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Editorial Board:
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Published bi-monthly by the Institute of Information Theory and Automation of the
Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
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— Printed by PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions
should be placed with: MYRIS TRADE Ltd., P.O.Box 2, V Št́ıhlách 1311, 142 01 Prague 4,
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A NOTE ON THE RATE OF CONVERGENCE
OF LOCAL POLYNOMIAL ESTIMATORS
IN REGRESSION MODELS

Friedrich Liese and Ingo Steinke

Local polynomials are used to construct estimators for the value m(x0) of the regression
function m and the values of the derivatives Dγm(x0) in a general class of nonparametric
regression models. The covariables are allowed to be random or non-random. Only asymp-
totic conditions on the average distribution of the covariables are used as smoothness of
the experimental design. This smoothness condition is discussed in detail. The optimal
stochastic rate of convergence of the estimators is established. The results cover the special
cases of regression models with i.i.d. errors and the case of observations at an equidistant
lattice.

1. INTRODUCTION

In many statistical applications one is interested in the influence of a variable X,
the independent variable, on the variable Y. The average effect on Y is given by the
conditional expectation

m(x) = E[Y |X = x]. (1)

The aim is to estimate the regression function m using a sample of size n of inde-
pendent vectors (Xi, Yi), i = 1, . . . , n, which have the same regression function, i. e.
it holds for i = 1, . . . , n

m(x) = E[Yi|Xi = x]. (2)

As the (Xi, Yi) are not necessarily i.i.d. the conditional variance

vi(x) = V[Yi|Xi = x] (3)

of Yi given Xi = x will depend on i. When we set εi = Yi − m(Xi) we get the
traditional structure of a regression model

Yi = m(Xi) + εi. (4)

It should be noted that in the model (4) the errors ε1, . . . , εn are not necessarily
identically distributed.
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Sometimes the model (4) is specified by the assumption that the regression func-
tion m belongs to a family mθ, θ ∈ Θ, parametrized by a finite dimensional param-
eter θ. Then model (4) is a nonlinear regression model. Otherwise, if m belongs to
a class of functions restricted only by some smoothness conditions, the model (4)
is called nonparametric. Up to this moment there are no special conditions on the
joint distribution of Xi and Yi in the model (4). But in some situations it is useful
to specify the conditional distribution of Y given X = x. To this end let Qθ, θ ∈ R,
be a family of distributions on the real line so that

∫
yQθ(dy) = θ. (5)

If Qm(xi) is the conditional distribution of Yi given Xi = xi then (2) is satisfied
and the conditional variance appearing in (3) is independent of i. Using the family
Qθ, θ ∈ R, for constructing the conditional distribution one obtains the regression
model (4) with independent Xi and εi if Qθ = Q(·−θ). The errors have expectation
zero if Q does.

In the literature there exist different approaches for estimating the regression
function m for the nonparametric regression model. Nadaraya [11] and Watson [21]
constructed a kernel estimator which assigns different weights to observations with
the help of a kernel. A different type of kernel estimator was introduced by Gasser
and Müller [5]. Other types of estimators are based on local polynomials introduced
by Stone [17, 18] and studied by Fan [2, 3], Ruppert and Wand [14] and Fan et al
[4]. Schoenberg [15] used smoothing splines for estimating the regression function
m. This technique was also applied by Wahba [20] and several other authors.

In regular statistical models finite dimensional parameters are estimable with
the rate

√
n. In contrast to this situation Stone [17] proved that the optimal rate

of convergence is nr with r < 1
2 for estimating the value m(x0) of the regression

function at x0. The exponent r depends on the smoothness of m and the dimension
of the covariables. Fan [3] and Fan et al [4] established bounds for the maximal
mean square error of local linear regression estimators.

In the most papers cited above and the references therein the covariables are
assumed to be identically distributed. This condition is often not fulfilled in appli-
cations. Especially the case of nonrandom covariables, in which the variables Xi

have a delta distribution, is studied in relatively few papers, see for example Müller
[9], Fan [3], Müller [10] and Park [12].

It is well known that in parametric regression models with nonrandom covariables
beside other conditions the weak convergence of experimental design is enough to
get the consistency and the asymptotic normality of least squares estimators.

The aim of this paper is to introduce and to study conditions on the sequence
of experimental designs for the nonparametric model so that large classes of models
with non-identically distributed covariables and nonrandom covariables are covered
by these assumptions in the sense that the optimal rates of convergence established
for i.i.d. covariables continue to hold. This means that smoothness properties of the
sequence of experimental designs do not have influence on the rate of convergence.
The crucial point is that in contrast to the parametric situation for nonparametric
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models in general the smoothness of experimental designs does have an influence on
the rate of convergence.

The paper is organized as follows. In the first part we introduce and calculate
the local polynomial estimator. The next step is to establish a condition on the
experimental designs and to discuss this condition from different points of view. We
show that this smoothness condition can be understood as a weak convergence at
a special rate. Especially we discuss the case of non-identically distributed random
covariables which have Lebesgue densities and the other extreme case in which the
covariables are nonrandom so that their distributions are delta distributions.

In the next section we use the standard techniques for i.i.d. covariables to evaluate
the expectation and the variance of the local polynomial estimator. This leads to
a lower bound for the rate of convergence. Using a technique due to Hall [6] and a
special class of regression models we construct an upper bound for the rate which
is identical with the rate of the local polynomial estimator and therefore optimal.
In Section 4 there are given several possible extensions of the results presented.
Section 5 contains the proofs of the main results.

2. LOCAL POLYNOMIAL ESTIMATOR

For m from the model (1) we want to estimate the value of m or a higher order partial
derivative of m at x = x0. To construct the estimator and to formulate the results
we need some notations. Let A≤s = {α = (α1, . . . , αd) ∈ Nd , |α| = α1 + · · ·+ αd ≤
s} be the set of all d-dimensional multi-indices up to order s. Furthermore, for
α ∈ Nd, x ∈ Rd we set α! = α1! . . . αd! and xα = xα1

1 . . . xαd

d . By a kernel K we shall
mean a measurable, nonnegative function K : Rd → R with compact support. Using
the kernel K we introduce the family Kh, h > 0, by

Kh(x) =
1
hd

K
(x

h

)
. (6)

Denote for s ≥ 0 by Cs(Ux0) the set of all real-valued functions m which are
defined in some open neighborhood Ux0 of x0 and have continuous derivatives Dαm
up to the order s, i. e. the multi-indices α appearing in the derivative satisfy |α| ≤ s.
C0(Ux0) is the space of continuous functions. For m ∈ Cs(Ux0) we use the Taylor
expansion

m(x) =
∑

|α|≤s

Dαm(x0)
(x− x0)α

α!
+ o(‖x− x0‖s).

As m(x0) is the conditional expectation of Y given X = x0 it is plausible to
estimate m(x0) by an average of Yi whose covariables belong to a neighborhood of
x0. We characterize this average by a quadratic criterion function. More precisely,
set for the sequence of bandwidths hn ↓ 0

S(x0,b) =
n∑

i=1

(
Yi −

∑

|α|≤s

bαh−|α|n (x0 −Xi)α
)2

Khn(x0 −Xi) (7)
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where b = (bα)|α|≤s and hn → 0. Define b̂n = (̂bn,α)|α|≤s by the requirement

b̂n ∈ arg min S(x0,b). (8)

Then
m̂n,γ(x0) = (−1)|γ|h−|γ|n γ! b̂n,γ (9)

is called the local polynomial estimator for Dγm(x0). Note that representation (7)
of the criterion function is a modification of that used in the literature. Our version
simplifies the examination of the asymptotic behavior of the estimator.

Ruppert and Wand [14] and Fan et al [4] considered a bandwidth matrix Hn

instead of a universal bandwidth hn for all coordinates. But the corresponding
different weighting of the directions may be included in the d-dimensional kernel K
which is not assumed to be symmetric in our case. To give an explicit representation
of b̂n we need some notation. Set Yn := (Y1, . . . , Yn) and introduce the (n × n)
diagonal matrix Wn := diag(Khn(x0 −X1), . . . , Khn(x0 −Xn)). Furthermore, let
Cn := (h−|α|n (x0 −Xi)α)1≤i≤n,|α|≤s and denote by Bn the (|A≤s| × |A≤s|) matrix

Bn = CT
n WnCn =

(
h−|α|−|β|n

n∑

i=1

(x0 −Xi)α+βKhn(x0 −Xi)

)

|α|≤s,|β|≤s

. (10)

As we will see later, under weak assumptions the random matrix 1
nBn converges in

probability to a regular matrix. Therefore, with a probability tending to one the
random matrix Bn is regular. Therefore,

b̂n = B−1
n CT

n WnYn if Bn is regular (11)

and any solution of (8) otherwise. Let eγ = (0, . . . , 1, 0, . . . , 0) ∈ R|A≤s| where eγ is
1 for the index γ and 0 elsewhere and en,γ = (−1)|γ|γ!h−|γ|n eγ . According to (9) we
introduce the estimator for Dγm(x0) by

m̂n,γ(x0) = eT
n,γb̂n = eT

n,γB−1
n CT

n WnYn if Bn is regular. (12)

To evaluate the conditional mean as well as the conditional variance of the estimator
m̂n,γ we have to study the asymptotic behavior of the random matrices 1

nBn. To
illustrate the technical difficulties with the sequence of experimental designs let us
consider the expectation of 1

nBn. To this end we denote by PXi the distribution of
Xi and set

µi = PXi , µn =
1
n

n∑

i=1

µi. (13)

If µn has a Lebesgue density, say fn, then with Khn from (6)

E
1
n

Bn =
(∫

1

h
|α|+|β|
n

(x0 − x)α+βKhn(x0 − x)µn(dx)
)

|α|≤s,|β|≤s

=
(∫

tα+βK(t)fn(x0 − hnt) dt

)

|α|≤s,|β|≤s

.
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If in addition fn(x0) → f(x0), as n →∞, and the sequence fn is equicontinuous at
x0 in the sense that

lim
ε↓0

lim
n→∞

sup
‖x−x0‖≤ε

|fn(x)− fn(x0)| = 0, (14)

then

lim
n→∞

E
1
n

Bn = f(x0)
(∫

tα+βK(t) dt

)

|α|≤s,|β|≤s

.

This result explains that for getting the stochastic convergence of 1
nBn we need

conditions which guarantee that the sequence of distributions µn behaves locally
around x0 as a sequence of distributions which have equicontinuous Lebesgue densi-
ties. To formulate such conditions we need some notations. Let λd be the Lebesgue
measure on Rd and Q be a Borel set with λd(Q) > 0. Set for any compact set K
⊂ Rd

∆n(Q,K, a) = sup
x∈K

∣∣∣∣
µn(x0 + x + Q)
λd(x0 + x + Q)

− a

∣∣∣∣
and Qa = (−a

2 , a
2 ]d. Now we require that there exists a real number, denoted by

f(x0), so that for every fixed compact set K and every s > 0

lim
n→∞

∆n(Qshn , hnK, f(x0)) = 0. (15)

Condition (15) means that uniformly with respect to small shifts from hnK the
values of the two measure µn and λd are proportional on a sequence of shrinking
sets x0 + hnQs and the limit of the ratio is scale invariant.

Before giving consequences of property (15) we illustrate this condition by exam-
ples.

Example 1. Suppose that x0 is fixed and there exists some open neighborhood of
x0, say Ux0 , so that distributions µn have a Lebesgue-density in Ux0 . This means that
there are nonnegative measurable functions fn so that for every Borel set B ⊆ Ux0

µn(B) =
∫

B

fn(x) dx.

Suppose limn→∞ fn(x0) = f(x0) exists. If the sequence fn satisfies (14) then condi-
tion (15) is satisfied.

To verify (15) let n be sufficiently large. Then

∆n(Qshn , hnK, f(x0)) = sup
x∈hnK

∣∣∣ 1
λd(Qshn)

∫

Qshn

(fn(x0 + x + t)− f(x0)) dt
∣∣∣

≤ sup
x∈x0+hnK

∣∣∣ 1
λd(Qshn)

∫

Qshn

(fn(x + t)− fn(x0)) dt
∣∣∣

+|fn(x0)− f(x0)|
≤ sup

‖x−x0‖≤hn(s
√

d+D)

|fn(x)− fn(x0)|+ |fn(x0)− f(x0)|
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where D is the diameter of the compact set K. By assumption, the right-hand terms
of the last inequality tend to zero.

The next example concerns the case of nonrandom covariables. The distribution
µn is then discrete and concentrated on at most n points.

Example 2. Let [0, 1]d be the d-dimensional unit cube and kn ≤ n natural numbers
with kn → ∞ as n → ∞. We decompose the unit cube into kd

n cubes with edge
length 1/kn. Let Xn = {x1,n, . . . , xn,n} be a double array of points from [0, 1]d and
set

µn =
1
n

n∑

i=1

δxi,n
.

We call Xn 1/kn−uniformly distributed iff n admits a representation

n = lnkd
n + rn,

with natural numbers ln, 0 ≤ rn < kd
n and rn = o(n) so that every cube from the

decomposition contains at least ln and at most ln(1 + o(1)) points.
Then for any x0 ∈ (0, 1)d and a sequence hn > 0 with

lim
n→∞

hnkn = ∞,

condition (15) is satisfied with f(x0) = 1.
Note that for limn→∞ ln = ∞ we have rn

n ≤ kd
n

n ≤ 1
ln
→ 0. For d = 1 and

xi,n ∈ ( i−1
n , i

n ] we may take kn = n.
To verify (15) let x0 ∈ (0, 1)d, s > 0, K compact and fixed, and n≥ n0 such

that x0 + Qshn + hnt ⊆ (0, 1)d ∀ t ∈ K. Decompose [0, 1]d into cubes of edge length
1/kn. Then any cube of edge length shn contains at least (shnkn− 2)d and at most
(shnkn + 2)d of these cubes. Therefore,

(shnkn − 2)d ln
n
≤ µn(x0 + Qshn + hnt) ≤ (shnkn + 2)d ln + o(1)

n
.

Consequently, with rn

n → 0 and lnkd
n

n = n−rn

n → 1, respectively, as n →∞
(

1− 2
shnkn

)d
lnkd

n

n
− 1 ≤ µn(x0 + Qshn + hnt)

λd(x0 + Qshn + hnt)
− 1

≤
(

1 +
2

shnkn

)d
ln(1 + o(1))kd

n

n
− 1,

and we have the assertion for n →∞.

For any w : Rd → R let whn(x) = 1
hd

n
w( x

hn
) for hn > 0. Let C00(Rd) the family

of all continuous functions on Rd with compact support. Now we show that the
assumption (15) can be applied to integrals in the following sense.
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Proposition 3. If the condition (15) is satisfied then

lim
n→∞

∫
whn(x− x0)µn( dx) = f(x0)

∫
w(t) dt ∀ w ∈ C00(Rd). (16)

Moreover, let Xi be independent r.v. with L(Xi) = µi and (16) hold. If w ∈ C00(Rd),
g is continuous at x0, and nhd

n →∞ then

1
n

n∑

i=1

g(Xi)whn(x0 −Xi) →P
n→∞ g(x0)f(x0)

∫
w(t) dt. (17)

For the proof see Section 5.

To evaluate the rate of stochastic convergence of the local polynomial estimator
m̂n,γ we study the conditional expectation and the conditional variances of m̂n,γ

given X1, . . . , Xn. We need additional properties of the regression function m and
the sequence of variance functions vi. Let x0 ∈ Rd be fixed and Ux0 an open
neighborhood of x0. We set for any function f : Ux0 → R

‖f‖Ux0
= sup

x∈Ux0

|f(x)|.

For a sequence of distributions µ = (µ1, µ2, . . .) and positive constants L, V > 0 let
Pn(µ,L, V, s, η), η ∈ (0, 1], be the set of all distributions Pn of sequences ((X1, Y1),
. . . , (Xn, Yn)) consisting of independent vectors (X1, Y1),. . . ,(Xn, Yn) so that the
following conditions are satisfied:

PXi = µi, i = 1, . . . , n, (18)

the regression function m in (2) is independent of i and for some open neighborhood
Ux0 of x0 it holds

m ∈ Cs,η
L (Ux0) (19)

that is m ∈ Cs(Ux0) and all derivatives of order s fulfill a Hölder condition of order
η:

sup
x,y∈Ux0

x 6=y

|Dαm(x)−Dαm(y)|
‖x− y‖η

≤ L, α ∈ A≤s, |α| = s.

For the conditional variances we suppose that

vi ∈ C0(Ux0), ‖vi‖Ux0
≤ V, i = 1, . . . , n. (20)

Theorem 4. Assume condition (16) is satisfied for f(x0) > 0. If (2) and (18) to
(20) are fulfilled and hn = c0n

− 1
2(s+η)+d for any c0 > 0 then for every multi-index γ

with |γ| ≤ s the estimator m̂n,γ defined in (12) fulfills

lim sup
C→∞

(
lim sup

n→∞

[
sup

P∈Pn(µ,L,V,s,η)

P (n
(s+η−|γ|)
2(s+η)+d |m̂n,γ(x0)−Dγm(x0)| > C)

])
= 0.
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For the proof see Section 5. The statement of Theorem 4 means that the sequence

n
(s+η−|γ|)
2(s+η)+d (m̂n,γ(x0)−Dγm(x0))

is stochastically bounded. Consequently, m̂n,γ(x0) tends at least with the stochastic

order OP

(
n−

(s+η−|γ|)
2(s+η)+d

)
to Dγm(x0) and this statement holds uniformly within the

classes Pn(µ, L, V, s, η).

3. OPTIMAL CONVERGENCE RATE

Now we ask whether the order in Theorem 4 is already the optimal order in the
following sense. Let ω : Cs,η(Ux0) → R be a functional and introduce a functional
κ : Pn(µ,L, V, s, η) → R by

κ(P ) = ω(m), (21)

where m is from (2).

Definition 5. A sequence of estimators κ̂n is called optimal for the problem of
estimating the functional κ within the classes of distributions Pn(µ,L, V, s, η) if
there is a sequence cn → 0, n →∞, so that

lim sup
C→∞

(
lim sup

n→∞

[
sup

P∈Pn(µ,L,V,s,η)

P (cn|κ̂n − κ(P ))| > C)

])
= 0, (22)

and for any sequence dn ≥ 0 with lim infn→∞ dn

cn
= ∞ and any further estimator κ̃n

lim sup
C→∞

(
lim sup

n→∞

[
sup

P∈Pn(µ,L,V,s,η)

P (dn|κ̃n − κ(P ))| > C)

])
> 0. (23)

The sequence cn is called the optimal order. If for the sequence cn there are two
positive constants α1, α2 such that for every n

α1 ≤ cnn−r ≤ α2

then r is called the optimal rate.

In the sense of Definition 5 we can say that the optimal rate of the local poly-
nomial estimator is at most s+η−|γ|

2(s+η)+d . To get a general upper bound for estimating
m(γ)(x0) we start with ideas from Stone [17], Hall [6] and Donoho [1] and derive for
special distributions P ∈ Pn(µ,L, V, s, η) an explicit lower bound for the probability
appearing in (23). As in the papers cited above the key role is played by suitably
constructed tests and the relation of the corresponding error probabilities to the
Hellinger integral of the distributions.

Let (X ,A) be a measurable space, P,Q distributions on (X ,A) and λ be a σ-finite
dominating measure. Let f and g be the densities of P and Q, respectively, with
respect to λ. Then

H(P,Q) :=
∫ √

fg dλ, (24)
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is called the affinity or the Hellinger integral of P and Q. H(P, Q) is independent of
the choice of the dominating measure λ. The functional H has been used in several
papers, see Le Cam [7], Rényi [13], Liese and Vajda [8]. For many distributions
the Hellinger integral can be explicitly evaluated. Denote by N(a, .) the normal
distribution on the real line with expectation a and variance 1. A simple calculation
shows

H(N(a1, ·),N(a2, ·)) = exp
{
− (a1 − a2)2

8

}
. (25)

We get the Hellinger integral for product measures P1×· · ·×Pm and Q1×· · ·×Qm

from the definition of H:

H(P1 × · · · × Pm, Q1 × · · · ×Qm) =
m∏

i=1

H(Pi, Qi). (26)

Furthermore, we get for any A ∈ A and B = {f > 0, g > 0} from Schwarz’ inequality

H(P, Q) =
∫

B

√
fg dλ =

∫

A∩B

√
f/g dQ +

∫

A∩B

√
g/f dP

≤
√

P (A)Q(A) +
√

P (A)Q(A)

≤ 2(max{P (A), Q(A)})1/2. (27)

Now we study a family Q of distributions Q defined on some measurable space,
say (R, R). Assume κ : Q → R is a real-valued functional which is to be estimated.
For any estimator κ̂ : R → R we introduce a test ϕ for H0 : Q1 versus HA : Q2 by
setting

ϕ =

{
0, if |κ̂− κ(Q1)| ≤ |κ̂− κ(Q2)|
1, else.

If ϕ = 1 then

|κ̂− κ(Q1)| ≥ 1
2

(|κ̂− κ(Q1)|+ |κ̂− κ(Q2)|)

≥ 1
2
|κ(Q1)− κ(Q2)|,

and for ϕ = 0

|κ̂− κ(Q2)| ≥ 1
2
|κ(Q1)− κ(Q2)|.

Applying the inequality (27) we get the following Lemma:

Lemma 6. For any real-valued functional κ : Q → R, any estimator κ̂ : R → R
and any Q1, Q2 ∈ Q it holds for ∆ = 1

2 |κ(Q1)− κ(Q2)|

max{Q2(|κ̂− κ(Q2)| ≥ ∆), Q1(|κ̂− κ(Q1)| ≥ ∆)} ≥ 1
4
H2(Q1, Q2).
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In the following we need a representation of Hellinger integrals of distributions on
product spaces. Let K : B× X → [0, 1] be a stochastic kernel which operates from
the measurable space (X ,A) into the measurable space (Y, B). For a distribution P
on (X ,A) we denote by K ⊗ P the distribution on (X × Y, A⊗B)

(K ⊗ P )(C) =
∫ (∫

IC(x, y) K(dy, x)
)

P (dx), C ∈ A⊗B.

Assume now we have two kernels K1,K2. Then we introduce the kernel K =
1
2 (K1 + K2) and note that Ki ⊗ P ¿ K ⊗ P, i = 1, 2. Furthermore, for every fixed
x ∈ X

Ki(·, x) ¿ K(·, x)
and for a countably generated measurable space (Y, B) there are functions f1, f2 :
X × Y → R measurable with respect to A⊗B so that for every x ∈ X

Ki(A, x) =
∫

A

fi(x, y)K(dy, x).

The last relation yields
d(Ki ⊗ P )
d(K ⊗ P )

= fi

and

H(K1 ⊗ P,K2 ⊗ P ) =
∫ √

f1f2 d(K ⊗ P )

=
∫ (∫ √

f1(x, y)f2(x, y)K(dy, x)
)

P (dx)

=
∫

H(K1(·, x),K2(·, x)) P (dx). (28)

Now we fix a function m : Rd → R, m ∈ Cs,η
L (Ux0), and denote by N(a, ·)

the normal distribution. We set X = Rd, Y = R and denote by A and B the
corresponding Borel σ-algebras. Now we fix functions m1, m2 ∈ Cs,η

L (Ux0). Then
Kmi(·, x) := N(mi(x), ·) are stochastic kernels. We set for any µ = (µ1, µ2, . . . )

Pn,mi :=
n∏

j=1

(Kmi ⊗ µj),

and obtain from (25), (26), (28), and Jensen’s inequality

H(Pn,m1 , Pn,m2) =
n∏

i=1

[∫
exp{− (m1(x)−m2(x))2

8
}µi(dx)

]

≥ exp
{
−n

8

∫
(m1(x)−m2(x))2µn(dx)

}
.

Thus we obtain from Lemma 6 with m1 = mn and m2 ≡ 0 the following statement
with notation (21)

sup
m∈{0,mn}

Pn,m

(
|ω̂n − ω(m)| > 1

2
|ω(mn)− ω(0)|

)
≥ 1

4
exp

{
−n

4

∫
m2

n(x)µn(dx)
}

.
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Proposition 7. Let (16) hold. There is a constant a > 0 such that for any sequence
of estimators of the functional ω : m 7→ Dγm(x0)

lim inf
n→∞

sup
m∈Cs,η

L (Ux0 )

Pn,m

(
n−

s+η−|γ|
2(s+η)+d |ω̂n − ω(m)| ≥ C

)
≥ 1

4
exp

{
−aC

2(s+η)+d
s+η−|γ|

}
.

P r o o f . Let K ∈ Cs,η
L (Rd) with compact support and set for some c0 > 0

hn = min
(
1, c0n

− 1
2(s+η)+d

)
,

mn(x) = hs+η
n K

(
x− x0

hn

)
, x ∈ Rd.

Then, for sufficiently large n, mn ∈ Cs,η
L (Rd). Note that ω(mn) = h

s+η−|γ|
n K(γ)(0)

and

n

∫
m2

n(x)µn(dx) = nh2(s+η)+d
n

∫
1
hd

n

K2

(
x− x0

hn

)
µn(dx)

= c
2(s+η)+d
0 f(x0)

∫
K2(x) dx (1 + o(1))

because of (16). If C = 1
2K(γ)(0)cs+η−|γ|

0 > 0 then

lim inf
n→∞

sup
m∈Cs,η

L (Ux0 )

Pn,m

(
n

s+η−|γ|
2(s+η)+d |ω̂n − ω(m)| ≥ C

)

≥ lim inf
n→∞

sup
m∈{0,mn}

Pn,m

(
n

s+η−|γ|
2(s+η)+d |ω̂n − ω(m)| ≥ C

)

≥ lim inf
n→∞

sup
m∈{0,mn}

Pn,m

(
|ω̂n − ω(m)| ≥ 1

2
|ω(mn)− ω(0)|

)

≥ lim inf
n→∞

1
4

exp
{
−1

4
c
2(s+η)+d
0 f(x0)

∫
K2(x) dx(1 + o(1))

}

≥ 1
4

exp



−

1
4

(
2C

K(γ)(0)

) 2(s+η)+d
s+η−|γ|

f(x0)
∫

K2(x) dx



 ,

which proves the statement. 2

Now we are ready to formulate the main result of this paper.

Theorem 8. If the experimental design satisfies condition (16) then the rate r =
s+η−|γ|
2(s+η)+d is the optimal rate for estimating the functional ω : m 7→ Dγm(x0) and the
classes of distributions Pn(µ,L, V, s, η). The sequence of local polynomial estimators
m̂n,γ(x0) is optimal.
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P r o o f . We already know from Theorem 4 that the optimal rate, if there is any, is
larger or equal to s+η−|γ|

2(s+η)+d and the local polynomial estimators m̂n,γ(x0) has at least
this rate. Therefore, it remains to show that the order of convergence of any further
estimator κ̂n, possibly different from m̂n,γ(x0), is not larger than cn = n

s+η−|γ|
2(s+1)+d .

Let dn > 0 be any sequence with dn/cn →∞.

lim inf
n→∞

sup
P∈Pn(µ,L,V,s,η)

P (dn|κ̂n − κ(P )| ≥ C)

≥ lim inf
n→∞

sup
m∈Cs,η

L (Ux0 )

Pn,m

(
n

s+η−|γ|
2(s+η)+d |ω̂n − ω(m)| ≥ C

cn

dn

)

≥ 1
4

exp
{
−a(Cε)

2(s+η)+d
s+η−|γ|

}
,

for any positive ε. Therefore, for any C > 0

lim inf
n→∞

sup
P∈Pn(µ,L,V,s,η)

P (dn|κ̂n − κ(P )| ≥ C) ≥ 1
4

which proves that cn is the optimal convergence order. 2

4. DISCUSSION

Under relatively mild conditions we derived an optimal convergence rate for esti-
mating the γth derivative of the regression function m. Our special emphasis was to
consider general conditions on the covariables. The only conditions on the distribu-
tion of the independent (Xi, Yi) are the existence and smoothness of the first second
moments, see (19) and (20), and (15). There are several possibilities to generalize
the results presented here.

Let w : Rd → R be any function such that w is continuous on Sw = {x ∈
Rd, w(x) 6= 0} and Sw is bounded. Then (15) implies

lim
n→∞

∫
whn(x− x0)µn(dx) = f(x0)

∫
w(t) dt.

This statement is a generalization of Proposition 3 and allows the use of discontin-
uous kernels like K(t) = 1[− 1

2 , 1
2 ]d(t) for constructing the local polynomial estimator

in Theorem 4.
Moreover, condition (15) can be considered as some local version of the weak

convergence of distributions. To see this, note that (15) is equivalent to

lim
n→∞

sup
y∈K

∣∣∣
∫

whn(x− x0 − hny)µn(dx)− f(x0)
∫

w(t) dt
∣∣∣ = 0 (29)

for all w ∈ C00(Rd) and all compact K ⊂ Rd. On the other hand (15) implies (17)
for any function g which is continuous at x0. Therefore µn converges locally to a
distribution with a Lebesgue-density f that is continuous at x0. A special case for
this situation was studied in Example 1.
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Up to this point we assumed that the Lebesgue-density f of the limit distribu-
tion is continuous at x0. This is not always fulfilled. In Example 2 the sequence
µn converges weakly to the uniform distribution on [0, 1]d with the corresponding
Lebesgue-Density f0(x) = 1[0,1]d(x). If x0 belongs to the boundary of [0, 1]d where
f0 is discontinuous it can be shown that there is no f(x0) which fulfills condition
(15) for all compact sets K. On the other hand, f0 is continuous both on (0, 1)d and
outside [0, 1]d. Therefore, to include boundary effects we have to generalize (15) in
the following sense:

Let L be the system of all Borel sets C ∈ Bd so that

lim
α→∞

1αC(x) exists for every x ∈ Rd.

For C ∈ L introduce the set l(C) by

l(C) =
{

x ∈ Rd , lim
α→∞

1αC(x) = 1
}

.

Note that every cone C with vertex 0 belongs to L. In this case we have l(C) = C.
On the other hand, let C be any Borel set such that the origin 0 belongs to the
interior of C. Then holds C ∈ L and l(C) = Rd.

Now we suppose a finite decomposition C of Rd into sets C ∈ L. Denote by aC
the vector aC = (aC)C∈C ∈ R|C|. Now we set

∆n(Q,K,aC) = sup
x∈K

∑

C∈C

∣∣∣∣
µn(x0 + (x + Q) ∩ C)

λd(x0 + x + Q)
− aC

λd(x0 + (x + Q) ∩ C)
λd(x0 + x + Q)

∣∣∣∣ .

This expression is identical with our original definition if C = {Rd} and aC = (a).
Instead of (15) we now require that there is a vector fC(x0) such that for the sequence
hn, hn → 0, for every s > 0 and for every compact set K ⊂ Rd

lim
n→∞

∆n(Qshn , hnK, fC(x0)) = 0 (30)

holds. In Example 1 we studied a situation where the Lebesgue-densities fn of µn

converge locally to a density f that is continuous at x0. (30) corresponds to a local
weak convergence to a limit measure with Lebesgue-density f which is for all C ∈ C
in a neighborhood of x0 continuous on the interior of x0 + C and fulfills

fC(x0) = lim
x→x0

x∈x0+C

f(x).

Put x0 = 0 in Example 2. Then (30) can be shown for C1 = [0,∞)d, C2 = Rd \ C1,
l(C1) = C1, l(C2) = C2, fC1(0) = 1, and fC2(0) = 0.

Condition (16) was crucial in the proof of Theorem 4. Now condition (30) implies
likewise

lim
n→∞

∫
whn(x− x0)µn(dx) =

∑

C∈C
fC(x0)

∫

l(C)

w(t) dt ∀w ∈ C00(Rd).
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If
∑

C∈C fC(x0)
∫

l(C)
K(x) dx > 0 is satisfied then we get under assumption (30)

being weaker then (15) the same optimal convergence rate, n−
s+η−|γ|
2(s+η)+d , for the local

polynomial regression estimator as in Theorem 4.
Finally, it should be mentioned that for η = 1 and v(x) = vi(x) a more explicit

representation for the conditional expected value and variance of m̂n,γ(x0) can be
derived: Let BK be defined as in (33),

BK2 =
(∫

yα+βK2(y) dy

)

α∈A≤s,β∈A≤s

and

MK(x0) =
( ∑

|β|=s+1

Dβm(x0)
(−1)s+1

α!β!

∫
yα+βK(y) dy

)
α∈A≤s

.

Then by the same technique as in the proof of Theorem 4 we get

E[m̂n,γ(x0)|X1, . . . , Xn] = m(γ)(x0) + hs+1−|γ|
n (−1)|γ|γ!eT

γ B−1
K MK(x0) + oP (hs+1

n )

V [m̂n,γ(x0)|X1, . . . , Xn] =
1

nh
d+2|γ|
n

(γ!)2
v(x0)
f(x0)

eT
γ B−1

K BK2B−1
K eγ + o

(
1

nh
d+2|γ|
n

)
.

In this case the optimal bandwidth hn = c(x0)n
− 1

2(s+1)+d ,

c(x0) =
( v(x0)

f(x0)
eT
γ B−1

K BK2B−1
K eγ

eT
γ B−1

K MK(x0)MK(x0)T B−1
K eγ

) 1
2(s+1)+d

,

minimizes the asymptotic conditional mean square error and is optimal in this sense.

5. PROOFS

P r o o f o f P r o p o s i t i o n 3. Denote by Sw the support of w. For any ε > 0 choose
δ = δ(ε) ∈ (0, 1) so that

|w(x)− w(y)| < ε for ‖x− y‖ ≤
√

dδ.

Let Q = (− 1
2 , 1

2 ]d. For any δ > 0 we can find the smallest natural number N = N(δ)
and t1, . . . , tN ∈ Rd so that the sets t1 + δQ, . . . , tN + δQ are disjoint and cover Sw.
Note that there is a cube Q̃ ⊆ Rd so that

⋃N
i=1(ti + δQ) ⊆ Q̃ for every δ ∈ (0, 1).

Therefore,

Nδd =
N∑

i=1

λd(ti + δQ) = λd

(
N⋃

i=1

(ti + δQ)

)
≤ λd(Q̃) =: C (31)

for any δ ∈ (0, 1). Introduce the sets

Ai = x0 + hnti + δhnQ
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which cover the support of whn
(. − x0). As w is continuous we find ui, vi ∈ Ai so

that ∫
whn(x− x0)µn(dx) =

N∑

i=1

whn(ui − x0)µn(Ai)

and ∫
w(y) dy =

∫
whn

(x− x0)λd(dx) =
N∑

i=1

whn
(vi − x0)λd(Ai).

Note that ‖ui − vi‖ ≤
√

dhnδ. Then
∣∣∣∣
∫

whn
(x− x0)µn(dx)− f(x0)

∫
w(t) dt

∣∣∣∣

≤ f(x0)
N∑

i=1

1
hd

n

∣∣∣∣w(
vi − x0

hn
)− w(

ui − x0

hn
)
∣∣∣∣ λd(Ai)

+
N∑

i=1

|w(
ui − x0

hn
)|δd

∣∣∣∣
f(x0)λd(Ai)− µn(Ai)

δdhd
n

∣∣∣∣

≤ f(x0)
Nε

hd
n

δdhd
n + ‖w‖∞Nδd∆n(δhnQ,hnSw, f(x0)).

The term on the right-hand side tends to zero by (31), by assumption (15), and for
ε → 0.

For g is continuous at x0 and Sw compact we have

ωn := sup
x∈hnSw

|g(x)− g(x0)| → 0, n →∞, (32)

and

EPn

∣∣∣∣∣
1
n

n∑

i=1

(g(Xi)− g(x0))whn(x0 −Xi)

∣∣∣∣∣ ≤ ωn
1
n

n∑

i=1

EPn |whn(x0 −Xi)| = o(1).

by the first part of Proposition 3. Moreover, we see that

V
( 1

n

n∑

i=1

whn(x0 −Xi)
)
≤ 1

nhd
n

1
n

n∑

i=1

EPn(w2)hn(x0 −Xi) = O
( 1

nhd
n

)

and therefore
1
n

n∑

i=1

whn(x0 −Xi) →P
n→∞ f(x0)

∫
w(y) dy.

Hence we have the assertion. 2

P r o o f o f T h e o r e m 4 . For the fixed kernel K we set

BK =
(∫

yα+βK(y) dy

)

|α|≤s,|β|≤s

(33)
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and study the sequence of matrices Bn introduced in (10). Note that the continuous
function wα,β(x) = xα+βK(x) has a compact support. From Proposition 3 we get

1
n

Bn =

(
1
n

n∑

i=1

1
hd

n

wα,β(
x0 −Xi

hn
)

)

|α|≤s,|β|≤s

→Pn
n→∞ f(x0)BK , (34)

and

(
1
n

Bn

)−1

→Pn
n→∞ (f(x0)BK)−1

.

As the determinant of a matrix is a continuous function of the elements of the matrix
and BK is positive definite we get for An = {det(Bn) = 0} the relation

lim
n→∞

Pn(An) = 0. (35)

As for every Pn ∈ Pn(µ,L, V, s, η) the marginal distributions of X1, X2, . . . are fixed
by the sequence µ1, µ2, . . . we see that the stochastic convergence in (35) is uniform
with respect to the classes Pn(µ,L, V, s, η).

For sufficiently large n the inequality Khn(x0 −Xi) > 0 implies that Xi ∈ Ux0 .
Hence by Taylor expansion of m at x0 for Xi ∈ Ux0

m(Xi) =
∑

|α|≤s

Dαm(x0)
(Xi − x0)α

α!
+

∑

|β|=s

(
Dβm(X̃i)−Dβm(x0)

) (Xi − x0)β

β!
,

where X̃i lies on the straight line between x0 and Xi. This yields for Yn =
(Y1, . . . , Yn)

E[Yn |X1, . . . , Xn] = (m(Xi))1≤i≤n = CT
n Dn + Qn

with Cn from (10), Dn = ((−1)|α| h
|α|
n

α! Dαm(x0))|α|≤s, and Qn = (
∑
|β|=s{Dβm(X̃i)−

Dβm(x0)} (Xi−x0)
β

β! )1≤i≤n. As the matrix Bn is regular on Ac
n, the complement of

An, we obtain

EPn [m̂n,γ(x0)|X1, . . . , Xn]IAc
n

= eT
n,γB−1

n CnWnE[Yn |X1, . . . , Xn]IAc
n

= IAc
n
eT
n,γB−1

n CnWn(CT
n Dn + Qn)

= IAc
n
Dγm(x0) + IAc

n
eT
n,γB−1

n CT
n WnQn.
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For the α-component of the vector of the remainder terms we get

1
nhs+η

n

∣∣(CT
n WnQn)α

∣∣

=

∣∣∣∣∣∣
1
n

∑

|β|=s

((Dβm(X̃i)−Dβm(x0))(−1)s (x0 −Xi)α+β

α!β!h|α|+|β|+η
n

Khn(x0 −Xi))

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
1
n

∑

|β|=s

L
‖x0 −Xi‖α+s+η

α!β!h|α|+s+η
n

Khn
(x0 −Xi)

∣∣∣∣∣∣

Pn−→n→∞ Lf(x0)


 ∑

|β|=s

1
α!β!

∫
‖y‖|α|+s+ηK(y) dy




uniformly in Pn ∈ Pn(µ,L, V, s, η). From (35) we get that for any sequence of random
variables Zn it holds ZnIAn = oPn(hs+η−|γ|

n ), which leads to the representation

EPn
[m̂n,γ(x0)|X1, . . . , Xn]

= Dγm(x0) + hs+η
n eT

n,γ(
1
n

Bn)−1

(
1

nhs+η
n

CT
n WnQn

)
+ oPn

(hs+η−|γ|
n )

= Dγm(x0) + OPn(hs+η−|γ|
n ) (36)

which holds uniformly with respect to Pn ∈ Pn(µ,L, V, s, η). To deal with the con-
ditional variance we set

Vn = VPn [Yn|Xn] = diag(v1(X1), . . . , vn(Xn))

and get

IAc
n
VPn [m̂n,γ |X1, . . . , Xn] = IAc

n
eT
n,γB−1

n (CT
n WnVnWT

n Cn)B−1
n en,γ .

Note that by the conditions (3) and (15) it holds for α, β ∈ A≤s

hd
n

n
|(CT

n WnVnWT
n Cn)α,β |

≤ V

n

n∑

i=1

h−|α|−|β|n ‖x0 −Xi‖|α|+|β|(K2)hn(x0 −Xi) = OPn(1)

and therefore

VPn [m̂n,γ |X1, . . . , Xn] = OPn

( 1

nh
d+2|γ|
n

)
. (37)

uniformly with respect to Pn ∈ Pn(µ,L, V, s, η). This gives an upper bound for the
conditional mean square

EPn [(m̂n,γ(x0)−Dγm(x0))2 |X1, . . . , Xn]

= OPn

( 1

nh
d+2|γ|
n

)
+ OPn

(
h2(s+η−|γ|)

n

)
.
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Choosing hn = c0n
1/(2(s+η)+d), c0 > 0, and cn = h

−(s+η−|γ|)
n we have uniformly

with respect to Pn ∈ Pn(µ,L, V, s, η)

EPn
[c2

n(m̂n,γ(x0)−Dγm(x0))2 |X1, . . . , Xn] = OPn
(1)

and therefore

lim
C→∞

lim
n→∞

sup
Pn∈Pn(µ,L,V,s,η)

Pn(cn|m̂n,γ(x0)−m(x0)| > C) = 0

which completes the proof. 2

(Received October 2, 2000.)
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