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GENERALIZED IMMERSION AND NONLINEAR
ROBUST OUTPUT REGULATION PROBLEM1

B. Castillo-Toledo, S. Čelikovský and S. DiGennaro

The problem of output regulation of the system affected by unknown constant parame-
ters is considered here. Under certain assumptions, such a problem is known to be solvable
using error feedback via the so-called immersion to an observable linear system with out-
puts. Nevertheless, for many interesting cases this kind of finite dimensional immersion is
difficult or even impossible to find. In order to achieve constructive procedures for wider
classes, this paper investigates a more general type of immersion. Such a generalized immer-
sion enables to solve robust output regulation problem via dynamic feedback compensator
using error and exosystem state measurement. When the exosystem states are not com-
pletely measurable, a modified observed-based generalized immersion is then presented.
The main result obtained here is that under reasonable assumptions both the full and par-
tial exosystem measurement problems are equivalently solvable. Examples together with
computer simulation are included to clarify the suggested approach.

Keywords: output regulation, robust, nonlinear, immersion

AMS Subject Classification: 93C10, 93D20

1. INTRODUCTION

A central problem in control theory and applications is to design a control law to
achieve asymptotic tracking with disturbance rejection in nonlinear systems. When
the class of reference inputs and disturbances are generated by an autonomous dif-
ferential equations, this problem is called nonlinear output regulation problem, or,
alternatively, nonlinear servomechanism problem, see e. g. [8] and [9]. The problem
can precisely be formulated as follows:

Consider a nonlinear plant described by
.
x = f(x,w, u, µ)
e = h(x,w, µ)

(1)

where the first equation of (1) describes the dynamics of a plant, whose state x is
defined in a neighborhood U of the origin in Rn, with control input u ∈ Rm and

1This research was supported by the Mexican Council for Science and Technology (CONA-
CYT) through grant No. 37687-A and the Grant Agency of the Czech Republic through grant
102/02/0709.
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subject to a set of exogenous input variables w ∈ Rr, which includes disturbances
(to be rejected) and/or references (to be tracked) and µ ∈ Rp is a vector of un-
known parameters. The second equation defines an error variable e ∈ Rs, which
is expressed as a function of the state x, the exogenous input w and the vector of
unknown parameters µ. Suppose µ = 0 to be a nominal value of the parameter µ
and assume f(x,w, u, µ) and h(x,w, µ) to be smooth functions of their arguments
with f(0, 0, 0, µ) = 0 and h(0, 0, µ) = 0 for each value of µ.

The family of the exogenous inputs w(·) affecting the plant will be taken as the
family of all functions of time which are the solution of the autonomous differential
equation

.
w = s(w) (2)

with initial condition w(0) ranging on some neighborhood W of the origin of Rr.
This system, which is viewed as a mathematical model of a “generator” of all possible
exogenous input functions, is called exosystem. Through the paper, (2) is assumed
to be neutrally stable, which is a standard assumption for exogenous systems.

Beginning with the pioneering works [8] and [6], the nonlinear output regulation
problem has been studied intensively during the last decade. Basic results on full
information feedback case, error feedback case and the so-called robust output regu-
lation are collected in [9], some results on full information nonsmooth feedback were
obtained in [2], and [3]. For further robust aspects of the output regulation see [7]
and [1] and references within there. In particular, it has been shown that the inclu-
sion of an internal model in the controller structure was necessary and sufficient for
having robust regulation [5]. Following these ideas in [9], an error feedback controller
which relies on the existence of an internal model, which represent an immersion of
the exosystem dynamics into an observable one, was presented. This immersion
allows to generate, as in the linear case, all the possible steady state inputs for the
admissible values of the system parameters.

Nevertheless, in general, the corresponding necessary and sufficient conditions
are quite abstract and nonconstructive in the general case, even if only sufficient
conditions are taken by requiring to find an immersion of the exosystem into a linear
observable system. This later approach has been shown to have an explicit solution
for the class of systems for which the steady state input is given in a polynomial
form with respect of the exosystem states. This paper explores the possibility of
using a generalized immersion, in the sense that the immersion is allowed to depend
explicitly on the exosystem states. By some characteristic examples, it is shown
that in some cases in which the linear immersion is difficult, or even impossible to
find, the suggested approach gives an alternative solution to the Robust Regulation
Problem (RORP).

More precisely, it was shown in [4] that the existence of the generalized immersion
provides solvability of RORP, provided the measurement of the exosystem state is
allowed. Here, we aim to further enhance this result by showing that (under certain
reasonable condition), one may use a suitable exosystem output measurement only.
Typical candidate for such an output might be reference to be tracked in case when
RORP represents tracking problem. In other words, it seems to be quite realistic
in many applications to assume that tracking error is not measured directly but is
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computed as difference between the measured output to be controlled and measured
reference to be tracked.

In a broader perspective, our approach may be used to distinguish between ex-
osystem components describing the reference and those describing unknown distur-
bances. Main idea here would be to find immersions that would eliminate only the
disturbance related components, thereby soften restrictions for its existence. The
present paper, nevertheless, will consider the more simple version when the whole
exosystem state is observable from a suitable additional exosystem output and will
show how to combine this property with existing (if any) generalized immersion.

The paper is organized as follows. In next section we summarize the basic defini-
tions and known results on the robust output regulation problem. The contribution
of the paper is presented in Section 3, while Section 4 presents several illustrative
examples and simulations. Conclusions and some ideas for the future research are
drawn in the final section.

2. ELEMENTS OF ROBUST OUTPUT REGULATION

2.1. Error feedback solution to RORP and linear immersion problem

Definition 1. (Robust Output Regulation Problem (RORP).) Given a nonlinear
system of the form (1) and a neutrally stable exosystem (2), find , if possible, an
integer ν, two mappings θ(ξ) and η(ξ, e) (with ξ ∈ Ξ ⊂ Rν , θ : Rν → Rm, η :
Rν × Rs → Rν) and a neighborhood P of µ = 0 in Rp such that, for each µ ∈ P:

(S) the equilibrium (x, ξ) = (0, 0) of
.
x = f(x, 0, θ(ξ), µ)
.

ξ = η(ξ, h(x, 0, µ))

is asymptotically stable in the first approximation,

(R) there exists a neighborhood V ⊂ U × Ξ ×W of (0, 0, 0) such that, for each
initial condition (x(0), ξ(0), w(0)) ∈ V , the solution of

.
x = f(x,w, θ(ξ), µ)
.

ξ = η(ξ, h(x,w, µ))
.
w = s(w)

is such that limt→∞ e(t) = 0.

The following result, which can be found in [9], gives conditions for the existence
of a solution to the RORP.

Theorem 1. (N&S condition for RORP.) The Robust Output Regulation Problem
is solvable if and only if there exist mappings xss = πa(w, µ) and uss = ca(w, µ), with
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πa(0, µ) = 0 and ca(0, µ) = 0, both defined in a neighborhood W o × P ⊂ W × IRp

of the origin, satisfying the conditions

∂πa(w,µ)
∂w s(w) = f(πa(w, µ), w, ca(w, µ), µ)

0 = h(πa(w, µ), w, µ)
(3)

for all (w, µ) ∈ W o×P, and such that the autonomous system with output denoted
as {W o ×P, sa, ca} and given by

d
dt

[
w
µ

]
=

[
s(w)

0

]
:= sa(w), u = ca(w, µ), (w, µ) ∈ W o ×P

is immersed into a system
.

ξ = ϕ(ξ)
u = γ(ξ)

defined on a neighborhood Ξo of the origin in Rν , in which ϕ(0) = 0 and γ(0) = 0,
and the two matrices

Φ =
[

∂ϕ
∂ξ

]
ξ=0

, Γ =
[

∂γ
∂ξ

]
ξ=0

are such that the pair
(

A(0) 0
NC(0) Φ

)
,

(
B(0)

0

)

is stabilizable for some choice of the matrix N, and the pair
(

C(0) 0
)
,

(
A(0) B(0)Γ

0 Φ

)

is detectable, where A(µ) =
[

∂f
∂x

]
(0,0,0,µ)

; B(µ) =
[

∂f
∂u

]
(0,0,0,µ)

; C(µ) =
[

∂h
∂x

]
(0,0,µ)

.

Corollary 1. The RORP is solvable by means of a linear controller if the pair
(A(0), B(0)) is stabilizable, the pair (C(0), A(0)) is detectable, there exist mappings
xss = πa(w, µ) and uss = ca(w, µ), with πa(0, µ) = 0 and ca(0, µ) = 0, both defined
in a neighborhood W o×P ⊂ W ×Rp of the origin, satisfying the conditions (3) and
such that, for some set of q real numbers a0, a1, ..., aq−1,

Lq
sc

a(w, µ) = a0c
a(w, µ) + a1Lsc

a(w, µ) + . . .

. . . + aq−1L
q−1
s ca(w, µ) (4)

for all (w, µ) ∈ W o × P, and, moreover, the matrix
(

A(0)− λI B(0)
C(0) 0

)

is nonsingular for every λ which is a root of the polynomial

p(λ) = a0 + a1λ + . . . + aq−1λ
q−1 − λq

having non-negative real part.
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Remark 1. The mapping xss = πa(w, µ) represents the steady state zero output
submanifold and uss = ca(w, µ) is the steady state input which makes invariant the
steady state zero output submanifold. Conditions (4) expresses the fact that this
steady state input can be generated, independently of the values of the parameter
vector, by the dynamical system

ξ̇2 = Φξ2 (5)
uss = Γξ2,

where

ξ2 =
(

ξ1
2 ξ2

2 · · · ξm
2

)T ;

ξi
2 =

(
ca
i (w, µ), Lsc

a
i (w, µ), . . . , Lqi−1

s ca
i (w, µ)

)T

Γ =




Γ1 0 · · · 0

0 Γ2
. . . 0

0 0 · · · Γm


 ;

Γi =
(

1 0 · · · 0
)
1×qi

and

Φ = diag
(

Φ1, Φ2, · · · , Φm

)
;

Φi =




0 1 · · · 0
0 0 · · · 0
0 0 · · · 1
ai
0 ai

1 · · · ai
qi−1


 .

2.2. A generalized immersion

As it has been shown in the previous section, if it is possible to find the immersion
Φ or equivalently, the constants a0, a1, . . . , aq−1, then the robustness property is
achieved. Nevertheless, the classes of systems where it is possible are quite narrow.
In fact, it is possible to show that for the case of linear systems, and in the case when
the mapping uss = ca(w, µ) is polynomial in the state variables w, a solution can
be readily obtained [1], but for many interesting cases, however, as in the case when
the mapping uss = ca(w, µ) includes sinusoidal, exponential or rational terms, this
solution is hard, or even impossible to find, since the dimension of the immersion
would be infinite. A possible way to deal with this situation would be to use an
approximate solution [1], or to seek for an alternative solution. In this sense, we will
show that if we allow the immersion to depend explicitly on w, then in many cases
it is possible to find a finite dimensional immersion. We will call this a generalized
immersion. More precisely, we say that the extended exogenous system

d
dt

[
w

µ

]
=

[
s(w)

0

]
(6)
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having the output ca(w, µ), allows generalized immersion if it is smoothly immersed
into a system of the form

d
dt

[
w

ξ

]
=

[
s(w)

Φ(w)ξ

]
. (7)

Obviously, if we were able to find such an immersion, the robust regulator would
have also a solution, provided we are allowed to measure directly the exosystem
state. Without going into the detailed definition, we will call such a problem in
the sequel as the RORP with the full exosystem measurement, cf. [4] where the
following result has been obtained.

Theorem 2. Consider system (1) with s = 1 and m = 1. The RORP with full
exosystem measurement is solvable if and only if there exists mappings πa(w, µ) and
ca(w, µ), πa(0, 0) = 0, ca(0, 0) = 0, solving the regulator equation (3 ), such that
extended exogenous system (6) with output ca(w, µ) is immersed into (7) and the
following conditions hold

a) the pair [
A 0

NC Φ(0)

]
,

[
B

0

]
(8)

is stabilizable for some choice of the matrix N ;
b) the pair

[
C 0

]
,

[
A BΓ
0 Φ(0)

]
, Γ = [ 1 0 · · · 0 ] (9)

is detectable.

Remark 2. As a matter of fact, the structure of the controller solving RORP with
exosystem measurement is similar to that given in [1], namely,

(
ξ̇1

ξ̇2

)
=

(
K 0
0 Φ(w)

) (
ξ1

ξ2

)
+

(
L

N

)
e,

u = Mξ1 + Γξ2,

where the matrices K,L, M,N of the appropriate dimensions are such that



[
A BΓ

NC Φ(0)

] [
B

0

]
M

L[C 0] K


 (10)

has all eigenvalues with negative real parts. The existence of K, L, M, N is the direct
consequence of assumptions a) and b) of Theorem 2.
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3. MAIN RESULT

A natural question arises, whether the measurement of exosystem state does not
present additional obstacle for practical implementation. As a reasonable motivation
one can consider the case when exosystem produces a reference to be tracked only.
In this case it is acceptable to assume that we can measure a desired reference signal.
As a matter of fact, it seems to be natural to suppose that in case of tracking the
output of the exosystem, say yw = h(0, w, 0) =: r(w), by the output of the system
to be controlled, say y = h(x), not only the error e = y−yw, but also yw is available
for measurement.

Let us note that there still exists uncertainty in the studied problem represented
by unknown parameters µ. One can also consider splitting exosystem into two
parts, one of them responsible for the reference to be tracked and another one for
unknown disturbances to be rejected obtaining thereby further generalization to our
problem. This is left to future research, nevertheless, the main message here is
that the unknown disturbances should be treated in a different way than the known
references to be tracked. When finding the immersion, only unknown part should
be eliminated what increases chances for its existence.

For simplicity, we concentrate in this paper to the case when the system ẇ =
s(w), yw = r(w) is observable and yw = r(w) can be independently measured, so
that the only uncertainty is due to unknown parameters µ. Anyway, even with such
a simplification, this still does not mean we are able to measure the full exosystem
state so that the results of [4] are not applicable. For this reason we introduce the
RRORP with partial exosystem measurement.

Definition 2. (RORP with partial exosystem measurement.) Given a nonlinear
system of the form (1) and a neutrally stable exosystem (2) with additional output

yw = r(w), yw ∈ Rs′ ,

find , if possible, an integer ν, two mappings θ(ξ) and η(ξ, e, yw) (with ξ ∈ Ξ ⊂
Rν , θ : Rν → Rm, η : Rν × Rs × Rs′ → Rν) and a neighborhood P of µ = 0 in Rp

such that, for each µ ∈ P:
(S) the equilibrium (x, ξ) = (0, 0) of

.
x = f(x, 0, θ(ξ), µ)

.

ξ = η(ξ, h(x, 0, µ), r(0))

is asymptotically stable in the first approximation,
(R) there exists a neighborhood V ⊂ U × Ξ ×W of (0, 0, 0) such that, for each

initial condition (x(0), ξ(0), w(0)) ∈ V , the solution of
.
x = f(x,w, θ(ξ), µ)
.

ξ = η(ξ, h(x,w, µ), r(w))
.
w = s(w)

is such that limt→∞e(t) = 0.
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The main contribution of this paper is the following result showing that under
reasonable observability assumption there is no difference between full and partial
exosystem measurement. For simplicity and to pick up the key idea of our approach,
we limit ourselves to the case when the controlled input, error and the additional
exosystem outputs are all scalars.

Theorem 3. Consider system (1) with s = 1, m = 1 and the exosystem (2) with
an additional output yw = r(w) ∈ R, i. e. s′ = 1. Further, let us assume that there
exists local asymptotic observer for the exosystem state w given by

˙̂w = g(ŵ, yw)

with the corresponding error dynamics for ε = (w − ŵ) as

ε̇ = φ(ε, w)

where dφ
dŵ (0, 0) is a Hurwitz matrix. Then RORP with partial exosystem measure-

ment is solvable if and only if RORP with full exosystem measurement is solvable.
Moreover, the corresponding controller has the following form the controller

(
ξ̇1

ξ̇2

)
=

(
K 0
0 Φ(ŵ)

) (
ξ1

ξ2

)
+

(
L
N

)
e (11)

˙̂w = g(ŵ, yw) (12)
u = Mξ1 + Γξ2, Γ = [ 1 0 · · · 0 ]. (13)

where K, L,M, N are as in Remark 1.

P r o o f . The “only if” part is obvious by formulation and Theorem 2.
To prove “if part”, consider the controller (11). Using assumption of the Theorem

on exosystem observer, we may represent it as follows
(

ξ̇1

ξ̇2

)
=

(
K 0
0 Φ(w − ε)

)(
ξ1

ξ2

)
+

(
L
N

)
e (14)

ε̇ = φ(ε, w) (15)
u = Mξ1 + Γξ. (16)

Since the matrix Sε = ∂φ
∂ε (0, 0) is Hurwitz by assumption and conditions a) and b)

of Theorem 2 hold, the following matrix






[
A BΓ

NC Φ(0)

] [
B

0

]
M

L[C 0] K


 0

0 Sε




, (17)

is also Hurwitz. Moreover, (17) is the matrix of linear approximation of system in
the condition (S) of Definition 2, so that this condition is proved. To prove condition
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(R) of Definition 2, notice that the matrix of linear approximation of the closed loop
system considered there is










[
A BΓ

NC Φ(0)

] [
B

0

]
M

L[C 0] K


 0

0 Sε




*

0 ∂s
∂w (0)




, (18)

so that there exists locally attractive center manifold for that closed loop system.
At the same time, writting down the partial differential equation for this center
manifold graph, one can see that it coincides with PDE part of FIB equation for the
extended system. By the theorem assumption on solvability of FIB equation that
means, in particular, that also algebraic part of FIB holds. In other words, the closed
loop system in condition (R) of the theorem being proved posseses locally attractive
center manifold and on this center manifold e ≡ 0. That obviously guarantees that
locally e(t) → 0 as t →∞ and the theorem has been proved. 2

4. SOME ILLUSTRATIVE EXAMPLES

The main point in the previous discussion is how to find the generalized immersion.
The following examples, for which an immersion of the form (5) does not exist, give
a possible procedure for some interesting cases. The exosystem for all the cases is a
simple linear oscillator given by ẇ1 = w2 , ẇ2 = −w1.

Example 1. Consider the term ca(w, µ) = aw1
1+w2

=: z1. Then, differentiating
successively this term, we get

ż1 = z2 =
aw2

1

(1 + w2)
2 +

aw2

1 + w2

=
w1

1 + w2
z1 +

aw2

1 + w2

ż2 =
−1 + w2

2 + w2
1

(1 + w2)
2 z1 +

w1

1 + w2
z2

and the immersion is

ξ̇ =

(
0 1

−1+w2
2+w2

1
(1+w2)

2
w1

1+w2

)
ξ.

Example 2. Let ca(w, µ) = w1e
w2 . Then

z2 = w2e
w2 − w2

1e
w2 = w2e

w2 − w1z1

ż2 = −w2z1 − w1w2e
w2 − w1z2

= − (1 + 2w2) z1 − w1z2,
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and the immersion is

ξ̇ =
(

0 1
− (1 + 2w2) −w1

)
ξ.

Example 3. For the case ca(w, µ) = aw1 cos w2, we have:

z2 = aw2 cos w2 + aw2
1 sin w2

z3 = 3aw1w2 sin w2 − (1 + w2
1)z1

z4 = 3aw2
2 sin w2 + 3aw2 cos w2 − 5w1w2z1

−(4 + w2
1)z2

ż4 = −3w2
2aw1 cos w2 − 3w2aw1 sin w2

−3aw1 cosw2 − 5w2
2z1 + 5w2

1z1

−7w1w2z2 − (4 + w2
1)z3

=
(−4 + 4w2

1 − 8w2
2

)
z1 − 7w1w2z2

− (
5 + w2

1

)
z3

and

ξ̇ =




0 1 0 0
0 0 1 0
0 0 0 1

a1(w) a2(w) a3(w) 0


 ξ

with

a1(w) =
(−4 + 4w2

1 − 8w2
2

)

a2(w) = −7w1w2

a3(w) = − (
5 + w2

1

)
.

Example 4. Consider the well-known model of the inverted pendulum together
with the exosystem being a simple linear oscillator

ẋ1 = x2, ẋ2 = g sin(x1)− cu, ẇ1 = αw2, ẇ2 = −αw1, α ∈ R.

The regulation goal is to make zero the following error y = e = x1 − w1. The
parameters g, c are supposed to be known only approximately, so that the algorithm
should be robust with respect to them. The solution of the regulator equations (3)
is πa

1 = w1, πa
2 = αw2, and

ca(w, µ) =
α2w1 + g sin(w1)

c
= aw1 + b sin(w1),
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where a = α2/c, b = g/c is the reparametrization of the unknown parameters made
to simplify further exposition. To find the generalized immersion, let us take

z1 = ca(w, µ) = aw1 + b sin(w1),
z2 = ż1 = aw2 + w2b cos w1,

z3 = −aw1 − w1b cosw1 − w2
2b sin w1

−aw1 − w1b cosw1 − w2
2z1 + aw1w

2
2

z4 = −aw2 + aw3
2 − 2aw2

1w2 + 2w1w2z1 − w2
2z2

−w2b cos w1 + w1w2b sin w1

= aw3
2 − 3aw2

1w2 + 3w1w2z1 − (1 + w2
2)z2;

at this step, we note that all the sinusoidal terms have disappeared, and it remain
only polynomial terms. Since for polynomial terms, it is possible to find an immer-
sion of the form (5), we may then guarantee that a generalized immersion can be
obtained. In fact, in this case, straightforward computations give

z6 = ż5 = 15w1w2z1 −
(
9 + 8w2

1 + w2
2

)
z2

+7w1w2z3 −
(
10 + w2

2

)
z4,

i. e. the generalized immersion is

Φ(w) =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
φ1 φ2 φ3 φ4 0




φ1 = 15w1w2, φ2 = − (
9 + 8w2

1 + w2
2

)
, φ3 = 7w1w2, φ4 = − (

10 + w2
2

)
.

Figure 1 shows the behavior of this controller when variations on the parameter d
is introduced at time t = 20 sec. Figure 2 shows the simulation results of the robust
controller when an observer-based generalized immersion is introduced. As we may
observe, the performance of the controller is similar to that of the case when the
generalized immersion depend directly on the state w.

For the previous examples, even if for a particular case of exosystem, we conjecture
that in many interesting cases, like those arising in physical systems, it is possible to
obtain a generalized immersion by first performing successive differentiations of the
mapping ca(w, µ) until an expression containing only polynomial terms is derived and
then, depending of the maximum degree of the polynomial terms, a finite additional
differentiations will allow to get the desired generalized immersion.
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Fig. 1. Output tracking error.

5. CONCLUSIONS

The paper presents an alternative solution to the case when the well-known Isidori
and Byrnes solution to the robust output regulation problem is difficult or even
impossible to find, namely, the existence of an immersion of the exosystem dynamics
into a linear observable one, which generate, as in the linear case, all the possible
steady state inputs for the admissible values of the system parameters. Here has
been illustrated that by measuring the exosystem state and using it in the design of
the compensator, it is possible to find a robust solution for a wider classes of systems,
in particular, those for which the steady state input contains non-polynomial terms
(i. e. sinuses, cosinuses and exponential terms). Moreover, it has been shown that
the introduction of an observer for the exosystem, helps to overcome the necessity
of measuring all the exosystem states, thereby further motivating the problem of
finding the generalized immersion for a particular system.

A procedure for obtaining such generalized immersion has been outlined and
shown in several examples. The simulation results on a model of a pendulum demon-
strates a potential of the presented approach.
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Fig. 2. Output error with observer modification.

Future research will explore the existence of generalized immersion for some more
particular classes of systems as well as the possibility of giving a precise character-
ization of the dimension of the immersion. Another interesting and open problem,
is to study an immersion with respect to part of exosystem components only and to
find the largest collection of exosystem componets still allowing finite-dimensional
immersion.

(Received March 13, 2002.)
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[4] S. Čelikovský, C. Villanueva-Novelo, and B. Castillo-Toledo: Robust output regula-
tion for nonlinear systems via generalized immersion. Proc. Conference on Systems,
Cybernetics and Informatics, IX, Orlando, Flo. USA, 2000, pp. 96–101.

[5] J. S.A. Hepburn and W. M. Wonham: Error feedback and internal model on differen-
tiable manifolds. IEEE Trans. Automat. Control 29 (1984), 397–403.

[6] J. Huang and W. J. Rugh: On a nonlinear multivariable servomechanism problem.
Automatica 26 (1990), 963–972.

[7] J. Huang: Asymptotic tracking and disturbance rejection in uncertain nonlinear sys-
tem. IEEE Trans. Automat. Control 40 (1995), 1118–1122.

[8] A. Isidori and C. I. Byrnes: Output regulation of nonlinear systems. IEEE Trans.
Automat. Control 35 (1990), 131–140.

[9] A. Isidori: Nonlinear Control Systems. Third edition. Springer–Verlag, London 1995.

Bernardino Castillo-Toledo, CINVESTAV-IPN, Unidad Guadalajara A. P. 31-438, Pza.

La Luna, Col. Verde Valle, Guadalajara, Jalisco, C. P. 44550. México.
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Sergej Čelikovský, Institute of Information Theory and Automation, Academy of Sci-

ences of the Czech Republic, P.O. Box 18, Pod vodárenskou věž́ı 4, 182 08 Praha 8.
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