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— Address of the Editor: P.O. Box 18, 182 08 Prague 8, e-mail: kybernetika@utia.cas.cz.
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ON NONLINEAR EQUIVALENCE
AND BACKSTEPPING OBSERVER∗

J. deLeon†, I. Souleiman, A. Glumineau and G. Schreier

An observer design based on backstepping approach for a class of state affine systems
is proposed. This class of nonlinear systems is determined via a constructive algorithm
applied to a general nonlinear Multi Input–Multi Output systems. Some examples are
given in order to illustrate the proposed methodology.

1. INTRODUCTION

It is well-known that when a state control law is designed its application is limited
if the components of the state vector are not all measurable. This problem can be
overcome by using observers. For linear systems, it is traditionally solved by using
either a Luenberger observer or Kalman-filter. Moreover, the observability property
for linear systems does not depend on the input. However, the observability property
of nonlinear systems does depend on the input. There are some inputs for which
the system could become unobservable (for more details see [1, 8, 10]). Hence, the
inputs which render the system unobservable should be considered when observer
is constructed. For these reasons, the observer problem for nonlinear systems re-
mains an interesting field of research. Although the problem of observer synthesis
for linear systems is solved, no general methodology exists for the observer design
for nonlinear systems. However, some results have been obtained in this direction
([8, 10, 12, 13, 16, 18, 20]), where the observer design has been investigated for a
class of nonlinear system which can be transformed into another observable form.

Several authors (see for instances [13, 14]) have considered the case when a non-
linear system can be transformed into a linear system up to input-output injection.
On the other hand, a straightforward approach verifying and computing the lin-
earization condition for those systems have been given in ([15, 17]).

The design of an observer for a class of nonlinear systems can be solved via a
change of coordinates which transforms the system into another nonlinear system
for which an observer can be constructed (see [10, 14, 20]). Some results related to
the coordinate transformation of a nonlinear system into a state affine systems have

∗This work was supported by CONACYT–MEXICO 26498–A.
†Corresponding author.
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been obtained (see for instances [1, 8, 10, 14, 18]). The design of an observer for
these state affine systems has been studied in [3].

Furthermore, necessary and sufficient conditions transforming a nonlinear system
into a state affine system has been proposed in [2, 10]. However, no construction
procedure characterizing such systems exits so far for multi-input-multi-output case.
On the other hand, a constructive methodology for the single output case, comput-
ing the change of coordinates, is presented in [14].

This paper deals with the observer synthesis of nonlinear systems via their equiv-
alence to state affine systems. Necessary and sufficient conditions are given to char-
acterize a class of nonlinear systems, which can be transformed into a class of mul-
tivariable state affine systems up to input-output injection. Furthermore, for the
class of state affine systems an observer is designed using a backstepping observer
approach.

The paper is organized as follows. In Section 3, a computation algorithm is
described which allows the transformation of a nonlinear system into a multi-output
affine system. In Section 4, the unmeasurable components of the vector state are
estimated using a backstepping observer. For this observer, conditions are given
to characterize the inputs which render the system observable. In Section 5, some
examples illustrating the proposed methodology are given. Finally, some conclusions
are given.

2. PRELIMINARIES

Now, consider the following nonlinear system

Σ :

{
ẋ = f(x, u)

y = h(x)
(1)

where x ∈ IRn is the state, u ∈ IRm is the input, y ∈ IRp is the controlled output,
f and h are meromorphic functions of their arguments. Assume that there exists a
change of coordinates transforming Σ into the state affine system of the form

Σaffine :

{
żi = Ai(u, y)zi + φi(u, y)

yi = Cizi, i = 1, . . . , p,
(2)

where zi = col (zi,1, . . . , zi,ki) , Ai ∈ IRki×ki are matrices of the form

Ai =




0 ai,1(u) 0 . . . 0
0 0 ai,2(u, y) . . . 0
... 0

. . . . . .
...

0 0 . . . . . . ai,ki−1(u, y)
0 0 . . . . . . 0




(3)

φi =




ϕi,1

...
ϕi,ki


 ; and Ci =

(
1 0 . . . 0

)
1×ki

; i = 1, . . . , p,
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where the ki denote observability index related with the output yi, which are ordered
as k1 ≥ k2 ≥ . . . ≥ kp and

∑p
i=1 ki = n.

Remark 1. In order to simplify the notation and without loss of generality, the
outputs are reordered in function of the observability indices; i. e. the output yi is
associated to the index observability ki, for i = 1, . . . , p.

All definitions and results given in the paper can be written locally around a
regular point x0 of M , an open subset of IRn. If this property is generically satisfied,
it means that this property is satisfied locally around a regular point x0 of M . Let
O denote the generic observability space defined by (see [16]).

O = X∩ (Y + U) (4)

where X = SpanK{dx}, Y = SpanK{dy(w), w ≥ 0}, U = SpanK{du(w), w ≥ 0},
(SpanK is a space spanned over the field X of meromorphic functions of x and a
finite number of time derivatives of u).

Definition 1. The system Σ is generically observable if

dimO = n.

The first goal of this paper is to find a state coordinate transformation z = Φ(x),
such that system Σ is locally equivalent to system Σaffine in order to design an
observer. The approach consists in checking that the Input-Output (I/O) differential
equation associated to the observable system Σ, which is given by

y
(ki)
i = P i

0(y1, ẏ1, . . . y
(k1−1)
1 , . . . , yp, . . . , y

(kp−1)
p , u, u̇, ü, . . . , u(k1−1)), (5)

has the same I/O differential equation as Σaffine, which verifies

y
(ki)
i = P i

a0 = F i
ki

(ai,1, . . . , ai,n−1) (6)

+
ki−1∑
r=1

Ki
ki−r−1F

i
r(ai,ki−r, . . . , ai,ki−1, ϕi,ki−r) +Ki

ki−1F
i
0(ϕi,ki)

= F i
ki

(ai,1, . . . , ai,n−1) + Γki−1
0 (ai,1, . . . , ai,ki−1, ϕi,1, . . . , ϕi,ki)

where Ki
r = ai,0 . . . ai,r =

∏r
j=0 ai,j , and ai,0 = 1. The functions F i

r , r = 0, . . . , ki;
are given as a sum of monomials depending on

(
y
(ni)
i

)qi

and
(
u

(mi)
i

)si

, for i = 1, . . . , p;

where ni, mi = 0, . . . ., ki; represent the order of derivation of the outputs and the
inputs respectively; and qi, si = 0, 1, . . . ; are the exponents of the outputs and the
inputs and their derivatives, respectively. These parameters satisfy the following
relation ∑

i

niqi +
∑

i

misi = r; for i = 1, . . . , p.
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Remark 2. The functions F i
r involves monomials depending on functions

(
y
(ni)
i

)qi

and
(
u

(mi)
i

)si

of degree
∑

i niqi +
∑

imisi = (ki − r).

On the other hand, the proposed results are obtained from the analysis of I/O
differential equations. The observable nonlinear system Σ in the state space represen-
tation will be transformed into a set of higher-order differential equations depending
on the inputs and outputs. These equations are obtained by using state elimination
techniques (see [5]). Moreover, considering the assumption of generic observability
of the system, the elimination problem has a solution (see [15, 19]). Hence, the state
affine transformation problem is solved as a realization problem.

The classification problem of nonlinear systems which can be steered by a change
of coordinates to some observable form has received significant attention during the
last years. In [7] and [8], locally uniformly observable systems are studied. Necessary
and sufficient conditions have been stated to guarantee the transformation of non-
linear systems into state affine systems (see [1, 10, 11]). These conditions guarantee
the existence of a vector field transforming the system into another observable one.
However, this vector field cannot be computed directly and hence, the application
of this methodology is limited (see [1]). On the other hand, a constructive method-
ology for the single output case, computing the change of coordinates, is presented
in [14]. In this paper, using the results given in [14], an extension for the class of
multivariable systems will be considered.

3. STATE AFFINE TRANSFORMATION ALGORITHM

The problem of verifying the equivalence between a nonlinear system and state affine
system is considered in this section. Necessary and sufficient conditions allowing to
characterize a class of nonlinear systems, which are diffeomorphic to state affine
systems, are given. These conditions are obtained using the exterior differential
system theory ( for more details see [4, 9, 14, 16]).

Now, the algorithm allowing us to know if a diffeomorphism exists between (1)
and (2) is given. Let Si

j = {k1, k2, . . . , kj} be the set of observability indices such
that kj satisfies the following inequality

kj > ki − k

for a given k. Denote dk
i the number of outputs whose observability index is greater

than ki − k, as

dk
i = Card {k1, k2, . . . , kj} . (7)

Algorithm.
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Step 1. Computation of the functions ai,j .

Let P i
0 = y

(ki)
i , i = 1, . . . , p; be the I/O differential equation obtained from the

nonlinear system Σ. Let ωi
k be the one-form defined by

ωi
k = cik

dk
i∑

j=1

∂2P i
0

∂y
(k)
j ∂y

(ki−k)
j

dyj +
dk

i∑

j=1

m∑

l=1

∂2P i
0

∂u
(k)
l ∂y

(ki−k)
j

dul (8)

for k = 1, . . . , ki − 1; with ci1 = . . . = ciki−2 = 1 and ciki−1 = 0. Now, in order to
verify if it is possible to find an equivalence between Σ and Σaffine, it is necessary to
check the following conditions:

— Case dk
i < p.

If dωi
k ∧ du 6= 0 or dωi

k ∧ dydk
i +1 ∧ · · · ∧ dyp 6= 0; then, there is no solution.

— Case dk
i = p:

If dωi
k 6= 0, then the problem has no solution.

Otherwise, let the ai,k functions be any solution of

ωi
k = cik

dk
i∑

j=1

∂2P i
a0

∂y
(k)
j ∂y

(ki−k)
j

dyj +
dk

i∑

j=1

m∑

l=1

∂2P i
a0

∂u
(k)
l ∂y

(ki−k)
j

dul (9)

where the right-hand side of this equation is deduced from the I/O differential equa-
tion P i

a0, which is computed from system Σaffine.

This ends the Step 1.

On the other hand, the previous one-forms do not allow to know the functions
ϕi,k. Then, in order to identify the functions ϕi,j , all ai,j obtained from Step 1 will
be used to determine the ϕi,j , as it is presented in the next step.

Step 2. Determination of ϕi,ki.

Consider P i
0 as in Step 1, and let

P i
r = P i

r−1 − F i
ki−r+1, (10)

for r := 1, . . . , ki−1; where the F i
ki−r+1 are functions as in (6). Let ωi

r the one-form
given by

ωi
r =

1
Ki

r





dr
i∑

j=1

∂P i
r

∂y
(ki−r)
j

dyj +
m∑

l=1

∂P i
r

∂u
(ki−r)
l

dul



 (11)
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where

Ki
r = ai,1 . . . ai,r =

r∏

j=0

ai,j ,

and ai,0 = 1. Now, in order to compute the functions ϕi,r, we check the following
conditions:

— Case dr
i < p.

If dωi
r∧du 6= 0 or dωi

r∧dydr
i +1∧· · ·∧dyp 6= 0, then, the problem has no solution.

— Case dr
i = p.

If dωi
r 6= 0, then the problem has no solution.

Otherwise, if dωi
r = 0, for ∀ r = 1, . . . , ki − 1; then ϕi,r is a solution of

ωi
r =

1
ai,r





dr
i∑

j=1

∂ϕi,r

∂yj
dyj +

m∑

j=1

∂ϕi,r

∂uj
duj−ϕi,r

ai,r




dr
i∑

j=1

∂ai,r

∂yj
dyj +

m∑

j=1

∂ai,r

∂uj
duj





 .

(12)
And for r = ki,

P i
ki

= ai,1 . . . ai,ki−1ϕi,ki = Ki
ki
ϕi,ki . (13)

End of the Algorithm.

This Algorithm allows to establish the following theorem.

Theorem 1. The system Σ is locally equivalent by state coordinates transforma-
tion to the system Σaffine if and only if the following conditions are verified:

1. For dk
i < p,

dωi
k ∧ du = 0, and dωi

k ∧ dydk
i +1 ∧ · · · ∧ dyp = 0, (14)

dωi
k ∧ du = 0, and dωi

k ∧ dydk
i +1 ∧ · · · ∧ dyp = 0.

2. For dk
i = p,

dωi
k = 0, and dωi

k = 0;

where ωi
k and ωi

k are one-forms defined in (8) and (11).

If the conditions of Theorem 1 are satisfied, system Σ is locally equivalent to
system Σaffine, and the state coordinates transformation z = Φ(x) is given by

zi,1 = yi

zi,2 = 1
ai,1

{ẏi(x)− ϕi,1(u, y)}

zi,j = y
(j−1)
i −P i

j−1

Ki
j−1

, for j = 3, . . . , ki

(15)
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where zi = col(zi,1 . . . zi,ki
) and

P i
k = Ki

k−1ϕi,k +
dP i

k−1

dt
+ zi,k

dKi
k−1

dt
(16)

for k = 1, . . . , ki, ai,ki = 0 and P i
1 = ϕi,1.

Proof of Theorem 1 (see Appendix B).

This result gives the conditions to transform system Σ into system Σaffine (2).
The next section introduces a procedure to design a backstepping observer for this
class of systems.

4. BACKSTEPPING OBSERVER

The propose of this section is to design an observer for the class of state affine
systems (2) based on the backstepping approach. From the structure of the state
affine system, which is represented by state affine subsystems, an observer will be
designed for each subsystem independently. For this reason, consider the following
class of single output state affine systems which are in the observable form

ẋ1 = a1(u, y)x2 + g1(u, x1)
ẋi = ai(u, y)xi+1 + gi(u, x1, . . . , xi), i = 2, . . . , n− 1; (17)
ẋn = fn(x) + gn(u, x),
y = Cx = x1.

It is clear that system (17) is uniformly observable if the applied inputs are per-
sistently exciting. For instance, there are some inputs which render the unmeasured
states unobservable. Then, in order to design an observer for the unmeasured states
the inputs must be satisfy some observability conditions (see [11]).

The observer for the class of systems considered is described by

ż1 = a1(u, y) z2 + g1(u, z1) + ψ1(z)(x1 − z1)
żi = ai(u, y) zi+1 + gi(u, z1, z2, . . . , zi) + ψi(z)(x1 − z1),

for i = 2, . . . , n− 1 (18)
żn = fn(z) + gn(u, z) + ψn(z)(x1 − z1)

where z = col(z1, z2, . . . , zn) is the estimated state and ψi(z), i = 2, . . . , n − 1; are
the observer gains which must be determined in order to guarantee the convergence
of the observer. Defining the estimation error ei = xi − zi, for i = 1, . . . , n; whose
dynamics is given by

ė1 = a1(u, y)e2 − ψ1(z) e1
ėi = ai(u, y) ei+1 + gi(u, x1, . . . , xi)− gi(u, z1, z2, . . . , zi)− ψi(z) e1,

for i = 2, . . . , n− 1 (19)
ėn = fn(x)− fn(z) + gn(u, x)− gn(u, z)− ψn(z) e1.
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Using similar arguments given in [12], we will find the observer gains ψi(z), i =
1, . . . , n, such that the estimation error tends to zero as t → ∞. Now, in order to
design the observer the following assumptions are introduced.

A1) There exist positive constants c1 and c2, where 0 < c1 < c2 < ∞, such that
for all x ∈ IRn;

0 < c1 ≤ |ai(u, y)| ≤ c2 <∞, i = 1, . . . , n− 1

A2) The functions gi(u, y, . . . , xi), i = 2, . . . , n, are globally Lipschitz with respect
to (x1, . . . , xi), and uniformly with respect to u and y.

Remark 3. The condition (20) corresponds to a characterization of “good” inputs,
which are required to recover state observability.

Let be O(e)k a function of z and e for k > 0 such that for z ∈ Ξ ⊂ IRn, there
exist constants N > 0, ε > 0 such that

∣∣O(e)k
∣∣ ≤ N ‖e‖k

, ∀ ‖e‖ < ε, ∀ z ∈ Ξ.

Now, consider the following variables si for i = 1, . . . , n+ 1;

s1 = e1

s2 = c1s1 + ṡ1 +O(e)2 (20)

si = si−2 + ci−1si−1 + ṡi−1 +O(e)2, for i = 3, . . . , n+ 1,

where the parameters ci are positive constants and the error terms are chosen so
that s is a linear function of the error e. Next, writing the above equations in terms
of the error e, we obtain

sl+1 =
l∑

i=1

(bl+1,i −Kl−iKi−1ψl−i+1) ei +Klel+1, for l=1, . . . , n−1 (21)

and for l = n,

sn+1 =
n∑

i=1

(
bn+1,i −Kn−iKi−1ψn−i+1 +Kn−1

(
∂fn

∂zi

))
ei (22)

where bl+1,i and Ki−1 for i = 1, . . . , l; and l = 1, . . . , n; are given in Appendix C.
Furthermore, let Uρ be the ρ-neighborhood of C an open subset of IRn, there exists
constants λ1 > 0 and λ2 > 0 such that for all z ∈ Ūρ, a compact subset,with e and
s ∈ C , the following inequality is satisfied

λ1 ‖e‖ ≤ ‖s‖ ≤ λ2 ‖e‖ , (23)

where s = col (s1, s2, . . . , sn) and e = col (e1, e2, . . . , en). Then we can establish the
following result.
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Theorem 2. Consider the system (17), and assume that assumptions A1 and A2
are satisfied. For any subset C ⊂ IRn of the dynamical system (17) there exist
constants λ1, λ2 > 0; ε > 0; γ > 0 such that if x(0) ∈ C and ‖e(0)‖ < ε then the
system (18) is a locally exponential observer for system (17). Thus, the estimation
error

‖e(t)‖ ≤ λ2

λ1
‖e(0)‖ exp−2γt

converges exponentially to zero as t tends to ∞.

P r o o f . Defining the following Lyapunov function

V =
n∑

i=1

Vi =
1
2

n∑

i=1

s2i .

Taking the time derivative of V along (20), we obtain

V̇ = −
n∑

i=1

cis
2
i + snsn+1 +O(e)3.

Next, the observer gains ψi, i = 1, . . . , n; are chosen as follows

ψi =
bn+1,n−i+1

Kn−iKi−1
+

Kn−1

Ki−1Kn−i

(
∂fn

∂zn−i+1

)
, for i = 1, . . . , n,

where bn+1,i and Kn−1 are given in Appendix C. Then, from (38) the term sn+1 is
equal to 0 (see Appendix C). Hence, we obtain

V̇ = −
n∑

i=1

cis
2
i +O(e)3. (24)

Now, let Uρ be the ρ-neighborhood of C an open subset of IRn, then its closure
Ūρ is a compact subset. Hence there exist constants N > 0, ε > 0 such that the
error term (24) satisfies ∣∣O(e)3

∣∣ ≤ N ‖e‖3

for all z ∈ Ūρ, and ‖e‖ < ε. Next, let be ε̄ = min (ρ, ε) .
From s = M(bi,j , ψi) e where s is a linear function of e (see equation (20) and

Appendix C), we know that there exists constants λ1 > 0, λ2 > 0 such that for all
z ∈ Ūρ, and e, s ∈ C , the following inequality is satisfied

λ1 ‖e‖ ≤ ‖s‖ ≤ λ2 ‖e‖ . (25)

Since ci > 0, there exists a constant γ > 0 such that

4γ ‖s‖2 ≤
n∑

i=1

cis
2
i .
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Hence, there exist an ε̄ > 0 sufficiently small such that the error term in (24) satisfies

∣∣O(e)3
∣∣ ≤ 1

2

n∑

i=1

cis
2
i

for all z ∈ Ūρ, and ‖e‖ < ε̄. For these z and e, we have

V̇ = −1
2

n∑

i=1

cis
2
i ≤ −2γV. (26)

And using Gronwall’s inequality

V (t) ≤ V (0) exp−2γt .

Using the inequality (25), we have

‖e(t)‖ ≤ λ2

λ1
‖e(0)‖ exp−2γt .

Then, the estimation error converges exponentially to zero as t→∞. This ends the
proof. 2

5. EXAMPLES

Example 1. Single Output Case.

Consider the dynamics of a rigid body



ẋ1

ẋ2

ẋ3


 =




γ1x2x3

γ2x1x3

γ3x1x2




y = x1

in which x1, x2 and x3 are the components of the angular velocity with respect to
the principal axes of inertia, J1, J2 and J3 the moments of inertia with respect to
the principal axes of inertia γ1 = J3−J2

J1
, γ2 = J1−J3

J2
and γ3 = J2−J1

J3
. Assume that

the angular velocity x1 is measured. The observation problem is the estimation of
the angular velocities x2 and x3.

Now, we apply the Algorithm presented in Section 3, to check if there exists a
transformation for the above system.

Step 1. Determination of ai.

Applying the proposed algorithm, the I/O differential equation (5), for i = 1 and
k1 = 3 is given by

y(3) = P i
0(y, ẏ, y

(2)) =
y(2)ẏ

y
+ 4γ2γ3y

2ẏ

= F3 + F2 +K1F1 +K2F0
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where F2 = F0 = 0. On the other hand, the I/O differential equation of the affine
system is given by

y(3)
a = y(1)

a

(
¨ln a1 − ˙ln a1a2

˙ln a1

)
+ y(2)

a

(
˙ln a1 + ˙ln a1a2

)
− ( ¨ln a1 − ˙ln a1a2

˙ln a1)ϕ1

− ˙ln a1ϕ̇1 + ϕ̈1 −
(

˙ln a1a2

)
ϕ̇1 − a1(

˙ln a1a2 + ˙ln a1)ϕ2 + ˙a1ϕ2 + a1a2ϕ3

= F3a + F2a +K1F1a +K2F0a

where
F0a = ϕ3,

F1a = −( ˙ln a1a2 + ˙ln a1)ϕ2 + ϕ̇2 + ˙ln a1ϕ2,

F2a = −( ¨ln a1 − ˙ln a1a2
˙ln a1)ϕ1 − ˙ln a1ϕ̇1 + ϕ̈1 −

(
˙ln a1a2

)
ϕ̇1,

F3a = y
(1)
a

(
¨ln a1 − ˙ln a1a2

˙ln a1

)
+ y

(2)
a

(
˙ln a1 + ˙ln a1a2

)
.

From equation (8), the one-form ω1 is given by

ω1 =
1
y
dy.

Now, for k = 2, the one-form ω2 is given by

ω2 =
1
y
dy.

It is easy to see that the one-form ω1 verify the conditions (14).
Now, computing one-form ω1a, we have

ω1a =
∂2y

(3)
a

∂y
(1)
a ∂y

(2)
a

dy =
{

2
∂ log a1

∂ya
+
∂ log a1a2

∂ya

}
dy.

In the same way, ω2a = ω1a. Then, in order to determine the ai’s, it is necessary
to solve the following equation

{
2
∂ log a1

∂y
+
∂ log a1a2

∂y

}
=

1
y
.

Notice that the function a1 depends on y, then the proposed algorithm can be ex-
tended to a large class of nonlinear systems where ai,1 depends on u and y. However,
for this class of systems the algorithm gives several solutions for a given system. For
example, setting the arbitrary choice

a1 =
1
a2
2

.

It follows that a solution is of the form

a1 = y, a2 =
1
y2
.
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Step 2. Determination of ϕi.

Consider I/O differential equation P0 and F3, then

P1 = P0 − F3 = P0 − y(2)ẏ

y

= 4γ2γ3y
2ẏ.

Computing the one-form ω1 from equation (12), we obtain ω1 = 0.

ω1 =
1
a1

{
∂ϕ1

∂y
dy − ϕ1

a1

(
∂a1

∂y

)
dy

}

= d
(
ϕ1

a1

)
= 0.

Since, a1 6= 0, then, this implies that ϕ1 = 0.
Next, to determine ω2, using equation for r = 2, we have

P2 = P1 − F2 = P1

since F2 = 0, then

ω2 =
1

a1a2

∂P2

∂ẏ
dy = 4γ2γ3y

2dy

then, we have

ω2 =
1
a2

{
∂ϕ2

∂y
dy − ϕ2

a2

(
∂a2

∂y

)
dy

}

= d
(
ϕ2

a2

)
= 4γ2γ3y

2dy.

Solving the above equation, we obtain

ϕ2 = γ2γ3y
2.

Now, for r = 3, and from (13)
P3 = a1a2ϕ3.

Since P3 = 0, it follows that ϕ3 = 0.
After computation, the change of coordinates obtained is

z1 = x1, z2 =
γ1x2x3

x1

z3 = γ1γ2x
2
1x

2
3 + γ1γ3x

3
1x2 + γ2

1x
2
2x

2
3 + γ2γ3x

4
1.

Then, the transformed system Σaffine in the new coordinates is given by



ż1
ż2
ż3


 =




0 y 0
0 0 1

y2

0 0 0







z1
z2
z3


 +




0
γ2γ3y

2

0


 . (27)
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An observer backstepping for the above system can be design as follows.




·
ẑ1
·
ẑ2
·
ẑ3


 =




0 y 0
0 0 1

y2

0 0 0







ẑ1
ẑ2
ẑ3


+




0
γ2γ3y

2

0


+




ψ1(ẑ)
ψ2(ẑ)
ψ3(ẑ)


(

z1 − ẑ1
)

(28)

where the observer gains are given by

ψ1(ẑ) = yb4,3

ψ2(ẑ) =
b4,2

y2

ψ3(ẑ) = yb4,1

where K1 = y, K2 = 1
y , g1 = 0, g2 = 0, g3 = 0, and

b2,1 = c1

b3,1 = 1 + c2(c1 − ψ1)− (c1 − ψ1)ψ1 − d
dt

(ψ1)

b3,2 = y (c2 + c1) +
dy
dt

b4,1 = c1 − ψ1 + c3(b3,1 − yψ2)− (b3,1 − yψ2)ψ1 +
d
dt

(b3,1 − yψ2)

−(b3,2 − yψ1)ψ2 +
d
dt

(b3,2 − yψ1)

b4,2 = y + c3(b3,2 − yψ1) + yb3,1

b4,3 = c3
1
y

+
1
y2
b3,2 +

d
dt

(
1
y

)
.

Example 2. Multi-Input Multi-Output.

Consider the following multivariable system:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5




=




uex2

x1x3e
−x2 − u2e−x2

ux1

u2x5 + ux1

x2
1x4




y1 = x1, y2 = x4.

It is easy to verify that the system is observable with indices of observability given
by k1 = 3 and k2 = 2. Moreover, the I/O differential equations (5) of this system
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are

y
(3)
1 =

u̇

u
y
(2)
1 + ˙ln(uy1)y

(2)
1 + ¨lnuẏ1 − ˙ln(uy1)

˙lnuẏ1 − ˙ln(uy1)u3 + u̇3 + u2y2
1

y
(2)
2 = 2

u̇

u
(ẏ2 − uy1) + u2y2

1y2 + u̇y1 + uẏ1.

Next, the I/O differential equations associated to the equivalent state affine system
are

y
(3)
1,a = y

(1)
1,a

(
¨ln a1,1 − ˙ln a1,1a1,2

˙ln a1,1

)
+ y

(2)
1,a

(
˙ln a1,1 + ˙ln a1,1a1,2

)

− ( ¨ln a1,1 − ˙ln a11a12
˙ln a11)ϕ1,1 − ˙ln a11ϕ̇1,1 + ϕ̈1,1 −

(
˙ln a1,1a1,2

)
ϕ̇1,1

− a1,1(
˙ln a1,1a1,2 + ˙ln a1,1)ϕ1,2 + ˙a1,1ϕ1,2 + a1,1a1,2ϕ1,3

and
y
(2)
2,a = ln ȧ2,1(ẏ2 − ϕ2,1) + a2,1ϕ2,2 + ϕ̇2,1.

Now, we apply the algorithm

Step 1. Computation of ai,j .

For i = 1, the I/O differential equation P 1
0 is given by

P 1
0 = y

(3)
1

=
u̇

u
y
(2)
1 + ˙ln(uy1)y

(2)
1 + ¨lnuẏ1 − ˙ln(uy1)

˙lnuẏ1 − ˙ln(uy1)u3 + u̇3 + u2y2
1 .

For k = 1, it follows that the number of output that verify condition (7) is given
d1
1 = 1.

Now, computing the one-form ω1
1 , which is derived from (8), we obtain

ω1
1 =

1
y1

dy1 +
2
u

du.

It is clear that dω1
1 = 0. Then, this implies that dω1

1 ∧ du = 0 and dω1
1 ∧ dy2 = 0.

Next, for k = 2, and following the same procedure as above, we compute the
one-form ω1

2 , which is given by

ω1
2 =

1
y1

dy1 +
1
u

du.

Then, checking the condition of the theorem, it follows that

dω1
1 ∧ du = 0, dω ∧ dy2 = 0 and dω1

2 = 0.

Given that the conditions of the theorem are verified, now we identify the unknown
functions ai,j from the I/O differential equation P 1

a0 := y
(3)
1,a.
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Now, computing the one-form from the I/O differential equation P 1
a0, we obtain

ω1
1 =

∂

∂ẏ1

(
ȧ1,2(u, y)
a1,2(u, y)

)
dy1 +

∂

∂u̇

(
2ȧ1,1

a1,1
+
ȧ1,2

a1,2

)
du.

The above equation allows to compute the functions a1,1 and a1,2.

Finally, after straightforward computation, we obtain

a1,1 = u and a1,2 = y1.

Now, for i = 2, the corresponding one-form obtained from P 2
0 = y

(2)
2 is given by

ω2
1 = ω2

k2−1 =
2
u

du.

Similarly, the one-form obtained from the I/O differential equation P 2
a0 := y

(2)
2,a, is

given by

ω2
1 =

∂

∂u̇

(
ȧ2,1

a2,1

)
du.

Comparing both one-forms, we can deduce that a solution is

a2,1 = u2.

Step 2. Computation of ϕi,j .

Now, the components of the vector φi = col( ϕi,1 . . . ϕi,ki ) for each subsystem
are determined.

For i = 1 and r = 1, we have that

P 1
1 = P 1

0 − F 1
3

= −
( ˙ln(uy1)

) (
˙lnuẏ1

)
−

( ˙ln(uy1)
)
u3 + u̇3 + u2y2

1 .

Computing the one-form ω1
1, it is easy to verify that ω1

1 = 0 , and this implies
the function ϕ1,1 = 0.

Now, for i = 1 and r = 2,it follows that

P 1
2 = P 1

1 − F 1
2 = P 1

1

since F 1
2 = 0. Hence, the one-form ω1

2 is given by

ω1
2 =

1
a1,1a1,2

(
u3

y1

)
dy1 + u2du.

Comparing with following the I/O differential equation

ω1
2 =

1
a1,2





d2
1∑

j=1

∂ϕ1,2

∂yj
dyj +

∂ϕ1,2

∂u
du− ϕ1,2

a1,2




d2
1∑

j=1

∂a1,2

∂yj
dyj +

∂a1,2

∂u
du






 .
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This implies that ϕ1,2 = u2.
The last iteration for this output leads to

uy1ϕ1,3 = P 1
3 = P 1

2 − F 1
1 = uy2

1 .

Repeating the same procedure for i = 2, it follows that

P 2
1 = P 2

0 − F 2
2 = 2

u̇

u
(−uy1) + u2y2

1y2 + u̇y1 + uẏ1

and the one-form ω2
1 is given by

ω2
1 =

1
u

dy1 +
1
y1

du.

By comparison with the I/O differential equation, we obtain that

ϕ2,1 = uy1.

Second iteration yields
a2,1ϕ2,2 = P 2

2 = u2y2
1y2.

Finally, we obtain ϕ2,2 = y2
1y2.

Then the transformed system is of the form



ż1,1

ż1,2

ż1,3


 =




0 u 0
0 0 y1
0 0 0







z1,1

z1,2

z1,3


 +




0
u2

uy1




(
ż2,1

ż2,2

)
=

(
0 u2

0 0

)(
z2,1

z2,2

)
+

(
uy1
y2
1y2

)
(29)

y1 = z1,1, y2 = z2,1.

The state coordinate transformation is

z1,1 = x1, z1,2 = ex2 , z1,3 = x3

z2,1 = x4, z2,2 = x5.

The observer for the system (29) is given by



·
ẑ1,1
·
ẑ1,2
·
ẑ1,3


 =




0 u 0
0 0 y1
0 0 0







ẑ1,1

ẑ1,2

ẑ1,3


 +




0
u2

uy1


 +




ψ1,1(ẑ1)
ψ1,2(ẑ1)
ψ1,3(ẑ1)


 (

z1,1 − ẑ1,1

)




·
ẑ2,1
·
ẑ2,2


 =

(
0 u2

0 0

)(
ẑ2,1

ẑ2,2

)
+

(
uy1
y2
1y2

)
+

(
ψ2,1(ẑ2)
ψ2,2(ẑ2)

) (
z2,1 − ẑ2,1

)
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where the observer gains are given by

ψ1,1(ẑ1) =
b14,3

uy1
, ψ1,2(ẑ1) =

b14,2

u2
, ψ1,3(ẑ1) =

b14,1

uy1

ψ2,1(ẑ2) =
b23,2(ẑ2)
u2

, ψ2,2(ẑ2) =
b23,1(ẑ2)
u2

and for the first subsystem, we obtain

K1
1 = u, K1

2 = uy1, g1,1 = 0, g1,2 = u2, g1,3 = uy1;

b12,1 = c1,1

b13,1 = 1 + c1,2(c1,1 − ψ1,1)− (c1,1 − ψ1,1)ψ1,1 − d
dt

(ψ1,1)

b13,2 = u (c1,2 + c1,1) +
du
dt

b14,1 = c1,1 − ψ1,1 + c1,3(b13,1 − uψ1,2)− (b3,1 − uψ1,2)ψ1,1 +
d
dt

(b3,1 − uψ1,2)

− (b13,2 − uψ1,1)ψ1,2 + uy1
∂g3
∂z1

+
d
dt

(b3,2 − uψ1,1)

b14,2 = u+ c1,3(b13,2 − uψ1,1) + ub13,1

b14,3 = c1,3uy1 + y1b
1
3,2 +

d
dt

(uy1) .

And for the second subsystem, we have

K2
1 = u2, g2,1 = uy1, g2,2 = y2

1y2;

b22,1 = c2,1

b23,1 = 1 + c2,2(c2,1 − ψ2,1)− (c2,1 − ψ2,1)ψ2,1 − d
dt

(ψ2,1)

b23,2 = u2 (c2,2 + c2,1) +
du2

dt
.

6. CONCLUSIONS

The observer synthesis for nonlinear systems has been considered in this paper.
Based on their equivalence to state affine systems, necessary and sufficient conditions
have been given to characterize a class of nonlinear systems which can be transformed
into a multivariable state affine form up to input-output injection. For this class of
systems a backstepping observer approach has been presented in order to design
an observer. Several examples have been given in order to illustrate the proposed
methodology.
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APPENDIX A

Let K the field of meromorphic functions of a ∈ IRλ and b ∈ IRρ.

ω ∈ SpanK(a,b){da1, . . . , daλ,db1, . . . , dbρ}.

Definition A1. A one-form ω is closed if dω = 0.

Definition A2. A one-form ω is exact if there exists a function ψ(a, b) such that
ω = dψ.

Proposition A3. Any exact one-form is closed.

Lemma de Poincaré A4. Let ω be a closed one-form of the form

ω ∈ SpanK(a,b){da1, . . . , daλ,db1, . . . , dbρ} .

Then ω is locally exact if and only if dω = 0.

Theorem A5. Given ω one-form, there exist a function ψ such that SpanK{ω} =
SpanK{dψ} if and only if

dω ∧ ω = 0.

Theorem A6 (Frobenius Theorem). Let V

V = SpanK{ω1, . . . , ωn}

be a subspace of E . V is closed if and only if

dω ∧ ω1 ∧ . . . ∧ ωn, for any i = 1, . . . , n.

APPENDIX B

P r o o f o f T h e o r e m 1.

Necessity.

Assume that there exists a state transformation z = T (x) transforming system Σ
into system Σaffine. Thus, the I/O differential equation of the system Σ, P i

0 = y
(ki)
i

is equal to P i
a0 := y

(ki)
ia ;

P i
a0 = F i

ki
(ai,1, . . . , ai,n−1) + Γki−1

0 (ai,1, . . . , ai,ki−1, ϕi,1, . . . , ϕi,ki).
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Notice that the first term of the right hand does not depends on ϕi,1, . . . , ϕi,ki
, and

can be written as

F i
ki

(ai,1, . . . , ai,n−1) = y
(ki−1)
j

df i
1,1

dt
+ y

(1)
j

{
dki−1f i

j,1

dtki−1
+ δi

j,1

}

+
ki−2∑

j=2

y
(ki−j)
j

{
djf i

j,1

dtj
+ δi

j,1

}
(30)

where the δi
j,1(·) are functions which depend only on functions y(l) and u(l), with

l < j. The functions F i
ki−j , j = 1, . . . , ki − 1, have the following form

F i
ki−j = ϕ

(ki−j)
j +

(
ϕ

(ki−j−1)
j ϕ

(ki−j−2)
j . . . ϕj

)




dfi
1,j

dt
d2fi

2,j

dt2 + δi
2,j

...
dki−jfi

ki,j

dtki−j + δi
ki−j,j




(31)

for j = 1, . . . , ki − 1; and the function F i
0 = ϕki

. Then, the I/O differential equation
can be written as

P i
a0 = y

(ki−1)
i

df i
1,1

dt
+ y

(1)
i

(
dki−1f i

j,1

dtki−1

)
+ ∆(·)

where ∆(·) = Γki−1
0 (ai,1, . . . , ai,ki−1, ϕi,1, . . . , ϕi,ki) + y

(1)
j δi

j,1, and ∆ represents to
all monomials with a degree less than ki − 2.

Notice that

df i
1,1

dt
=
∂f i

1,1

∂y
ẏ +

m∑

l=1

∂f i
1,1

∂ul
u̇l

dki−1f i
j,1

dtki−1
=
∂ log ai,j

∂y
y(ki−1) +

m∑

l=1

∂ log ai,j

∂ul
u

(ki−1)
l .

Now, let us apply the first step of the algorithm.
For k = 1, the one-form is given by

ωi
1 =

d1
i∑

j=1

∂2P i
a0

∂y
(1)
j ∂y

(ki−1)
j

dyj +
m∑

l=1

∂2P i
a0

∂u
(1)
l ∂y

(ki−1)
j

dul

=
1
f i
1,1





d1
i∑

j=1

∂f i
1,1

∂yj
dyj +

m∑

l=1

∂f i
1,1

∂ul
dul





=
1
f i
1,1

df i
1,1(u, y).
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Thus, the one-form ωi
1 is given by

dωi
1 =

p∑

q=d1
i +1





d1
i∑

j=1

∂

∂yq

(
1
f i
1,1

∂f i
1,1

∂yj

)
dyq ∧ dyj +

m∑

l=1

∂

∂yq

(
1
f i
1,1

∂f i
1,1

∂ul

)
dyq ∧ dul



 .

Then, the conditions of Theorem 1, for dk
i < p,

dωi
1 ∧ du = 0 and dωi

1 ∧ dyd1
i +1 ∧ · · · ∧ dyp = 0

are verified directly.

The proof for 2 ≤ k ≤ ki − 1 follows the same lines as for k = 1.
Substituting the ai,j functions in F i

ki
in (30), and from equation (31), F i

ki−j

verifies

F i
ki−j =

∂ϕj

∂y
y
(ki−j)
j +

m∑

l=1

∂ϕj

∂ul
u

(ki−j)
l

− ϕj

{
∂ log ai,j

∂y
y(ki−j) +

m∑

l=1

∂ log ai,j

∂ul
u

(ki−j)
l

}
+ Θki−j(·)

where the functions Θki−j(·) involves monomials depending on functions y(l) and
u(l), with l < ki − j.

Applying Step 2 for r = 1, P i
1 is computed as follows

P i
1 = P i

0 − F i
ki
,= y

(ki)
i − F i

ki

=
∂ϕ1

∂y
y
(ki−1)
i +

m∑

l=1

∂ϕ1

∂ul
u

(ki−1)
l

− ϕ1





d1
i∑

j=1

∂ log ai,1

∂yj
y
(ki−1)
j +

m∑

l=1

∂ log ai,1

∂ul
u

(ki−1)
l



 + Θki−1(·)

and set Ki
1 = ai,1.

Computing the one-form ωi
1 as follows

ωi
1 =

1
Ki

1





d1
i∑

j=1

∂P i
1

∂y
(ki−1)
j

dyj +
m∑

l=1

∂P i
1

∂u
(ki−1)
l

dul





=
1
ai,1





d1
i∑

j=1

∂ϕ1

∂yj
dyj +

m∑

l=1

∂ϕ1

∂ul
dul− ϕ1

ai,1





d1
i∑

j=1

∂ log ai,1

∂yj
dyj +

m∑

l=1

∂ log ai,1

∂ul
dul







 .

Thus, ωi
1 = d

(
ϕ1

ai,1

)
, and it is easy to see that the conditions

dωi
1 ∧ du = 0 and dωi

1 ∧ dydk
i +1 ∧ · · · ∧ dyp = 0
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are satisfied. The necessary condition of Theorem 1 is proved for the first iteration.
For proving the iterations r = 2, . . . , ki, a similar procedure can be followed.

Sufficiency:

Step 1. Determination of ai,j .

Consider the nonlinear system Σ and suppose that the conditions

dωi
k ∧ du = 0, and dωi

k ∧ dydk
i +1 ∧ · · · ∧ dyp = 0

are satisfied. The one-form ωi
k given by

ωi
k = cik

dk
i∑

j=1

∂2P i
a0

∂y
(k)
j ∂y

(ki−k)
j

dyj +
dk

i∑

j=1

m∑

l=1

∂2P i
a0

∂u
(k)
l ∂y

(ki−k)
j

dul

satisfies the above conditions. Then,

ωi
k ∈ Span{dy1, . . . , dydk

i
}.

On the other hand, the one-form obtained from the I/O differential equation P i
a0,

satisfies the following relation

ωi
ka = cik

dk
i∑

j=1

∂2P i
a0

∂y
(k)
j ∂y

(ki−k)
j

dyj +
dk

i∑

j=1

m∑

l=1

∂2P i
a0

∂u
(k)
l ∂y

(ki−k)
j

dul.

Solving the set of (dk
i − 1) partial differential equations, it is possible to obtain

the ai,j functions. This ends the proof of Step 1.

Step 2. Determination of ϕi,j .

In order to obtain the functions ϕi,j, we assume the ai,j are known from Step 1,
and for r = 1, replacing the function ai,1, the one-form ωi

1 is given by

ωi
1a =

1
ai,1





d1
i∑

j=1

∂ϕ1

∂yj
dyj +

m∑

l=1

∂ϕ1

∂ul
dul− ϕ1

ai,1





d1
i∑

j=1

∂ log ai,1

∂yj
dyj +

m∑

l=1

∂ log ai,1

∂ul
dul







 .

On the other hand, the one-form ωi
k obtained from the I/O differential equation

of the nonlinear system Σ and the conditions

dωi
k ∧ du = 0 and dωi

k ∧ dydk
i +1 ∧ · · · ∧ dyp = 0

allows to conclude that
ωi

1 ∈ Span{dy1, . . . , dydk
i
}.

Then, the ϕi,j can be determined as follows. Let zi = col(zi,1 . . . zi,ki) ∈ IRki , for
i = 1, . . . ., p; and zi,1 = yi = hi(x), where hi is the ith component of the output
equation y = h(x).
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Now, for k = 2, . . . , ki, let be

zi,k =
żi,k−1 − ϕi,k−1

ai,k−1
.

which represent the ki − 1 first dynamics of Σ.
To compute the last dynamic equation żi,ki

, we note that

y
(k)
i = zi,k+1K

i
k + P i

k

where

P i
k = ϕi,kK

i
k + Ṗ i

k−1 + zi,k
dKi

k

dt
,

and ai,ki
= 0 by construction and P i

1 = ϕi,1.

Thus the last dynamic equation obtained as follows

zi,ki
=
żi,k−1 − ϕi,ki−1

ai,ki−1
=
y
(ki−1)
i − P i

ki−1

Ki
ki−1

.

Taking the time derivative of the above equation, it follows that

żi,ki =

(
y
(ki)
i − Ṗ i

ki−1

)
Ki

ki−1 −
(
y
(ki−1)
i − P i

ki−1

)
K̇i

ki−1

(
Ki

ki−1

)2 .

After substitution of the function P i
ki−1, one finally gets

żi,ki = ϕi,ki .

This ends the proof. 2

APPENDIX C

Let be

sl+1 =
l∑

i=1

(bl+1,i −Kl−iKi−1ψl−i+1) ei +Klel+1 (32)

where s = col (s1, s2, . . . , sl, sl+1) , e = col (e1, e2, . . . , el+1).
Now, writing in terms of the estimation error, we obtain

s = M(bi,j , ψi) e (33)

M(bi,j , ψi) =

=




1 0 . . . 0
b2,1 − ψ1 K1 . . . 0
b3,1 −K1ψ2 b3,2 −K1ψ1 . . . 0
b4,1 −K2ψ3 b4,2 − (K1)

2
ψ2 . . . 0

...
...

. . .
...

bn,1 −Kl−2ψn−1 bl,2 −Kl−3K1ψl−2 . . . Kl−1

bn+1,1 −Kl−1ψn bl+1,2 −Kl−2K1ψl−1 . . . bl+1,l −Kl−1ψ1




(34)



On Nonlinear Equivalence and Backstepping Observer 543

where

Kr =
r∏

i=0

ai

and a0 = 1; the bi,j = bi,j(z) are given by,
for i = 2

b2,1 = c1 +
∂g1
∂z1

(35)

for i = 3

b3,1 = 1 + c2(b2,1 − ψ1) + (b2,1 − ψ1)
(
∂g1
∂z1

− ψ1

)
+

d
dt

(b2,1 − ψ1) +K1
∂g2
∂z1

(36)

b3,2 = K1c2 + a1b2,1 +
dK1

dt
+K1

∂g2
∂z2

for i = 4

b4,1 = b2,1 − ψ1 + c3(b3,1 −K1ψ2) + (b3,1 −K1ψ2)
(
∂g1
∂z1

− ψ1

)
+

d
dt

(b3,1 −K1ψ2)

+ (b3,2 −K1ψ1)
(
∂g2
∂z1

− ψ2

)
+K2

∂g3
∂z1

(37)

b4,2 = a1 + c3(b3,2−K1ψ1) +K1b3,1 + (b3,2−K1ψ1)
∂g2
∂z2

+
d
dt

(b3,2−K1ψ1) +K2
∂g3
∂z2

b4,3 = c3K2 + a2b3,2 +
d
dt

(K2) +K2
∂g3
∂z3

for 4 < i ≤ n+ 1

bi,1 = bi−2,1 −Ki−4ψi−3 + ci−1 (bi−1,1 −Ki−3ψi−2) +
d
dt

(bi−1,1 −Ki−3ψi−2)

+
i−2∑

k=1

(bi−1,k −Ki−3ψi−k−1)
(
∂gk

∂z1
− ψk

)
+Ki−2

(
∂gi−1

∂z1

)

bi,j = bi−2,j −Ki−j−3Kj−1ψi−j−2 +Ki−2

(
∂gi−1

∂zj

)
+ aj−1bi−1,j−1

+ ci−1 (bi−1,j −Ki−j−2Ki−2ψi−j−1) +
d
dt

(bi−1,j −Ki−j−2Kj−1ψi−j−1)

+
i−2∑

k=j

(bi−1,k −Ki−k−2Kk−1ψi−k−1)
(
∂gk

∂z1

)

bi,i−2 = Ki−3 + ci−1 (bi−1,i−2 −Ki−3ψ1) +
d
dt

(bi−1,i−2 −Ki−3ψ1)

+ ai−3bi−1,i−3 + (bi−1,i−2 −Ki−3ψ1)
(
∂gi−2

∂zi−2

)
+Ki−2

(
∂gi−1

∂zi−2

)
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bi,i−1 = Ki−2ci−1 + ai−2bi−1,i−2 +Ki−2

(
∂gi−1

∂zi−1

)
+

d
dt
Ki−2.

When l = n , where n is the dimension of the system, it is easy to see that

sn+1 =
n∑

i=1

(
bn+1,i −Kn−iKi−1ψn−i+1 +Kn−1

(
∂fn

∂zi

))
ei. (38)

In order to determine the gains of the observer we make the last above equation
equal to zero, i. e.

bn+1,i −Kn−iKi−1ψn−i+1 +Kn−1

(
∂fn

∂zi

)
= 0, for i = 1, . . . , n.

Then, it follows that

ψn−i+1 =
bn+1,i

Kn−iKi−1
+

Kn−1

Kn−iKi−1

(
∂fn

∂zi

)
, for i = 1, . . . , n;

or equivalently

ψj =
bn+1,n−j+1

Kn−jKj−1
+

Kn−1

Kn−jKj−1

(
∂fn

∂zn−j+1

)
, for j = 1, . . . , n. (39)
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