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DESIGN OF ROBUST OUTPUT AFFINE
QUADRATIC CONTROLLER1

Vojtech Veselý

The paper addresses the problem robust output feedback controller design with guar-
anteed cost and affine quadratic stability for linear continuous time affine systems. The
proposed design method leads to a non-iterative LMI based algorithm. A numerical exam-
ple is given to illustrate the design procedure.

Keywords: robust control, parameter dependent Lyapunov function, affine quadratic sta-
bility, LMI approach

AMS Subject Classification: 93D15

1. INTRODUCTION

Robustness has been recognized as a key issue in the analysis and design of control
systems for the last two decades. During the last decades numerous papers deal-
ing with the design of static robust output feedback control schemes to stabilize
uncertain systems have been published, Benton and Smith [1], Crusius and Trofino
[3], Ghaoui and Balakrishnan [4], Geromel, De Souza, and Skelton [7], Gyurkovics
and Takacs [9], Hejdǐs and et al [10], Henrion and et al [11], Kose and Jabbari [12],
Kozáková [13], Li Yu and Jian Chu [15], Mehdi, Al Hamid and Perrin [16], Pakshin
[18], Pogyeon and et al [19], Tuan and et al [21], Xu and Darouch [24], Yong Yan
Cao and You Xian Sun [25]. Various approaches have been used to study the two
aspects of the robust stabilization problem, namely conditions under which the lin-
ear system described in state space can be stabilized via output feedback and the
respective procedure to obtain a stabilizing or robustly stabilizing control law.

The necessary and sufficient conditions to stabilize the linear continuous time
invariant system via static output feedback can be found in Kučera and De Souza
[14] and in Veselý [22]. In the above and other papers, the authors basically conclude
that despite the availability of many approaches and numerical algorithms the static
output feedback problem is still open.

Recently, it has been shown that an extremely wide array of robust controller
design problems can be reduced to the problem of finding a feasible point under a

1The first version of this paper has been presented at IFAC 15th World Congress, Barcelona
2002.
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Biaffine Matrix Inequality (BMI) constraint. The BMI has been introduced in Goh,
Safonov and Papavassilopoulos [8]. In this paper, the BMI problem of robust con-
troller design with output feedback is reduced to a LMI problem, Boyd, El Ghaoui,
Feron and Balakrishnan [2]. The theory of Linear Matrix Inequalities has been used
to design robust output feedback controllers in Benton and Smith [1], Crusius and
Trofino [3], El Ghaoui and Balakrishnan [4], Henrion and et al [11], Li Yu and Jian
Chu [15], Tuan, Apkarian, Hosoe and Tuy [21], Veselý [22]. Most of the above
works present iterative algorithms in which a set of LMI problems are repeated until
certain convergence criteria are met. The V-K iteration algorithm, proposed in El
Ghaoui and Balakrishnan [4], is based on an alternative solution of two convex LMI
optimization problems obtained by fixing the Lyapunov matrix or the gain controller
matrix. This algorithm is guaranteed to converge, but not necessarily, to the global
optimum of the problem depending on the starting conditions.

In this paper, new necessary and sufficient conditions to stabilize continuous
time systems via static output feedback have been used to design a robust affine
controller. For guaranteed cost and affine system this leads to a non iterative LMI
based algorithm. The design procedure guarantees with sufficient conditions the
robust affine quadratic stability for closed loop systems.

The paper is organized as follows. In Section 2 the problem formulation and
some preliminary results are brought. The main results are given in Section 3. In
Section 4 the obtained theoretical results are applied.

We have used the standard notation. A real symmetric positive (negative) definite
matrix is denoted by P > 0 (P < 0). Much of the notation and terminology follows
the references of Kučera and De Souza [14], and Gahinet, Apkarian and Chilali [5].

2. PRELIMINARIES AND PROBLEM FORMULATION

This paper is concerned with the class of uncertain linear systems that can be de-
scribed as

ẋ(t) = (Ac0 + Ac1θ1 + · · ·+ Ackθk)x(t)
= Ac(θ) x(t)

(1)

where θ = [θ1, . . . , θk] ∈ Rk is a vector of uncertain and possibly time varying real
parameters.

The system represented by(1) is a polytope of linear affine systems which can be
described by a list of its vertices

ẋ(t) = Dcix(t), i = 1, 2, . . . , N (2)

where N = 2k.
The system represented by (2) is quadratically stable if and only if there is a

Lyapunov matrix P > 0 such that

DT
ciP + PDci < 0, i = 1, 2, . . . , N. (3)

A weakness of quadratic stability is that it guards against arbitrary fast parameter
variations. As a result, this test tends to be conservative for constant or slow-varying
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parameters θ. To reduce conservatism when (1) is affine in θ and the parameters
of system are time invariant, in Gahinet, Apkarian and Chilali [5], the parameter-
dependent Lyapunov functions P (θ) has been used in the form

P (θ) = P0 + P1θ1 + . . . + Pkθk. (4)

Other types of parameter-dependent Lyapunov functions have been proposed in De
Oliviera, Bernussou and Geromel [17] for the stability analysis of linear discrete time
systems and for the analysis and the design of continuous time systems with affine
type uncertainties in Henrion, Alzelier and Peaucelle [11] and in Takahashi, Ramos,
and Peres [20].

We shall consider the following linear time invariant continuous time uncertain
systems

ẋ(t) = A(θ)x(t) + B(θ)u(t) (5)
y(t) = C(θ)x(t), x(0) = x0

where x(t) ∈ Rn is the plant state; u(t) ∈ Rm is the control input; y(t) ∈ R` is the
output vector of system; A(θ), B(θ), C(θ) are matrices of appropriate dimensions
depending affinely on θ

A(θ) = A0 + A1θ1 + . . . + Akθk

B(θ) = B0 + B1θ1 + . . . + Bkθk

C(θ) = C0 + C1θ1 + . . . + Ckθk.

Note that, in order to keep the polytope affine property, the matrix B(θ) or C(θ)
must be precisely known. The following definition and theorem by Gahinet, Apkar-
ian and Chilali [5] will be heavily exploited in the next development.

Definition 1. The linear system

ẋ(t) = Ac(θ)x(t), x(0) = x0 (6)

is affine quadratically stable if there exist k + 1 symmetric matrices P0, P1, . . . , Pk

such that
P (θ) = P0 + P1θ1 + . . . + Pkθk > 0 (7)

and
dV (x, θ)

dt
= x(t)T

(
AT

c (θ)P (θ) + P (θ)Ac(θ) +
dP (θ)

dt

)
x(t) < 0 (8)

for θ = [θ1, . . . , θk].

Note that quadratic stability corresponds to the case P1 = . . . = Pk = 0. Suffi-
cient affine quadratic stability conditions are given by the next theorem.
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Theorem 1. (Gahinet, Apkarian and Chilali [5].) Consider the linear systems
governed by (6), where Ac(θ) depends affinely on the uncertain parameter vector
θ = [θ1, . . . , θk] and θi satisfies

θi ∈ 〈θi, θi〉, θ̇i ∈ 〈νi, νi〉, for i = 1, 2, . . . , k (9)

where θi, θi, νi, νi are known lower and upper bounds. Let Γ and Λ denote the set
of N = 2k vertices of the parameters box (9) and of the rate of variation box (9),
respectively

Γ = {(γ1, . . . , γk) : γi = θi or γi = θi} (10)

Λ = {(λ1, . . . , λk) : λi = νi or λi = νi}
and let

θm =
[
θ1 + θ1

2
, . . . ,

θk + θk

2

]

denote the average value of the uncertain parameters vector. This system is affine
quadratically stable if Ac(θm) is stable and there exist k + 1 symmetric matrices
P0, P1, . . ., Pk such that P (θ) > 0 satisfies

L(γ, λ) = Ac(γ)T P (γ) + P (γ)Ac(γ) + P (λ)− P0 < 0 (11)

for all (γ, λ) ∈ Γ× Λ and
AT

ciPi + PiAci ≥ 0 (12)

for i = 1, 2, . . . , k.
When (11) and (12) are met, a Lyapunov function for (6) and all trajectories θ(t)
satisfying (9) is given by

V (x, θ) = xT (t)P (θ)x(t).

The following performance index is associated with the system (5)

J =
∫ ∞

0

(x(t)T Qx(t) + u(t)T R u(t)) dt (13)

where Q = QT ≥ 0, R = RT > 0 are matrices of compatible dimensions.
The problem studied in this paper can be formulated as follows:

For a continuous time system described by (5) design a static output feedback con-
troller with the gain matrix F and control algorithm

u(t) = Fy(t) = FC(θ)x(t) (14)

so that the closed loop system

ẋ = (A(θ) + B(θ)FC(θ))x(t) = Ac(θ)x(t) (15)

is affine quadratically stable with guaranteed cost.
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Definition 2. Consider the system (5). If there exists a control law u∗ and a
positive scalar J∗ such that closed loop system (15) is stable and the closed loop
value cost function (13) satisfies J ≤ J∗, then J∗ is said to be the guaranteed cost
and u∗ is said to be the guaranteed cost control law for system (5).

3. THE MAIN RESULTS

In this section we present a new procedure to design a static output feedback con-
troller for affine continuous time linear systems (5) which ensure the guaranteed cost
and affine quadratic stability of closed loop system. The following theorem is one of
the main results.

Theorem 2. For system (5) and Lyapunov function V (θ) = x(t)T P (θ)x(t) > 0
the following statements are equivalent:

• There exist positive definite matrices Q and R that system (5) is static output
feedback affine quadratic stabilizable (AQS) with guaranteed cost

∫ ∞

0

x(t)T (Q + C(θ)T FT RFC(θ))x(t) dt ≤ xT
0 P (θ)x0. (16)

• There exist k + 1 symmetric matrices P0, P1, . . ., Pk that P (θ) > 0, positive
definite matrices Q and R, and matrix F such that the following inequality
holds

(A(θ) + B(θ)FC(θ))T P (θ) + P (θ)(A(θ) + B(θ)FC(θ)) + Ṗ (θ)

+Q + C(θ)T FT RFC(θ) < 0. (17)

• There exist k + 1 symmetric matrices P0, P1, . . ., Pk that (7) holds, positive
definite matrices Q and R, and matrix F such that the following inequality
holds

A(θ)T P (θ) + P (θ)A(θ)− P (θ)B(θ)R−1

B(θ)T P (θ) + Ṗ (θ) + Q + G(θ)T R−1G(θ) < 0 (18)

where
G(θ) = B(θ)T P (θ) + RFC(θ).

• There exist k + 1 symmetric matrices P0, P1, . . ., Pk that (7) holds, positive
definite matrices Q and R, and matrix F such that the following inequality
holds

A(θ)T P (θ) + P (θ)A(θ)− P (θ)B(θ)R−1B(θ)T P (θ) + Ṗ (θ) + Q < 0 (19)
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G(θ)φ(θ)−1G(θ)T −R < 0 (20)

where
φ(θ) = A(θ)T P (θ) + P (θ)A(θ)

−P (θ)B(θ)R−1B(θ)T P (θ) + Ṗ (θ) + Q.

The proof of this theorem goes the same way as in [22, 23]. 2

Because of Theorem 1, inequalities (17), (18) and (19), (20) are negative in the
box (10) if they take negative values at the vertices of (10); that is if they are
negative for all γ in the vertex set Γ given by (10) and inequality (12) holds for all
i = 1, 2, . . . , k. In the vertex set (10) define the polytope system in the form

{(D1, E1,H1), . . . , (DN , EN ,HN )} (21)

where N = 2k and
D1 = A0 + A1θ1 + . . . + Akθk

E1 = B0 + B1θ1 + . . . + Bkθk (22)

H1 = C0 + C1θ1 + . . . + Ckθk.

In (21) each vertex is calculated for the k variables θi, i = 1, 2, . . . , k alternatively
taken at maximum and minimum values. For polytopic system inequality (19) could
not be solved within LMI therefore let us introduce the inverse Lyapunov matrix
S(θ) as in Gahinet, Nemirovski, Laub and Chilali [6].

S(θ) = P (θ)−1 = S0 + S1θ1 + . . . + Skθk. (23)

Note that equality (23) holds for all vertices (γ, λ) ∈ Γ × Λ. For the new variable
S(θ), equations (11), (12) and (19) read as follows

L(γ, λ) = S(γ)A(γ)T + A(γ)S(γ)− (S(λ)− S0) < 0 (24)

SiA
T
ci + AciSi ≥ 0, i = 1, 2, . . . , k (25)

and
S(γ)A(γ)T + A(γ)S(γ)−B(γ)R−1B(γ)T

−(S(λ)− S0) + S(γ)QS(γ) < 0. (26)

For reducing the conservatism of the AQS test [5] nonnegative matrices Mi ≥ 0,
i = 1, 2, . . . , k are added to (26) and (25) as follows

S(γ)A(γ)T + A(γ)S(γ)−B(γ)R−1B(γ)T
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−(S(λ)− S0) + S(γ)QS(γ) +
k∑

i=1

θ2
i Mi < 0 (27)

and
SiA

T
ci + AciSi + Mi ≥ 0, i = 1, 2, . . . , k. (28)

The resulting test is generally less conservative for (27) and (28). However, this
improvement is at the expense of higher computational needs since the number of
optimization variables is increased in the new LMI problem (27), (28). Combining
the results of (19), (27), (28) and (20) the following algorithm for computation of
a robust output feedback controller with guaranteed affine quadratic stability has
been proposed.

Algorithm.

Step 1. Find the solution of (27) at all vertices (γ, λ) ∈ Γ× Λ with respect to the
variables S0, S1, . . . , Sk, M1,M2, . . . ,Mk from the following LMI inequalities




Ni(γ, λ) S(γ)Q Vi(γ)
QS(γ) −Q 0
V T

i (γ) 0 −R−1


 ≤ 0 (29)

where

Ni(γ, λ) = S(γ)DT
i + DiS(γ)− EiR

−1ET
i − (S(λ)− S0) +

k∑

j=1

θ2
j Mj

Vi(γ) = (ET
i + RFvHiS(γ))T R−1

for i = 1, 2, . . . , N
Kj = SjA

T
j + AjSj + Mj ≥ 0 (30)

Mj ≥ ρ1I, S(γ) ≥ ρ2I, Sj ≤ ρ3I, j = 1, 2, . . . , k

where I is identity matrix with corresponding dimensions and ρ1, ρ2, ρ3 are
some nonnegative constants. For the first iterative procedure Fv = 0.

Step 2. Calculate the value of the inverse Lyapunov matrix Sni and Pni, i =
1, 2, . . . , N at all vertices of γ ∈ Γ.

Step 3. Compute the value of Riccati equation at all vertices of (γ, λ) ∈ Γ× Λ.

φi(λ) = DT
i Pni + PniDi − PniEiR

−1ET
i Pni + (P (λ)− P0) + Q. (31)

Step 4. Compute the gain matrix F from the following LMI inequalities
[ −R ET

i Pni + RFHi

(ET
i Pni + RFHi)T φi(λ)

]
≤ 0 (32)
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i = 1, 2, . . . , N and λ ∈ Λ

Kj + SjC
T
j FT BT

j + BjFCjSj ≥ 0 (33)

for j = 1, 2, . . . , k.

If the solutions are feasible for designer then stop, else Fv = F and go to Step 1.
Usually, the repeated procedure generates less conservative results than first one.
The convergence of the above special iterative procedure has not been proven yet,
however if the argument of [4] that V-K iterative procedure is guaranteed to converge
is taken into account we can conclude that the proposed algorithm is guaranteed to
converge too, but not necessarily to the global optimum of the problem depending
on starting conditions.

Note that for example S(γ) in (23) reads for i = 1 as follows

S(γ) = S0 + S1θ1 + S2θ2 + . . . .

If the LMI problems (29) – (33) are feasible, the resulting gain matrix F guarantees
the affine quadratic stability and simultaneously ensures the guaranteed cost (16)
for the closed loop system (15).

4. EXAMPLES

In this example we consider the linear model of two cooperating DC motors. The
problem is to design two PI controllers for a laboratory MIMO system which will
guarantee affine quadratic stability of a closed loop uncertain system. The system
model is given by (5) with a time invariant matrix affine type uncertain structure,
where

A0 =




0 −0.2148 0 0 0 0 0 0 0 0
1 −1.014 0 0 0 0 0 0 0 0
0 0 0 −0.2605 0 0 0 0 0 0
0 0 1 −0.9107 0 0 0 0 0 0
0 0 0 0 0 −0.1639 0 0 0 0
0 0 0 0 1 −0.8137 0 0 0 0
0 0 0 0 0 0 0 −0.2279 0 0
0 0 0 0 0 0 1 −0.8251 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0




A1 =




0 −0.025 0 0 0 0 0 0 0 0
0 −0.1395 0 0 0 0 0 0 0 0
0 0 0 −0.0938 0 0 0 0 0 0
0 0 0 −0.2911 0 0 0 0 0 0
0 0 0 0 0 0.0188 0 0 0 0
0 0 0 0 0 0.0208 0 0 0 0
0 0 0 0 0 0 0 −0.0333 0 0
0 0 0 0 0 0 0 −0.1173 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



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A2 =




0 0.0125 0 0 0 0 0 0 0 0
0 0.0594 0 0 0 0 0 0 0 0
0 0 0 0.0116 0 0 0 0 0 0
0 0 0 0.0308 0 0 0 0 0 0
0 0 0 0 0 −0.0188 0 0 0 0
0 0 0 0 0 −0.0156 0 0 0 0
0 0 0 0 0 0 0 0.0208 0 0
0 0 0 0 0 0 0 −0.0333 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




B0 =




0.3148 0
0.0478 0

0 −0.1028
0 −0.0091

−0.0841 0
−0.0287 0

0 0.3676
0 0.2448
0 0
0 0




B1 =




0.0625 0
−0.0798 0

0 −0.0462
0 −0.0449

0.0016 0
0.0072 0

0 0.077
0 −0.005
0 0
0 0




B2 =




−0.0094 0
0.0151 0

0 0.0019
0 −0.003

−0.0121 0
−0.03 0

0 −0.064
0 0.0189
0 0
0 0




CT =




0 0 0 0
1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




The number of polytope systems are equal to 4 and the polytope vertices are com-
puted for two variables θ1, θ2 alternatively taken at their maximum θi and minimum
θi, i = 1, 2. The decentralized control structure for the two PI controllers can be
obtained by the choice of the static output feedback gain matrix F structure. It is
given as follows

F =
[

f11 0 f13 0
0 f22 0 f24

]

The results of calculation of a static output feedback gain matrix F for quadratically
and affine quadratically stable system for different Q = qI, R = rI, |θ1| = |θ2| = 1
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and ρi, i = 1, 2, 3 are summarized in the following table.

N q r ρ1 ρ2 ρ3 quad aff.quad
1 1.5 1 1.5 1 0.166 −0.1342 −0.0954
2 5 1 1.5 1 0.166 +0.307 −0.1277∗

3 10 1 1.5 1 0.166 −0.081 −0.1922∗∗

4 20 1 1.5 1 0.166 +1.11 −0.1148
5 10−4 1 1.5 1 0.166 −0.0164 +0.0011
6 10−4 1 10−4 1 0.166 −0.0164 −0.0136
7 0.1 1 1.5 1 0.166 −0.1383 −0.0386
8 0.1 1 10−4 1 0.166 −0.1383 −0.1133
9 0.1 1 0 1 0.166 −0.1383 −0.1449
10 0.1 1 0 1 0 −0.1383 −0.1448
11 10−6 1 0 1 0.166 −0.0015 −0.0015
12 10−6 0.1 0 1 0.166 −0.0134 −0.0178

where quad and aff.quad denote the max (real (eigenvalue)) of the closed loop system
for quadratic or affine quadratic stability, respectively. The solutions are feasible for
11 and 12 cases. For other cases the closed loop system is quadratically or affine
quadratically stable but the minimal value of cost is not guaranteed. The static
output feedback gain matrix for cases ∗ and ∗∗ are given as follow

F ∗ =
[ −0.3582 0 −0.376 0

0 −0.7927 0 −0.7535

]

F ∗∗ =
[ −1.0708 0 −0.6317 0

0 −2.6952 0 −1.671

]

The second example has been borrowed from [1] to demonstrate the design of affine
quadratic controller. It is known that the presented system is static output feedback
stabilizable. Let (A,B, C) in (5) be defined as

A =




−0.036 0.0271 0.0188 −0.4555
0.0482 −1.010 0.0024 −4.0208
0.1002 q1(t) −0.707 q2(t)

0 0 1 0




B =




0.4422 0.1761
q3(t) −7.59222
−5.520 4.490

0 0


 C =

[
0 1 0 0

]

with parameters bounds −0.6319 ≤ q1(t) ≤ 1.3681, 1.22 ≤ q2(t) ≤ 1.420, and
2.7446 ≤ q3(t) ≤ 4.3446. Find a stabilizing output feedback matrix F . The
nominal model of (A0, B0) is given by the above matrices when we substitute for
the entries A0(3, 2) = 0.3681, A0(3, 4) = 1.32 and B0(2, 1) = 3.5446. The struc-
tured model uncertainty (5) (A1, A2, B1) are matrices with the following entries
A1(3, 2) = 1, A2(3, 4) = 0.1 and B1(2, 1) = 0.8 with θi ∈ 〈−1, 1〉, i = 1, 2. Other
entries of the above uncertain matrices are equal to zero. The number of polytope
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systems are equal to 4.
The nominal model is unstable with eigenvalues:

eig {−2.0516, 0.2529± 0.3247i, −0.2078}.

For the first “iterative” procedure, Fv = 0, the closed-loop eigenvalues of 4 polytope
systems are as follows

eig CL{0.6885, 0.5726, 0.0713± 1.1077i, . . . , −4.0422}.

Closed-loop system is not stable. After using the iterative procedure the closed-loop
eigenvalues of 4 polytope systems are as follows

eig CL{−0.04504± 0.3555i, −0.1472± 0.4304i, −0.1896± 0.4636i, . . . , −688.527}.

The eigenvalues of closed-loop system for the case ‖θ1‖ = ‖θ2‖ = 0 are equal as
follows

eig CL{−0.1668± 0.4432i, −0.403, −660.91}

and output feedback gain matrix

F =
[

34.51
103.03

]

Hence, the affine quadratic stability conditions are met the closed-loop system is
affine quadratically stable. Because, the available solution in the above design LMI
procedure is only may be feasible but are not strictly (best value of t = 5.17310−4)
the cost minimal value (14) is not guaranteed. For the above example we obtain the
value of cost as follows

J =
∫ ∞

0

(x(t)T (Q + CT FT RFC)x(t)) dt ≤ 33.82663 ‖x0‖2.

5. CONCLUSIONS

In this paper, we have proposed a new procedure for robust output feedback con-
troller design for linear systems with affine and possible time varying parameter
uncertainty. The feasible solution of the output feedback controller with sufficient
conditions guarantee the affine quadratic stability and guaranteed cost. The design
procedure is based on new necessary and sufficient conditions for output feedback
stabilizability of linear systems and a non-iterative LMI based algorithm. A valu-
able feature of the robust controller design procedure is that quantitative information
about the rate of parameter variation is readily incorporated to reduce conservatism
in the time varying case.
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