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Olga Štěpánková, Igor Vajda, Pavel Źıtek,
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PERMUTATION TESTS FOR MULTIPLE CHANGES1

Marie Hušková and Aleš Slabý

Approximations to the critical values for tests for multiple changes in location models
are obtained through permutation tests principle. Theoretical results say that the ap-
proximations based on the limit distribution and the permutation distribution of the test
statistics behave in the same way in the limit. However, the results of simulation study
show that the permutation tests behave considerably better than the corresponding tests
based on the asymptotic critical value.

1. INTRODUCTION

Consider the model for multiple changes in the location model:

Xi =
q∑

j=0

µjI{mj < i ≤ mj+1}+ ei, i = 1, . . . , n (1)

where 0 = m0 < m1 ≤ . . . ≤ mq+1 = n and µ0, . . . , µq, are unknown parameters
fulfilling µj 6= µj+1, j = 0, . . . , q− 1; q can be known or unknown. The observations
X1, . . . , Xn are obtained in some time ordered points t1 < · · · < tn. The error terms
e1, . . . , en are assumed to follow the assumption:

e1, . . . , en are independent identically distributed,

Eei = 0, 0 < var ei < ∞, E|ei|2+∆ < ∞ with some ∆ > 0.
(2)

In this context, the values m1, . . . , mq are change points and the respective differ-
ences µj+1 − µj , j = 0, . . . , q − 1, are magnitudes of the changes.

We are testing the null hypothesis

H0 : m1 = . . . = mq = n (3)

against the alternative that at least one change has occurred:

H1 : m1 ≤ . . . ≤ mq, where at least one inequality is strict, (4)

1Partially supported by Grant 201/00/0769 of the Grant Agency of the Czech Republic and by
the MSM 113200008 Project.
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where q can be or need not be specified.
There is a number of tests available for this testing problem, for information see,

e. g., Csörgő and Horváth [5] and Horváth and Kokoszka [10]. One of the main
problems is to find reasonable approximations to the critical values. Typically, ap-
proximations based on limit behavior of the test statistics under the null hypothesis
are used. However, the convergence to the limit distributions of the test statistics
for the change point problem is rather slow and therefore these approximations are
reasonable only for very large sample sizes and, usually, the resulting tests are con-
servative otherwise. Csörgő and Horváth [5], among others, pointed out this fact
and proposed an improvement. This is based on asymptotic arguments combined
with a proper trimming.

In the present paper we focus on the test statistics generated by a kernel func-
tion K. Their limit behavior under the null hypothesis will be derived. Particular
attention will be paid to the related permutation tests. An approximation to the
critical values through the bootstrap method will be also discussed.

We assume that the kernel K satisfies either assumptions (K.1) and (K.2) or
(K.1) and (K.3):

(K.1) K is a non-negative symmetric function such that

K(t) = 0, t /∈ [−1, 1],
∫ 1

−1

K(t) dt > 0.

(K.2) The second derivative K(2) exists and is Lipschitz of order β ≥ 1
2 on (0, 1), one

sided second order derivatives exist at 0 and 1 and K(0) + K(1) > 0.

(K.3) The second derivative K(2) exists and is Lipschitz of order 1 on (0, 1), one
sided second order derivatives exist at 0 and 1 and K(0) + K(1) = 0.

Notice that the set of assumptions (K.1) and (K.2) covers the situation where at
least one of K(0) and K(1) are nonzero while the set (K.1)and (K.3) corresponds to
the case when K(0) = K(1) = 0. Inside of the interval (0,1) and (−1, 0) the kernels
are assumed to be smoothed. Both sets of assumptions imply that K is bounded
and therefore

∫ 1

−1
K(u) du < ∞.

The test procedure also depends on G which is related to the bandwidth in the
area of nonparametric regression. We assume that G = G(n) satisfies, as n →∞,

G

n
log(n/G) → 0,

G

n2/(2+∆)
→∞ (5)

which means that G tends to infinity together with n but not too fast.
We consider the test statistic

Tn(G) = max
G<k<n−G

1√
2

∑G
i=1 K2(i/G)

1
σn

× (6)

×
∣∣∣∣∣

k∑

i=k−G+1

Xi K

(
k − i + 1

G

)
−

k+G∑

i=k+1

Xi K

(
k − i

G

)∣∣∣∣∣
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where
σ2

n =
1
n

n∑

i=1

(
Xi −Xn

)2
, (7)

which is an estimator of var ei defined in (1.2).
Motivation for this test statistic comes from the area of nonparametric regression

estimation. Notice that

N−
n (k/G) =

1
G

k∑

i=k−G+1

Xi K

(
k − i + 1

G

)
(8)

and
N+

n (k/G) =
1
G

k+G∑

i=k+1

Xi K

(
k − i

G

)
(9)

are kernel type estimators of the expectation E Xk based on the observations Xk−G+1,
. . . , Xk (i. e., G observations till time point tk) and Xk+1, . . . , Xk+G (i. e., G obser-
vations after time point tk), respectively. Then Tn(G) can be expressed as

Tn(G) = max
G<k<n−G

G√
2

∑G
i=1 K2(i/G)

1
σn

∣∣∣N−
n (k/G)−N+

n (k/G)
∣∣∣. (10)

Clearly, large values of Tn(G) indicate that at least one change has occurred. Possible
approximation to the critical value follows from Theorem 2.1 below where the limit
distribution of Tn(G) under H0 is stated. The test based on Tn(G) is sensitive
w.r.t. to a wide spectrum of alternatives. Moreover, the differences N+

n (k/G) −
N−

n (k/G), k = G + 1, . . . , n−G, can be helpful to identify the change points mj .
The limit behavior of Tn(G) under the null hypothesis H0 is studied, the consis-

tency of the tests based on Tn(G) is proved and various modifications of this test
statistic are discussed in Section 2. The permutation tests related to Tn(G) are
developed and investigated in Section 3. Section 4 contains results of a simulation
study.

2. LIMIT PROPERTIES OF Tn(G)

Here we derive the limit behavior of Tn(G) under the null hypothesis (no change),
prove the consistency of the related test and discuss possible modifications and
extensions. The main assertion of this section states:

Theorem 2.1. (no change) Let X1, . . . , Xn be i.i.d. random variables with
nonzero variance and E |Xi|2+∆ < ∞ with some ∆ > 0. Let (1.5) be satisfied.

(i) If the kernel K satisfies (K.1), (K.2) then, as n →∞,

P
(√

2 log(n/G)Tn(G) ≤ y + 2 log(n/G) +
1
2

log log(n/G)

+ log
2K2(0) + K2(1)

2
∫ 1

0
K2(t) dt

− 1
2

log(π)
)
→ exp{−2 exp{−y}}, y ∈ R1,

where Tn(G) is defined in (1.6).
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(ii) If the kernel K satisfies (K.1), (K.3) then, as n →∞,

P

(√
2 log(n/G)Tn(G) ≤ y + 2 log(n/G) +

1
2

log

∫ 1

0
(K ′(t))2 dt

4
∫ 1

0
K2(t) dt

− log(π)

)

→ exp{−2 exp{−y}}, y ∈ R1.

P r o o f . The proof is divided into three steps. In the first one we show that it is
sufficient to study the the limit behavior of Tn(G) for Xi being i.i.d. with N(0, 1)
distribution. Then we prove that properly standardized N−

n (k/G)−N+
n (k/G), k =

1, . . . , n, defined by (1.8) through (1.9), converge to a Gaussian process and, finally,
applying the results on the extremes of Gaussian processes we get the desired results.

Without loss of generality we may assume that Xi have zero mean and unit
variance.

Denoting

Mn(j) =
j∑

i=1

Xi, j = 1, . . . , n, (11)

we find that
k+G∑

i=k+1

Xi K

(
k − i

G

)
=

(
Mn(k + G)−Mn(k)

)
K(0) (12)

+
G∑

j=1

(
Mn(k + G)−Mn(k + j − 1)

)(
K(−j/G)−K(−(j − 1)/G)

)

and a similar expression for
∑k

i=k−G+1 XiK
(

k−i+1
G

)
can be derived via the par-

tialsums Mn(k). By arguments of Einmahl [7] there are Wiener processes {Wn(t), 0 ≤
t < ∞}, n = 1, . . . , such that, as n →∞,

max
1≤k≤n

k1/(2+∆)
∣∣Mn(k)−Wn(k)

∣∣ = Op(1) (13)

that immediately implies

max
G<k≤n−G

max
0≤i≤G

∣∣(Mn(k + G)−Mn(k + i)
)− (

Wn(k + G)−Wn(k + i)
)∣∣

= OP

(
G1/(2+∆)

)
.

(14)

By Theorem 1.2.1 of Csörgő and Révész [4] we have

sup
0≤t≤n−G

sup0≤s≤G

∣∣Wn(t + s)−Wn(t)
∣∣

= OP

(
(G log(n/G))1/2

)
+ OP

(
(G log log n))1/2

)
.

(15)

Then by the assumptions the kernel K has finite variation and then combining (2.1)
through (2.5) we observe that

Tn(G) = Op

(√
log(n/G)

)
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and moreover, that it suffices to derive the limit distribution of Tn(G) for the case
X1, . . . , Xn being i.i.d. with N(0, 1) distribution.

Hence it remains to derive the limit behavior of

max
G<k<n−G

∣∣Ln(k)
∣∣

where

Ln(k) =
1√

2
∑G

i=1 K2(i/G)
× (16)

×
(

k∑

i=k−G+1

XNiK

(
k−i+1

G

)
−

k+G∑

i=k+1

XNiK

(
k−i

G

))

with XN1, . . . , XNn being i.i.d. with N(0, 1). Notice that Ln(k), k = G, . . . , n−G,
is a stationary 2G-dependent sequence of random variables with distribution with
zero mean, unit variance and covariances for G ≤ k1 < k2 ≤ n−G, k2 − k1 ≤ G

cov{Ln(k1), Ln(k2)} =
1

2
∑G

i=1 K2(i/G)

(
k1∑

i=k2−G+1

K

(
k1−i+1

G

)
K

(
k2−i+1

G

)

+
k1+G∑

i=k2+1

K

(
k1 − i

G

)
K

(
k2 − i

G

)
−

k2∑

i=k1+1

K

(
k1 − i

G

)
K

(
k2 − i + 1

G

) )
.

Define the process
Yn(t) = Ln

(
[Gt]

)
, 1 ≤ t ≤ n/G− 1.

Using standard arguments one can show that

{Yn(t), 1 ≤ t ≤ n/G− 1} → {Y (t), 1 ≤ t < ∞}
where

Y (t) =
(∫ t+1

t

K(y − t) dW (y)−
∫ t

t−1

K(y − t) dW (y)
)

1√
2

∫ 1

0
K2(u) du

, t ≥ 1,

with {W (t), 0 ≤ t < ∞} being a Wiener process. The process {Y (t); 1 ≤ t < ∞} is
a stationary Gaussian process with unit variance and the autocorrelation function
ρ(v) = cov(Y (t + v), Y (t)). It has the property

ρ(v) = 0, v > 2,

and for 1 > v > 0

ρ(v) = 1 +

( ∫ 1−v

v

K(z)(K(z + v)−K(z − v)− 2K(z)) dz

+
∫ v

0

K(z)(K(z + v)−K(z − v)− 2K(z)) dz

+
∫ 1

1−v

K(z)(K(z − v)− 2K(z)) dz

)(
2

∫ 1

0

K2(z) dz

)−1

.
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To finish the proof we have to check the behavior of the covariance for v → 0. The
limit depends on the assumptions on the kernel K. Under the assumptions (K.1),
(K.2) we receive that for v → 0+

ρ(v) = 1− v
2K2(0) + K2(1)

2
∫ 1

0
K2(z) dz

+ o(v)

and under assumptions (K.1), (K.3) we obtain that for v → 0+

ρ(v) = 1− v2

∫ 1

0
(K ′(z))2 dz

2
∫ 1

0
K2(z) dz

+ o(v2).

Then applying Theorem 12.3.5 in Leadbetter et al [13] we receive the desired asser-
tions. 2

Remark 2.1. Going through the paper by Einmahl [7] we find that (2.3) holds
true even for triangular array, i. e., (2.3) remains true if in the definition of Mn(k/G)
(see (2.1)) X1, . . . , Xn are replaced by X1n, . . . , Xnn that are i.i.d. with zero mean,
unit variance and E |X1n|2+∆ ≤ D2 > 0, n ≥ n0, where D2 > 0 does not depend
on n.

Remark 2.2. Notice that Tn(G) will not change if Xi is replaced by the residual
Xi −Xn, i = 1, . . . , n, where Xn =

∑n
i=1 Xi/n. So that Tn(G) can be rewritten as

a functional of these residuals. Then one can develop corresponding M - and R-test
statistics. They are obtained from Tn(G) just replacing the residual Xi − Xn and
the estimator σ2

n by their M - or R-counterparts. It can be shown that under the
null hypothesis and under some assumptions on scores and score function they have
the same limit behavior as Tn(G).

Remark 2.3. The critical region of the test (1.3) versus (1.4) based on Tn(G) on
the level α has the form

Tn(G) > z1−α,n(G) (17)

where z1−α,n(G) is the 100(1−α)% quantile of the distribution of Tn(G) under H0.
Theorem 2.1 provides an approximation to z1−α,n(G) and implies that

z1−α,n(G) = 2
√

log
n

G
(1 + o(1)). (18)

Next, we study the limit behavior of Tn(G) under alternatives. Namely, we
assume that in the model (1.1) with µ0, . . . , µq, µi 6= µi+1 and q are fixed (not
dependent on n and that mi, i = 0, . . . , q increase together with n, namely,

mi/n → κi, i = 0, . . . , q + 1, 0 = κ0 < κ1 < · · · < κq+1 = 1. (19)
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Theorem 2.2 Let X1, . . . , Xn follow the model (1.1) with µ0, . . . , µq, µi 6= µi+1

and q fixed. Let (1.5) and (2.9) be satisfied. Then the test with the critical region
(2.7) is consistent.

P r o o f . Standard tools give

Tn(G) = max
i=0,...,q−1

|µi+1−µi|√
σ2 +

∑q
i=0(µi−µ)2(κi+1−κi)

√
G

∫ 1

0
K(u) du√

2
∫ 1

0
K2(u) du

(20)

+OP

(√
log(n/G)

)

where µ =
∑q

i=0 µi(κi+1 − κi). This together with (2.9) and the assumption (1.5)
implies the consistency. 2

Remark 2.4. Studying the limit behavior of the test based on Tn(G) under var-
ious alternatives we find that it is sensitive w.r.t. a wide spectrum of alternatives
(multiple abrupt changes, gradual changes).

Remark 2.5. The statistics N−
n (k/G)−N+

n (k/G), k = G, . . . , n−G can be used
to estimate the change points m1, . . . , mq, for details see Grabowsky et al [9].

Next, we study the R-type (rank based) version of the test statistics of Tn(G). It
will appear to be extremely useful when studying the permutation tests in Section 3.

The rank based version of Tn(G) is defined as

Tn,QQQ(G) = max
G<k<n−G

1√
2

∑G
i=1 K2(i/G)

1
τn
× (21)

×
∣∣∣∣∣

k∑

i=k−G+1

an(Qi)K
(

k − i + 1
G

)
−

k+G∑

i=k+1

an(Qi)K
(

k − i

G

)∣∣∣∣∣

where Q1, . . . , Qn are the ranks of X1, . . . , Xn; an(1), . . . , an(n) are scores and

τ2
n =

1
n− 1

n∑

i=1

(
an(i)− an

)2
, an =

1
n

n∑

i=1

an(i). (22)

Theorem 2.3. Let X1, . . . , Xn be i.i.d. random variables with continuous distri-
bution function. Let the scores an(1), . . . , an(n) have the properties

τ2
n ≥ D1, n ≥ n0 (23)

and 1
n

n∑

i=1

∣∣an(i)− an

∣∣2+∆1 ≤ D2, n ≥ n0 (24)

with some positive D1, D2, n0 and ∆1. Then the assertion of Theorem 2.1 remains
true if Tn(G) is replaced by Tn,QQQ(G).
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P r o o f . To prove the assertion it is sufficient to show that Tn,QQQ(G) is close to
Tn(G) with Xi replaced by suitable random variables Zi that are i.i.d. and are
fulfilling the assumptions of Theorem 2.1.

Notice that the ranks Q1, . . . , Qn can be viewed as the ranks corresponding to
the random sample U1, . . . , Un from uniform distribution on (0, 1), where Ui =
F (Xi), i = 1, . . . , n and F is the distribution of Xi under the null hypothesis. We
introduce the simple linear rank statistics

Sk =
k∑

i=1

(
an(Qi)− an

)
, k = 1, . . . , n, (25)

and the accompanying partial sums of i.i.d. random variables

Zk =
k∑

i=1

(
an(1 + [nUi])− an

)
, k = 1, . . . , n. (26)

Direct calculation gives

ESk = EZk = 0, k = 1, . . . , n, (27)

varSk =
n

n− 1
var

{
Zk − k

n
Zn

}
=

k(n− k)
n

τ2
n, k = 1, . . . , n, (28)

and
E

∣∣an(1 + [nUi])− an

∣∣2+∆1 ≤ D2. (29)

Then the assumptions of Theorem 3 in Hušková [11] are satisfied and this theorem
implies that, as n →∞,

max
G≤k≤n−G

1√
G

∣∣∣∣Sk −
(
Zk − k

n
Zn

)∣∣∣∣ = OP

(
n−v

)
(30)

with some v > 0. Replacing Xi by
(
an(Qi)− (an([Uin]+1)−Zn/n)

)
in (2.2) we get

k∑

i=k−G+1

(
an(Qi)−

(
an([nUi] + 1)− Zn/n

))
K

(
k − i + 1

G

)

=
G∑

j=1

((
Sk+G − Sk+j−1

)− (
Zk+G − Zk+j−1 − (G− j + 1)Zn/n

))×

×(
K(−j/G)−K(−(j − 1)/G)

)

+
(
(Sk+G − Sk)− (Zk+G − Zk −GZn/n)

)
K(0).

After few standard steps these relations together with (2.21) imply that, as n →∞,

max
G<k≤n−G

1√
G

∣∣∣∣∣
k∑

i=k−G+1

(
an(Qi)−(an([nUi]+1)−Zn/n)

)
K

(
k−i+1

G

)∣∣∣∣∣
= oP

(
(log(n/G))−1/2

)
(31)
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and similarly, as n →∞,

max
G<k≤n−G

1√
G

∣∣∣∣∣
k+G∑

i=k+1

(
an(Qi)−(an([nUi]+1)−Zn/n)

)
K

(
k − i

G

)∣∣∣∣∣ (32)

= oP

(
(log(n/G))−1/2

)
.

The random variables an([nUi]+1), i = 1, . . . , n satisfy the assumptions of Theorem
2.1 and Zn/n cancels from the corresponding statistic Tn(G), so that Theorem 2.1
holds true if Xi is replaced by an([nUi]+1)−Zn/n for i = 1 . . . , n. Then the assertion
of our theorem can be concluded if Remark 2.1 is taken into account and (2.22) and
(2.23) are applied. 2

The problem of the choice of the kernel K and of the limit behavior under alter-
natives will be considered in a different paper.

3. PERMUTATION TESTS

Here we describe the permutation test related to the statistic Tn(G) and study its
limit performance.

Elements of theory of permutation tests together with relevant references can be
found in the books by Lehmann [12] and by Good [6] among others. Rather general
remarks on the permutation tests in change point analysis can be found in Romano
[14]. Antoch and Hušková [3] investigated permutation tests for at most one change
in location model.

The permutation distribution of Tn(G) can be described as the conditional dis-
tribution, given X1, . . . , Xn, of

Tn(RRR, G) = max
G<k<n−G

1√
2

∑G
i=1 K2(i/G)

1
σn

(33)

n×
∣∣∣

k∑

i=k−G+1

XRiK(
k − i + 1

G
)−

k+G∑

i=k+1

XRiK(
k − i

G
)
∣∣∣,

where RRR = (R1, . . . , Rn) is random permutation of (1, . . . , n) independent of X1, . . .
. . . , Xn. This permutation distribution Fn(. ;XXX) can be expressed as

Fn(x ;XXX) =
1
n!

#{rrr ∈ Rn; Tn(rrr, G) ≤ x}, x ∈ R1, (34)

where Rn is the set of all permutations of (1, . . . , n) and #A denotes the cardinality
of a set A. Denoting by x1−α,n(G,XXX) the corresponding 100(1 − α)% quantile the
critical region of the permutation test based on Tn(G) with the level α has the form

Tn(G) ≥ x1−α,n(G,XXX). (35)

Computational aspects of the critical values x1−α,n(G,XXX) are discussed in Appendix.

Next, we derive the limit distribution of the permutation distribution Fn(x ;XXX)
which is the main result of the paper.
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Theorem 3.1. Let the observations X1, . . . , Xn follow the model (1.1). Let the
assumptions (1.2), (1.5) be satisfied, let q ≤ D3

|µj | ≤ D4 > 0, j = 0, . . . , q, (36)

with some D3 > 0 and D4 > 0 be satisfied. Let (1.5) be satisfied.

(i) If the kernel K satisfies (K.1), (K.2) then, as n →∞,

P
(√

2 log(n/G)Tn(RRR, G) ≤ y + 2 log(n/G) +
1
2

log log(n/G)

+ log

(
2K2(0) + K2(1)

2
∫ 1

0
K2(t) dt

)
− 1

2
log(π)

∣∣∣X1, . . . , Xn

)

→ exp{−2 exp{−y}}, [P ]–a.s.,

where P (A|X1, . . . , Xn) denotes the conditional probability of an event A given
X1, . . . , Xn and [P ]–a.s. denotes probability measure generated by random
variables Xi’s.

(ii) If the kernel K satisfies (K.1), (K.3) then, as n →∞,

P
(√

2 log(n/G)Tn(RRR, G) ≤ y + 2 log(n/G) +
1
2

log

(∫ 1

0
(K ′(t))2 dt

4
∫ 1

0
K2(t) dt

)

− log(π)
∣∣∣X1, . . . , Xn

)
→ exp{−2 exp{−y}}, [P ]–a.s.

P r o o f . We apply Theorem 2.3 with an(i) = Xi, i = 1 . . . , n. Hence the proof of
our theorem reduces to the verification of the assumptions of Theorem 2.2.

Clearly,

1
n

n∑

i=1

(Xi −Xn)2 =
1
n

n∑

i=1

(ei − en)2 + 2
1
n

q∑

j=0

(µj − µn)
mj+1∑

i=mj+1

ei

+
1
n

q∑

j=0

(µj − µn)2(mj+1 −mj),

where

µn =
1
n

q∑

j=0

µj .

Classical strong law of large numbers and few standard steps imply that

lim inf
n→∞

1
n

n∑

i=1

(Xi −Xn)2 ≥ var e1 > 0, [P ]–a.s.
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Further, by the Minkowski inequality

( 1
n

n∑

i=1

|Xi −Xn|2+∆
)1/(2+∆)

≤
( 1

n

n∑

i=1

|ei − en|2+∆
)1/(2+∆)

+
( 1

n

q∑

j=0

|µj − µn|2+∆(mj+1 −mj)
)1/(2+∆)

which together with the strong law of large numbers and the assumptions implies

lim sup
n→∞

( 1
n

n∑

i=1

|Xi −Xn|2+∆
)1/(2+∆)

≤ 2
(
(E |e1|2+∆)1/(2+∆) + D

1/(1+∆)
4

)
, [P ]–a.s.

Hence the assumptions of Theorem 2.3 are satisfied and our theorem follows. 2

Remark 3.1. Notice that the assumptions of Theorem 3.1 covers both the null hy-
pothesis and alternatives. Moreover, the limit permutation distribution is the same
in both cases and does not depend on the original observations X1, . . . , Xn. This
means that the critical value for the permutation test provides an approximation to
the critical value to the test based on Tn(G).

Under the null hypothesis the permutation principle provides the exact critical
values, otherwise it does reasonable approximation. The resulting tests are consistent
for a large variety of alternatives. The behavior of the power function will be treated
in a separate paper.

4. SIMULATIONS

To investigate behaviour of Tn(RRR, G) under various alternatives and kernel choices
we carried out a comprehensive simulation study. Also, the study illustrates how far
the limit critical values can depart from the exact ones.

We simulated values of Tn(RRR, G) for G =
√

n and the following six types of
kernels.

(i) K1(x) = 1

(ii) K2(x) = 1− |x|

(iii) K3(x) = 1− x2

(iv) K4(x) = |x|(1− |x|)

(v) K5(x) = |x|

(vi) K6(x) = x2.
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The kernel K4 satisfies condition (K.3) while the rest satisfy condition (K.2). Specif-
ically, K(0) > 0 and K(1) = 0 hold for kernels K2, K3 while K(0) = 0 and K(1) > 0
hold for kernels K5, K6. Finally, values K(0) and K(1) are both positive for ker-
nel K1. The choice of K1 relates to the classical moving sum statistic, which has
been widely studied in literature. More information about these kernels can be found
in the Appendix.

All the six statistics above were studied under six different change-point hypothe-
ses introduced below.

H0: q = 0 (no change)

H1: q = 1, m1 = n/2, µ1 − µ0 = 1

H2: q = 1, m1 = n/2, µ1 − µ0 = 2

H3: q = 2, m1 = n/3, m2 = 2n/3, µ1 − µ0 = 1, µ2 − µ1 = 1

H4: q = 2, m1 = n/3, m2 = 2n/3, µ1 − µ0 = 1, µ2 − µ1 = −1

H5: q = 2, m1 = n/3, m2 = 2n/3, µ1 − µ0 = 1, µ2 − µ1 = −2.

We used samples from the following three standardized error distributions: normal,
Laplace, t4. It implies 18 different underlying probability model setups. The sample
sizes were chosen as n = 100, 200. All that resulted in 36 combinations studied for
each kernel (i) through (vi).

For each combination of change-point hypothesis, error distribution and sample
size we proceeded as follows:

(1) Observations X1, . . . , Xn following model (1.1) with the (fixed) combination
parameters are generated.

(2) A random permutation rrr = (r1, . . . , rn) of (1, . . . , n) is generated.

(3) Tn(RRR, G) with RRR = rrr is calculated and stored for each kernel (i) through (vi).

(4) The steps (2) through (3) are repeated 10,000 times.

(5) Sample quantiles corresponding to those 10,000 simulated values of Tn(RRR, G)
are computed for each kernel (i) through (vi).

The results for n = 100 are summarized in Table 2. Table 1 contains asymptotic
quantiles corresponding to Theorem 3.1.

As the case of n = 200 basically incites the same conclusions as the ones discussed
below the corresponding tables for n = 200 are omitted. If we compare Table 1 and
Table 2 it is evident that asymptotic critical values are conservative in contrast with
the permutation procedure. The differences given by Table 1 and Table 2 varies
between 0.4 and 1.3. The size of the differences increases with size 1 − α. Further,
choices of kernel (ii) and (vi) lead to the largest differences while the choice of
kernel (iv) lead to the smallest differences. These observations are independent of
error distribution.
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Recall that Theorem 3.1 shows the limit behaviour of Tn(RRR, G) is independent
of alternative. The results in Table 2 matches this fact though we can see slightly
different sizes subject to error distribution. Anyway, the differences are much smaller
in contrast with deviations from the corresponding asymptotic quantiles. It may be
explained in the following way.

To derive limit behaviour of Tn(RRR, G) an approximation by certain i.i.d. normally
distributed variables is employed. Convergence of Tn(RRR, G) based on these variables
to some standardized Gaussian process is then used and the limit distribution is ob-
tained via extreme value theory for Gaussian processes. The simulation results lead
to a supposition that the convergence to those i.i.d. normally distributed variables
is much faster than the convergence to the Gaussian process.

The higher sample quantiles (95 % , 99 % ) are slightly larger for Laplace and
t4 errors than for normal errors. The relation between Laplace and t4 distribution
may depend on the alternative. For instance, under H0 the sample quantiles are
larger in case of Laplace distribution while under H5 it is the other way around no
matter what kernel or probability we choose. On the other hand there is no such
clear relation under H4.

Table 1. Asymptotic quantiles

for different kernels (n = 100).

1− α 90 % 95 % 99 %
K1 3.634 3.970 4.729
K2 3.957 4.293 5.052
K3 3.738 4.074 4.833
K4 3.358 3.693 4.453
K5 3.634 3.970 4.729
K6 3.872 4.208 4.967
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Table 2. Sample quantiles for different setups of the simulation (n = 100).

errors Normal Laplace t4
1− α 90 % 95 % 99 % 90 % 95 % 99 % 90 % 95 % 99 %

K1 H0 3.042 3.260 3.714 3.062 3.297 3.750 3.058 3.291 3.738
H1 3.037 3.235 3.665 3.014 3.232 3.654 3.032 3.238 3.679
H2 3.061 3.258 3.678 3.053 3.270 3.680 3.034 3.248 3.661
H3 3.032 3.236 3.651 3.027 3.238 3.652 3.027 3.244 3.680
H4 3.039 3.239 3.673 3.036 3.267 3.708 3.059 3.275 3.748
H5 3.032 3.250 3.678 3.041 3.262 3.726 3.073 3.289 3.756

K2 H0 3.131 3.337 3.750 3.305 3.540 4.029 3.198 3.410 3.860
H1 3.113 3.298 3.677 3.140 3.345 3.759 3.135 3.341 3.743
H2 3.109 3.316 3.691 3.159 3.364 3.757 3.104 3.295 3.700
H3 3.110 3.296 3.648 3.105 3.298 3.701 3.179 3.381 3.764
H4 3.122 3.309 3.673 3.184 3.398 3.855 3.191 3.394 3.829
H5 3.113 3.317 3.694 3.177 3.379 3.815 3.237 3.461 3.874

K3 H0 3.105 3.307 3.723 3.192 3.429 3.899 3.138 3.351 3.794
H1 3.097 3.273 3.667 3.096 3.308 3.712 3.102 3.305 3.717
H2 3.092 3.301 3.678 3.129 3.328 3.729 3.089 3.276 3.709
H3 3.081 3.275 3.679 3.074 3.271 3.671 3.125 3.329 3.735
H4 3.092 3.288 3.633 3.129 3.348 3.790 3.141 3.349 3.789
H5 3.095 3.308 3.675 3.129 3.322 3.757 3.176 3.400 3.836

K4 H0 2.943 3.173 3.647 3.019 3.262 3.736 2.984 3.206 3.668
H1 2.935 3.147 3.565 2.931 3.143 3.575 2.931 3.157 3.635
H2 2.942 3.147 3.602 2.949 3.177 3.640 2.928 3.149 3.591
H3 2.918 3.146 3.575 2.926 3.148 3.590 2.939 3.161 3.638
H4 2.927 3.145 3.546 2.974 3.198 3.657 2.972 3.219 3.687
H5 2.937 3.165 3.573 2.957 3.193 3.653 2.997 3.241 3.701

K5 H0 3.036 3.236 3.669 3.213 3.465 3.960 3.095 3.321 3.812
H1 3.010 3.220 3.626 3.032 3.250 3.654 3.036 3.260 3.686
H2 3.019 3.228 3.660 3.068 3.276 3.671 2.992 3.185 3.603
H3 3.007 3.219 3.596 3.024 3.236 3.656 3.063 3.275 3.716
H4 3.028 3.243 3.652 3.072 3.313 3.796 3.077 3.291 3.746
H5 3.015 3.220 3.618 3.069 3.297 3.754 3.118 3.347 3.812

K6 H0 3.093 3.299 3.697 3.431 3.683 4.149 3.209 3.432 3.895
H1 3.049 3.240 3.610 3.097 3.315 3.740 3.110 3.307 3.725
H2 3.038 3.235 3.642 3.142 3.361 3.761 3.020 3.203 3.569
H3 3.037 3.229 3.586 3.081 3.282 3.657 3.155 3.359 3.814
H4 3.071 3.272 3.680 3.184 3.403 3.877 3.172 3.385 3.805
H5 3.052 3.247 3.629 3.175 3.394 3.806 3.243 3.468 3.956

Comparing the asymptotic quantiles (Table 1) and the sample quantiles (Table 2)
with their counterparts in the paper Antoch and Hušková [3], where the problem of
one change point is treated, we see very similar patterns, i. e. the empirical critical
values are substantially smaller then the corresponding asymptotic ones and the
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empirical critical values are not almost influenced by the amount of change, location
of change point(s) and the underlying distribution.

APPENDIX: COMPUTATIONAL PROCEDURES

This section contains quantities which are subjective to particular choice of kernel
K and which we used for the purpose of the simulation. First introduce a useful
notation.

θ(K) =





log
2K2(0) + K2(1)

2
∫ 1

0
K2(t) dt

− 1
2

log(π) under (K.2),

1
2

log

∫ 1

0
(K ′(t))2 dt

4
∫ 1

0
K2(t) dt

− log(π) under (K.3),

V (K) = 2
G∑

i=1

K2( i
G ),

Mk(K) =
G−1∑

i=0

Yk+i K
(

G−i
G

)−
G−1∑

i=0

Yk+G+i K
(

i+1
G

)
, k = 1, . . . , n− 2G + 1

where, in the simulation, Yk = XRk
. Then

Tn(G) = σ−1
n V (K)−1/2 max

1≤k≤n−2G+1
|Mk(K)|.

We introduce computational procedures for Mk(K) optimized subject to com-
putational time for particular choices of K. They are generally based on summing
differences and their speed increase merely with n independently of G. Typically, it
involves at most bn arithmetic operations (b varies according to K up to 10 within
our choices) whereas the speed of explicit formulae is 4G(n − 2G) arithmetic oper-
ations. This independence is the cause the procedures based on differences to be
better than corresponding explicit formulae.

To be specific we consider

D0 = M1

Dk = Mk+1 −Mk, k = 1, . . . , n− 2G,

which implies that

Mk(K) =
k−1∑

i=0

Di(K), k = 1, . . . , n− 2G + 1.

In cases of quadratic-type kernels we have to difference twice. We typically end with
a formula containing a simple moving sum. The moving sums can be easily obtained
as differences of respective cumulative sums. The formulae below may seem rather
complicated but when properly programmed they result in very fast procedures.
The summary of formulae for particular kernels used in the simulation follows.



620 M. HUŠKOVÁ AND A. SLABÝ

(i) K(x) = 1

θ(K) = −1
2

log
4π

9
, V (K) = 2G

Mk(K) =
G−1∑

i=0

Yk+i −
G−1∑

i=0

Yk+G+i

(ii) K(x) = 1− |x|

θ(K) = −1
2

log
π

9
, V (K) =

(G− 1)(2G− 1)
3G

GD0(K) =
G−1∑

i=1

i Yi+1 −
G−1∑

i=1

(G− i)YG+i

GDk(K) = (2G− 1)Yk+G −
2G−1∑

i=1

Yk+i, k = 1, . . . n− 2G

(iii) K(x) = 1− x2

θ(K) = −1
2

log
64π

225
, V (K) =

(G− 1)(16G3 + G2 + G + 1)
15G3

G2D0(K) =
G−1∑

i=1

(G2 − (G− i)2)Yi+1 −
G−1∑

i=1

(G2 − i2)Yi+G

G2Dk(K) = (2G2 − 1)Yk+G +
k−1∑

i=0

Ai(K), k = 1, . . . , n− 2G

A0(K) = −
(

G−1∑

i=1

(
2(G− i) + 1

)
Yi+1 +

G∑

i=1

(2i− 1)Yi+G

)

Ak(K) = (2G− 1)(Yk+2G − Yk+1) + 2

(
G∑

i=2

Yk+i −
2G−1∑

i=G+1

Yk+i

)

(iv) K(x) = |x|(1− |x|)

θ(K) = − log

(√
2
5

π

)
, V (K) =

(G− 1)(G + 1)(G2 + 1)
15G3
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G2D0(K) =
G−1∑

i=1

i (G− i)(Yi+1 − Yi+G)

G2Dk(K) =
k−1∑

i=0

Ai(K), k = 1, . . . , n− 2G

A0(K) =
G−1∑

i=1

(G− 2i + 1)(Yi+G − Yi+1)

Ak(K) = (G− 1)(Yk+1 + Yk+G+1 − Yk+G − Yk+2G)

+2

(
G−1∑

i=1

Yk+G+i −
G−1∑

i=1

Yk+1+i

)

(v) K(x) = |x|

θ(K) = −1
2

log
4π

9
, V (K) =

(G + 1)(2G + 1)
3G

GD0(K) =
G−1∑

i=0

(G− i)Yi+1 −
G−1∑

i=0

i Yi+G

GDk(K) = Yk+G −G(Yk + Yk+2G) +
2G−1∑

i=1

Yk+i, k = 1, . . . n− 2G

(vi) K(x) = x2

θ(K) = −1
2

log
4π

25
, V (K) =

(G + 1)(2G + 1)(3G2 + 3G− 1)
15G3

G2D0(K) =
G−1∑

i=0

(G− i)2Yi+1 −
G∑

i=1

i2Yi+G

G2Dk(K) = Yk+G −G2(Yk + Yk+2G) +
k−1∑

i=0

Ai(K), k = 1, . . . , n− 2G

A0(K), Ak(K) as in case (iii).
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[4] M. Csörgő and P. Révész: Strong Approximations in Probability and Statistics. Aca-
demic Press, New York 1981.
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