Rs) denotes the set of all (Borel) probability measures in Rs and the
symbol ‖ · ‖ denotes a suitable norm in Rs (for more details see e. g. [15] or [24]).
Employing the Euclidean norm ‖ · ‖2 we obtain the “classical” Wasserstein metric
ds

W1
(·, ·) (for details see e. g. [17]) that can be defined by the relation

ds
W1

(ν, µ) = inf
{∫

Rs×Rs

‖z − z̄‖2 κ (dz × dz̄) : κ ∈ D(µ, ν)
}

, ν, µ ∈M1(Rs).

(8)

D(µ, ν) is the set of those probability measures in P(Rs × Rs) whose marginal
distributions are µ and ν.

To obtain the results of Proposition 1 the function g(x, ·), x ∈ X was assumed to
be Lipschitz w.r.t. L2 norm. In [22], the function g(x, ·), x ∈ X is considered to be
Lipschitz w.r.t. L1 norm. We employ this approach to introduce Proposition 2. To
this end, let m be a natural number; zi, j ∈ R1 ∪ {−∞}∪ {+∞}, i = 1, . . . , s, j =
0, 1, . . . , m fulfil the relations

−∞ = zi, 0 < zi, 1 ≤ zi, 2 ≤ . . . ,≤ zi, m−1 < zi, m = +∞

and let F ξ
i (·), i = 1, 2, . . . , s denote one-dimensional marginal distribution functions

corresponding to F ξ(·). If we define the probability qm
j1, j2, ..., js

, ji = 1, . . . , m, i =
1, 2, . . . , s, m = 1, . . . by the relations

qm
j1, j2, ..., js

= PF ξ {ξ ∈ ∏s
i=1〈zi, ji−1, zi, ji)} ,

〈zi, ji , zi, ji+1) := (zi, ji , zi, ji+1) everywhere when zi, ji = −∞,
(9)

s-dimensional random vector ζ with a discrete probability measure PF ζ (·)
PF ζ{ζ = [ z̄1, j1 , . . . z̄s, js ]} = qm

j1, j2, ..., js
,

z̄i, ji = zi, ji , ji = 1, 2, . . . , m− 1, i = 1, . . . , s,

z̄i, jm ∈ (zi, m−1, +∞) arbitrary given, i = 1, . . . , s

(10)

and if we denote the corresponding distribution function by the symbol GN (·), N =
ms, then the following assertion follows from [22, Lemma 2].

Proposition 2. Let X be a nonempty compact set, PF ξ
i
(·) ∈M1(R1), i = 1, . . . , s.

Let, moreover m be a natural number. If

1. g(x, z) is a uniformly continuous function on X ×Rs and, moreover, for every
x ∈ X a Lipschitz function on Rs with the Lipschitz constant Lg (correspond-
ing to L1 norm) not depending on x ∈ X,
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2. GN (·), N = ms is an s-dimensional distribution function defined by the pro-
bability measure (10),

then
|ϕ̄(F ξ)− ϕ̄(GN )| ≤ Lg

s∑

i=1

d1
W1

(F ξ
i , Gm

i ), (11)

where Gm
i (·), i = 1, . . . , s denote one-dimensional marginal distribution functions

corresponding to GN (·).

P r o o f. Since it follows from [22, Lemma 2] that under the assumptions

|EF ξg(x, ξ)− EGN g(x, ξ)| ≤ Lg

s∑

i=1

d1
W1

(F ξ
i , Gm

i ) for every x ∈ X

and since X is a compact set the assertion of Proposition 2 is valid. 2

Furthermore, it follows from the relation (11) and from the results of [24] that

|ϕ̄(F ξ)− ϕ̄(GN )| ≤ Lg

s∑

i=1

∫

R1
|F ξ

i (zi)−Gm
i (zi)| dzi. (12)

Employing the assertion of Proposition 2 and the relation (12) we can introduce a
suitable approximative solution scheme. To this end, we follow [22]. First, according
to [21] we can see that, under the assumptions of Proposition 2 for every ε > 0 there
exist āi < (F ξ

i )−1(1
2 ) < b̄i, i = 1, . . . , s such that

∫ āi

−∞
F ξ

i (zi) dzi <
ε

3
,

∫ ∞

b̄i

[1− F ξ
i (zi)] dzi <

ε

3
, i = 1, . . . , s.

Furthermore, let a symbol (F ξ
i )−1(·), i = 1, . . . , s denote a quantile function

corresponding to F ξ
i (·) (for the definition see e. g. [1]). We can for every natural m

and every i ∈ {1, . . . , s} define points zi, j ∈ R1, j = 1, . . . , m− 1 by

zi, j = (F ξ
i )−1(

j

m
), j = 1, . . . , m− 1, j ≤ mF (b̄i),

z̄i, j = b̄i for j ∈ (mF (b̄i), m) and j = m.
(13)

Since it follows from (12) (for more details see [22]) that there exists m0 := m0(ε)
such that for every m > m0∫ b̄i

āi

|F ξ
i (zi)−Gm

i (zi)|dzi <
ε

3
, i = 1, 2, . . . , s

and since
∫

R1
|F ξ

i (zi)−Gm
i (zi)| dzi

≤
∫ āi

−∞
F ξ

i (zi) dzi +
∫ b̄i

āi

|F ξ
i (zi)−Gm

i (zi)| dzi +
∫ ∞

b̄i

[1− F ξ
i (zi)] dzi,

(14)
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we can see that∫

R1
|F ξ

i (zi)−Gm
i (zi)| dzi ≤ ε for every m > m0.

Employing the last relation and the relation (12) we obtain

Corollary 1. Let X be a nonempty compact set, PF ξ
i
(·) ∈M1(R1), i = 1, . . . , s.

Let moreover, the assumption 1 of Proposition 2 be fulfilled. If GN (·), N = ms, m =
1, 2, . . . are defined by (10) with (13), then

lim
m→+∞

|ϕ̄(F ξ)− ϕ̄(GN )| = 0.

Corollary 2. Let X be a nonempty compact set, PF ξ
i
(·) ∈ Mr(R1), i = 1, . . . , s

for some r > 1. Let, moreover, the assumption 1 of Proposition 2 be fulfilled, then
there exists GN (·), N = ms, m = 1, 2, . . . such that

|ϕ̄(F )− ϕ̄(GN )| = O(m−1+ 1
r ).

(For every m, GN (·) is defined by (10) with (13) and ai = −m
1
r , bi = m

1
r .)

P r o o f. Let the assumptions of Corollary 2 be fulfilled. It was proven in [21] that
then F ξ

i (zi) = o(|zi|−r) as zi → −∞, i = 1, . . . , s. Consequently, we can see that
there exists z0

i ∈ R1 such that for −∞ < zi < z0
i

F ξ
i (zi) ≤ |zi|−r,

∫ zi

−∞
F ξ

i (t)dt ≤
∫ zi

−∞
|t|−rdt =

1
|1− r| |zi|1−r, i = 1, . . . , s.

Consequently, there has to exist m0 and a constant c1
r ≥ 0 such that for m > m0,

z1(m) = −m
1
r we can obtain

∫ z1(m)

−∞
F ξ

i (t)dt ≤ c1
rm

(1−r)
r = c1

rm
−1+ 1

r , i = 1, . . . , s.

Evidently, by a very similar way we can see that there exist m0, a point zm(m),
and a constant c2

r ≥ 0 such that for m > m0 we can obtain
∫ ∞

z1(m)

[1− F ξ
i (t)] dt ≤ c2

rm
(1−r)

r = c2
rm

−1+ 1
r .

Since, furthermore, there can be found m0 and a constant c0
r ≥ 0 such that

∫ zm(m)

z1(m)

|F (t)−Gm(t)| dt ≤ c0
rm

−1+ 1
r for every m > m0

we can see that the assertion of Corollary 2 is valid. 2

If furthermore we can assume that
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A.1 PF ξ
i
(·), i = 1, 2, . . . , s are absolutely continuous with respect to one-dimensional

Lebesgue measure. We denote by fξ
i (·) the probability density corresponding

to F ξ
i (·),

A.2 there exists constants C1 > 0, C2 > 0 and Ti > 0, i = 1, 2, . . . , s such that

fξ
i (zi) ≤ C1 exp{−C2|zi|} for zi ∈/ 〈−Ti, Ti〉,

then the following assertion follows immediately from Corollary 2.

Corollary 3. Let the assumptions of Corollary 2 be fulfilled. If, moreover, the
assumptions A.1 and A.2 are fulfilled, then for an arbitrary c > 0 it holds that

lim
m→+∞

m1−c|ϕ̄(F ξ)− ϕ̄(GN )| = 0, N = ms.

P r o o f. The assertion of Corollary 3 follows from the assertion of Corollary 2 and
the fact that under the assumptions A.1, A.2 the corresponding probability measure
belongs to the class Ms

r for every r > 1. 2

3.2. Empirical estimates and approximation

It happens rather often that the theoretical probability measure has to be replaced
by empirical one. To recall well-known results on empirical estimates we assume.

i.1 {ζk}∞k=−∞ is a sequence of s-dimensional independent random vectors with a
common distribution function F ξ(·); we denote by F ξ

N (·) the empirical distri-
bution function determined by {ζk}N

k=1,

i.2 there exist a
′
i, b

′
i ∈ R1, a

′
i ≤ b

′
i such that X ⊂ X

′
=

∏n
i=1〈a

′
i, b

′
i〉.

Proposition 3. [7] Let X be a nonempty compact set, t > 0 be arbitrary, i.1 and
i.2 be fulfilled. If

1. g(x, z) is a uniformly continuous, bounded function on X
′ × ZF ξ ,

2. for every z ∈ ZF ξ , g(x, z) is a Lipschitz function on X
′

with the Lipschitz
constant Lg (corresponding to L2 norm) not depending on z ∈ ZF ξ ,

then there exist constants K(X
′
, t), k > 0 such that

P{|ϕ̄(F ξ)− ϕ̄(F ξ
N )| > t} ≤ K(X

′
, t) exp{−kNt2}, N = 1, 2, . . .

Corollary 4. [9] Let the assumptions of Proposition 3 be fulfilled. If v ∈ (0, 1
2 ),

then
P{Nv|ϕ̄(F ξ)− ϕ̄(F ξ

N )| > t} →(N→+∞) 0.

It happens rather often that there exist a natural number s1 and functions
h∗i (z), g∗i (x), i = 1, 2, . . . , s1 defined on Rn and Rs fulfilling the relation

g(x, z) =
s1∑

i=1

h∗i (z)g∗i (x), x ∈ Rn, z ∈ Rs. (15)
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Proposition 4. Let X be a nonempty compact set, t > 0 and i.1 be fulfilled. If

1. g(x, z) fulfills (23) with continuous and bounded g∗i (x), i = 1, 2, . . . , s1,

2. for every i ∈ {1, . . . , s1} there exists θ0(i) > 0 and a finite EF ξ exp{θ h∗i (ξ)}
for all 0 ≤ θ ≤ θ0(i),

then there exist constant β := β(t) > 0 such that

P{|ϕ̄(F ξ)− ϕ̄(F ξ
N )| > t} ≤ 2s1 exp{−β(t)N}, N = 1, 2, . . .

P r o o f. Let t > 0 be arbitrary, M(i) = supx∈X |g∗i (x)|, i = 1, . . . , s1. First, it
follows from the assumptions of Proposition 4 that

P{|EF ξg(x, ξ)− EF ξ
N

g(x, ξ)| > t for at least one x ∈ X}

≤
s1∑

i=1

P{|EF ξh∗i (ξ)− EF ξ
N

h∗i (ξ)| >
t

s1 M(i)
} (16)

and, simultaneously, there exists a finite

EF ξ exp{θ (h∗i (ξ)− EF ξh∗i (ξ))} far all 0 ≤ θ ≤ θ0(i).

Following the first part of the proof of Theorem 3.1 in [2] we can see that (under
the assumptions of Proposition 4) there exists a constant βi( t

s1M(i) ) > 0 such that

P{|EF ξh∗i (ξ)− EF ξ
N

h∗i (ξ)| > t} ≤ 2 exp{−βi(
t

s1M(i)
)N}, i = 1, . . . , s1, N = 1, . . .

Setting β(t) := mini∈{1, ..., s1} βi( t
s1M(i) ) and employing the relation (16) we can see

that the assertion of Proposition 4 is valid. 2

It follows from the proof of Theorem 3.1 in [2] that βi(t) can be taken such that

βi(t) = − ln
{

1− t2

2
θ2
0

16b2i
exp

{
−θ2

0
t2

4

}
+ t

4 exp {−t)}
}

, bi = EF ξ exp θ0h
∗
i (ξ)

i = 1, . . . , s1.
(17)

Employing the approach of [7] we can prove also the next assertion.

Proposition 5. Let X be a nonempty compact set, t > 0, assumptions i.1 and i.2
be fulfilled. If

1. g(x, z) is a uniformly continuous function on X
′ × ZF ξ ,

2. there exist a > 0, θ0 > 0 and a real-valued function ν(·) such that

|g(x, z)| ≤ aν(z), EF ξ exp{θν(ξ)} < ∞ for all x ∈ X
′

and all 0 ≤ θ ≤ θ0,
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3. the assumption 2 of Proposition 3 is fulfilled,

then there exist constants β := β(t) > 0, α(t) > 0; α(t) := α(t, X) such that

P{|ϕ̄(F ξ)− ϕ̄(F ξ
N )| > t} ≤ α(t) exp{−β(t)N}, N = 1, 2, . . .

P r o o f. Since the main idea of the proof of Proposition 5 is very similar to the
main idea of the proof of Proposition 3 we omit it. 2

4. MULTISTAGE PROBLEMS

To apply the assertions of the former section to the multistage case we restrict our
consideration to the case when

D.1 There exist s-dimensional random vectors ξ−1 := ξ−1(ω), ηk := η(ω), k =
0, . . . , M defined on (Ω, S, P ) and a continuous, s-dimensional vector function
f(·) defined on Rs ×Rs such that

a. {ηk}M
k=0 is a sequence of independent s-dimensional, identically distributed

random vectors,
b. F ξ0

(z0) = F η(f(z0, z−1)) for every z0 ∈ Rs and a (known value) ξ−1 :=
z−1 ∈ Rs,

c. for every z̄k−1 ∈ Z̄k−1
F , zk ∈ Rs, F ξk|ξ̄k−1

(zk|z̄k−1) = F η(f(zk, zk−1)),
k = 1, . . . M.

We denote by F η(·), PF η (·) and ZF η the distribution function, probability measure
and the support corresponding to η0 (consequently also η1, . . . , ηM ). Evidently,
F η(·) corresponding to D.1 determines the system (3) F := Fη by

F ξ0
(z0) = F η(f(z0, z−1)) for every z0 ∈ Rs and known z−1 ∈ Rs,

F ξk|ξ̄k−1
(zk|z̄k−1) = F η(f(zk, zk−1)) for every z̄k ∈ Rs(k+1), k = 1, . . . , M.

(18)
Of course, every other s-dimensional distribution function Gη(·) determines an-

other system (5) G := Gη. Sometimes it is “suitable” to assume furthermore.

D.2 For every z̄k ∈ Z̄k
F , u ∈ ZF η there exists just one zk+1 ∈ Zk+1

F fulfilling the
relations u = f(zk+1, zk), k = 0, 1, . . . , M − 1.

D.3 There exist an s-dimensional random sequence {ηk}∞k=−∞ and a deterministic
nonsingular matrix A of the type (s× s) such that

a. {ηk}∞k=−∞ is a sequence of independent s-dimensional, identically dis-
tributed random vectors,

b. ξk = Aξk−1 +ηk, k = . . . , −1, 0, 1, . . . ; the value ξ−1 = z−1, z−1 ∈ Rs

is known,
c. ξk−1, ηk, k = . . . , −1, 0, 1, . . . are stochastically independent.
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4.1. Multistage analysis

Employing the triangular inequality and the technique used in [12] we can see that
(under the assumptions D.1 and relation (4)) for every x0 ∈ K0

|EF ξ0 g0
F (x0, ξ0)− EGξ0 g0

G(x0, ξ0)|

≤ |EF ξ0 infx1∈K̄1(x0, ξ0) EF ξ1|ξ0 g1
F (x̄1, ξ̄1) − EGξ0 infx1∈K̄1(x0, ξ0) EF ξ1|ξ0 g1

F (x̄1, ξ̄1)|
+ |EGξ0 infx1∈K̄1(x0, ξ0) EF ξ1|ξ0 infx2∈K̄2(x̄1, ξ̄1) EF ξ2|ξ1 g2

F (x̄2, ξ̄2)

− EGξ0 infx1∈K̄1(x0, ξ0) EGξ1|ξ0 infx2∈K̄2(x̄1, ξ̄1) EF ξ2|ξ1 g2
F (x̄2, ξ̄2)|

+|EGξ0 infx1∈K̄1(x0, ξ0) EGξ1|ξ0 infx2∈K̄2(x̄1, ξ̄1) EF ξ2|ξ1 infx3∈K̄3(x̄2, ξ̄2) EF ξ3|ξ2 g3
F (x̄3, ξ̄3)

− EGξ0 infx1∈K̄1(x0, ξ0) EGξ1|ξ0 infx2∈K̄2(x̄1, ξ̄1) EGξ2|ξ1 infx3∈K̄3(x̄2, ξ̄2) EF ξ3|ξ2 g3
F (x̄3, ξ̄3)|

...

+ |EGξ0 infx1∈K̄1(x0, ξ0) . . . . . .

infxM−1∈K̄M−1(x̄M−2, ξ̄M−2) EGξM−1|ξM−2 infxM∈K̄M (x̄M−1, ξ̄M−1) EF ξM |ξM−1 gM
F (x̄M , ξ̄M )

− EGξ0 infx1∈K̄1(x0, ξ0) . . . . . . %[−4mm] infxM−1∈K̄M−1(x̄M−2, ξ̄M−2) EGξM−1|ξM−2 infxM∈K̄M (x̄M−1, ξ̄M−1) EGξM |ξM−1 gM
G (x̄M , ξ̄M )|.

(19)
Consequently the “value” |ϕFη (M) − ϕGη (M)| can be estimated by a suitable

distance between F η, Gη (for more details see e. g. [12, 13, 14]).

4.2. “Deterministic” approximation

Let m be an arbitrary natural number. It was proven in Section 3 that for every s-
dimensional distribution function F η(·) (with one-dimensional marginals F η

i (·), i =
1, . . . , s fulfilling the assumptions A.1, A.2 for ξ := η) there exist points ui, j ∈
R1, j = 1, . . . , m, i = 1, . . . s and one-dimensional jump distribution functions
Gη, m

i (·), i = 1, 2, . . . , s defined by

ui, j = (F η
i )−1( j

m ), j = 1, . . . , m− 1, i = 1, . . . , s,

ui, m = um(m) corresponding to zm(m) in Corollary 2 (20)

Gη, m
i (ui) = 0 for zi < ui, 1,

= F η
i (ui, j) ui ∈ (ui, j , ui, j+1〉, j = 1, . . . , m− 1,

= 1 ui > ui, m.

(21)

such that

lim
m→+∞

m1−c
s∑

i=1

d1
W1

(F η
i , Gη, m

i ) = 0 for arbitrary c > 0.
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(The symbol (F η
i )−1 denotes the quantile function corresponding to F η

i (·), i =
1, . . . , s.) If we denote the corresponding s-dimensional distribution function by
the symbol Gη, N (·), N = ms; and by η̄N an s-dimensional random vector with the
distribution function Gη, N (·), then evidently under the assumptions D.1 and D.3
the system F can be approximated by the system Gη, N defined by

Gη, N = {Gη, N (u0 −Az−1), Gη, N (uk −Azk−1), k = 1, . . . , M}, (22)

where z−1 is supposed to be known, zk−1 corresponds to random vectors ζk−1 de-
termined recursively by ζk = Aζk−1 + η̄k, k = 0, 1, . . . M, ζ−1 = z−1.

To present the corresponding assertion dealing with an approximation error we
introduce the following system of the assumptions.

W.1 a. g0
F (x0, z0) is uniformly continuous function on K0 × Rs and, moreover,

for every x0 ∈ K0 a Lipschitz function on Rs with the Lipschitz constant
(corresponding to L1 norm) not depending on x0 ∈ K0,

b. for every k ∈ {1, . . . , M}, gk
F (x̄k, z̄k) is a uniformly continuous function

on X̄ k × Z̄k
F and, moreover for every x̄k ∈ X̄ k, z̄k−1 ∈ Z̄k−1

F , gk
F (x̄k, z̄k)

is a Lipschitz function on Rs with the Lipschitz constant (corresponding
to L1 norm) not depending on x̄k ∈ X̄ k, z̄k−1 ∈ Z̄k−1

F ,

B.1 the probability measures PF η
i
(·), i = 1, 2, . . . , s are absolutely continuous

with respect to one-dimensional Lebesgue measure. We denote by the symbol
fη

i (·) the probability density corresponding to F η
i (·),

B.2 there exist constants C̄1 > 0, C̄2 > 0 and Ti > 0, i = 1, 2, . . . , s such that

fη
i (zi) ≤ C̄1 exp{−C̄2|zi|} for zi ∈/ 〈−Ti, Ti〉,

Theorem 1. Let the relations (4), (21) be fulfilled. If

1. the assumptions D.2, D.3 and W.1 are fulfilled and, moreover, PF η ∈M1(Rs),

2. the system Gη, N is defined by the relation (22), N = ms, m = 1, 2, . . . ,

3. K0, K̄k+1(x̄k, z̄k), k = 0, . . . , M − 1, x̄k ∈ X̄ k, z̄k ∈ Z̄k
F , k = 0, . . . , M − 1

are nonempty compact sets,

then there exists a constant CW1 > 0 such that

|ϕF (M)− ϕGη, N (M)| ≤ CW1

s∑

i=1

d1
W1

(F η
i , Gη, N

i ).

If, moreover, the assumptions B.1, B.2 are fulfilled, then also

lim
m→+∞

m1−c|ϕF (M)− ϕGη, N (M)| = 0, N = ms for an arbitrary c > 0.

P r o o f. The proof of Theorem 1 follows from Proposition 2, Corollary 3 and the
relations (19), (22) (for more details see [14]). 2
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4.3. Empirical approximation

If F η
N (·) denotes the empirical distribution function determined by an independent

random sample {ηi(ω)}−1
i=−N corresponding to F η(·), then

F ξ0

N (z0) = F η
N (f(z0, z−1)), F

ξk|ξ̄k−1

N (zk|z̄k−1) = F η
N (f(zk, zk−1)), k = 1, . . . , M

are (for every z̄k−1 ∈ Z̄k−1
F ) statistical estimates of F ξ0

(z0), F ξk|ξ̄k−1
(zk|z̄k−1). Con-

sequently, (under the assumptions D.1) a sequence {ηi(ω)}0i=−N determines an sta-
tistical estimate F(N) of the system (3) by

F(N) = {F η
N (f(z0, z−1)), F η

N (f(zk, zk−1)), k = 1, . . . , M}, N = 1, . . . . (23)

Replacing the system (3) by the system F(N) we obtain an approximating prob-
lem to the multistage problem introduced by (1) and (2). The optimal value of this
problem is a random variable denoted by ϕF(N)(M). The following Theorem 2 is a
special case of Theorem 2 and Corollary in [13].

Theorem 2. [13] Let t > 0 be arbitrary, the relation (4) be fulfilled. Let, moreover,
the system F(N), N = 1, . . . be defined by the relation (25). If

1. there exist a
′′
i ≤ b

′′
i , a

′′
i , b

′′
i ∈ R1, i = 1, . . . , s such that X =

∏n
i=1〈a

′′
i , b

′′
i 〉,

2. gk
F (x̄k, z̄k), k = 0, 1, . . . , M are uniformly continuous, bounded on X̄ k× Z̄k

F ,

3. for every z̄k ∈ Z̄k
F , gk

F (x̄k, z̄k), k = 0, 1, . . . , M are Lipschitz functions on X̄ k

with the Lipschitz constants (corresponding on L2 norm) not depending on
z̄k ∈ Z̄k

F ,

4. K0, K̄k+1(x̄k, z̄k), k = 0, . . . , M − 1, x̄k ∈ X̄ k, z̄k ∈ Z̄k
F , k = 0, . . . , M − 1

are nonempty compact sets,

5. the systems of the assumptions D.1, D.2 are fulfilled,

then there exist constants k̄ > 0, Kk(X , t) > 0, k = 0, 1, . . . , M such that

a. P{|ϕF (M)− ϕF(N)(M)| > t} ≤ exp{−Nt2k̄}∑M−1
k=0 Kk(X , t), N = 1, 2, . . .

b. P{Nv|ϕF (M)− ϕF(N)(M)| > t} →(N→+∞) 0 for every v ∈ (0, 1
2 ).

P r o o f. The proof of Theorem 2 follows from Proposition 3, Corollary 4 and the
relations (19), (23) (for more details see [14]). 2

To obtain the assertions of Theorem 2 it was supposed g0(x̄M , z̄M ) to be bounded.
Following the approach used in [2] and Proposition 5 we can obtain.
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Theorem 3. Let t > 0 be arbitrary, the relations (4) be fulfilled. Let, moreover,
the system F(N), N = 1, . . . be defined by the relation (23). If

1. the assumptions 1, 3, 4 and 5 of Theorem 2 are fulfilled,

2. gk
F (x̄k, z̄k), k = 0, 1, . . . , M are uniformly continuous on X̄ k × Z̄k

F ,

3. for every k = 0, . . . , M there exist constants ak > 0, θk
0 > 0 and a real-valued

function νk(·) such that

|gk
F (x̄k, z̄k)| ≤ akνk(zk), EF ηk exp{θνk(ξk)} < ∞ for all 0 ≤ θ ≤ θk

0 ,

and every x̄k ∈ X̄ k, z̄k−1 ∈ Z̄k−1
F ,

4. {ξk}+∞k=−∞ is a sequence of independent random vectors and, moreover, the
system F(N) is determined by independent random sample {ξk}0k=−N .

then there exists a constants β(t), Kk(X , t) > 0, k = 0, 1, . . . , M such that

P{|ϕF (M)− ϕF(N)(M)| > t} ≤ exp{−β(t)N}
M∑

k=0

Kk(X , t), N = 1, 2, . . .

P r o o f. The proof of Theorem 3 follows from Proposition 5 and the relations
(19), (23) (for more details see [14]). 2

Of course, to apply the stability and empirical estimates results achieved for
one-stage problems to the multistage case the corresponding assumptions must be
verified. Evidently, the uniform continuity and the Lipschitz property are the crucial
assumptions. For more information see [11] or [14].
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[11] V. Kaňková: A note on multistage stochastic programming. In: Proc. 11th joint
Czech–Germany–Slovak Conference: Mathematical Methods in Economy and Indus-
try. University of Technology, Liberec (Czech Republic) 1998, pp. 45–52.
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