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Ivan Kramosil, Friedrich Liese, Jean-Jacques
Loiseau, Frantǐsek Matúš, Radko Mesiar,
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Pod Vodárenskou věž́ı 4, 182 08 Praha 8

Kybernetika is a bi-monthly international journal dedicated for rapid publication of
high-quality, peer-reviewed research articles in fields covered by its title.

Kybernetika traditionally publishes research results in the fields of Control Sciences,
Information Sciences, System Sciences, Statistical Decision Making, Applied Probability
Theory, Random Processes, Fuzziness and Uncertainty Theories, Operations Research and
Theoretical Computer Science, as well as in the topics closely related to the above fields.

The Journal has been monitored in the Science Citation Index since 1977 and it is
abstracted/indexed in databases of Mathematical Reviews, Current Mathematical Publi-
cations, Current Contents ISI Engineering and Computing Technology.

Ky b e r n e t i k a . Volume 40 (2004) ISSN 0023-5954, MK ČR E4902.

Published bi-monthly by the Institute of Information Theory and Automation of the
Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
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STABILITY ESTIMATES OF GENERALIZED
GEOMETRIC SUMS AND THEIR APPLICATIONS

Evgueni Gordienko

The upper bounds of the uniform distance ρ
“Pν

k=1 Xk,
Pν

k=1 X̃k

”
between two sums

of a random number ν of independent random variables are given. The application of these
bounds is illustrated by stability (continuity) estimating in models in queueing and risk
theory.

Keywords: geometric sum, upper bound for the uniform distance, stability, risk process,
ruin probability

AMS Subject Classification: 60G50, 91B30

1. INTRODUCTION

Geometric sums are proved to be a useful and efficient tool of modelling stochastic
phenomena in theory of queues, risk theory, storage, dams emulation, reliability,
etc. (see, for instance [1 – 4, 6, 7 – 11]. The geometric sum is defined as the random
variable

∑ν
k=1Xk, where P (ν = k) = q(1−q)k−1, k = 1, 2, . . . and ν is independent

of a sequence of independent, identically distributed random variables X1, X2, . . . .
The problem of the stability (continuity) arises because of an inevitable uncer-

tainty about input data, or about so-called governing “parameters” of a model. As
to geometric sums, the governing “parameter” is the distribution function F of a
“real” random variable X1, which, at least to a certain extent, is unknown and, for
this, is not at one’s disposal to carry out a desired analysis of the output data, that
is of the distribution of the sum

∑ν
k=1Xk. Consequently, an investigator should

search for an available approximating distribution function G (of a random variable
X̃1) obtained from theoretical considerations or (and) statistical estimation. With G
in hand one replaces

∑ν
k=1Xk by the approximating sum

∑ν
k=1 X̃k in the study of

the former. The reliability of inferences obtained in the course of such replacement
depends decisively on the closeness of the distribution of

∑ν
k=1Xk and of that of∑ν

k=1 X̃k.
Let µ and µ̃ be certain metrics in the space of random variables (or rather, in the

space of their distributions). It is natural to expect that µ
(∑ν

k=1Xk,
∑ν

k=1 X̃k

)
is

a vanishing at zero function of µ̃(X1, X̃1) and it is even better to be able to control
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the accuracy of approximation, i. e. to have stability inequalities (bounds) of the
form:

µ

(
ν∑

k=1

Xk,

ν∑

k=1

X̃k

)
≤ ψ

(
µ̃(X1, X̃1)

)
, (1.1)

where limx→0+ ψ(x) = 0.

There are several works offering the versions of (1.1) for geometric convolu-
tions. In [8 – 10] the bounds as in (1.1) with the uniform metric ρ = µ = µ̃ are
given under the condition: EX1 = EX̃1; EX2

1 , EX̃
2
1 < ∞. (Here and throughout

ρ(X,Y ) := supx∈R |FX(x) − FY (x)|.) These bounds provide ψ(x) = c
√
x in (1.1).

Some inequalities related to (1.1) can be extracted from the stability results in [1,
2, 11, 13].

Under the hypotheses EX1 = EX̃1, Var(X1) = Var(X̃1); E|X1|3, E|X̃1|3 < ∞
and a certain “smoothness” assumption on the known density of X̃1 we obtained
in [5, 6] the variants of (1.1) with a linear function ψ. There µ = V was the total
variation metric, while µ̃ = max{V, 1

6k3}, with k3 being a difference pseudo-moment
of order 3 (see (1.3)).

In the present paper we deduce (and apply to the stability study of some models)
estimate (1.1) with the uniform distance µ = ρ. In applications this metric is often
more useful than the total variation distance.

Instead of a usual geometric sum
∑ν

k=1Xk, we treat its generalization not as-
suming that the random variables X1, X2, . . . are identically distributed and that ν
has the geometric distribution.

Together with the most important case of equal means (of Xk and of X̃k), we
pay attention to the more tight stability bounds which hold under the condition:

EXj
k = EXj

k, k ≥ 1, j = 1, 2, . . . ,m− 1 (m ≥ 2).

Precisely, we prove the following inequality:

ρ

(
ν∑

k=1

Xk,

ν∑

k=1

X̃k

)

≤ cmE
(
ν−

m−2
2

)
sup
k≥1

max
{
ρ(Xk, X̃k),

1
m!

km(Xk, X̃k)
}
,

(1.2)

where

km(X,Y ) := m

∫ ∞

−∞
|x|m−1|FX(x)− FY (x)|dx (1.3)

and cm is a constant calculated in the explicit form, which depends on certain
properties of characteristic functions of (Xk, k ≥ 1) and of (X̃k, k ≥ 1).

To illustrate applications of inequality (1.2) we offer a solution of the stability
problem in the following models. Firstly, we give new stability bounds for the
ruin probability in the classical risk process. Secondly, we estimate the stability
of the S. Andersen risk process (see [8]). Finally, we evaluate the accuracy of the
approximation of distributions of sums of random variables by Erlang’s distributions.
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2. THE RESULTS

In what follows let ν be an arbitrary random variable assuming integer positive
values and independent of two given sequences of independent random variables
Q = (Xk, k ≥ 1) and Q̃ = (X̃k, k ≥ 1) having finite second moments. Throughout
the paper we shall denote:

(i) S =
ν∑

k=1

Xk, S̃ =
ν∑

k=1

X̃k;

(ii) Sn = X1 + · · ·+Xn, S̃n = X̃1 + · · ·+ X̃n, n = 1, 2, . . . ;

(iii) σ2
k = Var(Xk), σ̃2

k = Var(X̃k), k ≥ 1, σ∗ = inf
k≥1

σk; σ̃∗ = inf
k≥1

σ̃k;

(iv) FX , fX and ϕX are, respectively, the distribution function, the density (if it
exists) and the characteristic function of a random variable X;

(v) ρ(X,Y ) = sup
x∈R

|FX(x)− FY (x)|, (the uniform metric);

(vi) km(X,Y ) = m

∫ ∞

−∞
|x|m−1|FX(x)− FY (x)|dx, (the difference pseudomoment

of order m > 0);

(vii) µm(X,Y ) = max
{
ρ(X,Y ),

1
m!

km(X,Y )
}

, (m an integer).

Definition 1. Let m ≥ 2, s ≥ 1 be fixed integers and r, 0 ≤ r <∞ be a given real
number. We say that a sequence of independent random variables Q = (Xk, k ≥ 1)
belongs to the class Km(s; r) if the following holds:

(a) σ∗ > 0 and sup
k≥1

E|Xk|m <∞;

(b) sup
k≥1

|ϕXk/σ∗(t)| ≤ r|t|−(m+1)/s for |t| ≥ 1.

Since the hypotheses of the below theorems require sequences under consideration
to be members of Km(s; r), it is useful to get idea of how wide the classes Km are.
The following simple assertion shows that the majority of sequences of continuous
random variables (identically distributed, with finite variance) accustomed in prob-
ability theory and its applications are in the class K2(s; r) (for some s, r), and even
in Km(s; r), m > 2, provided E|X1|m <∞.

Proposition 1. For a given integer m ≥ 2 let Q = (Xk, k ≥ 1) be a sequence of
independent, identically distributed random variables such that:

(i) Var(X1) > 0, E|X1|m <∞;

(ii) There is an integer ` such that a random variable Z = X1 + · · · + X` has a
differentiable density with a derivative in L1(R).
Then there exist s ≥ 1 and r < 1 for which Q ∈ Km(s; r).
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Remark 1. Inequalities for characteristic functions obtained in [15] supply us with
another way to test whether a given density is in a class Km(s, r). Let a random
variable Z = X1 + · · · + X` have a density fZ of bounded variation V (fZ) :=
lima→∞ V a

−a(fZ), where V a
−a(fZ) is the total variation of fZ on the segment [−a, a].

Then, according to [15], the following upper bound for a characteristic function ϕZ

holds:
|ϕZ(t)| ≤ V (fZ)/|t|, t ∈ R.

Moreover, if the density fZ has n−1 derivatives, and f (n−1)
Z is a function of bounded

variation, then
|ϕZ(t)| ≤ V (f (n−1)

Z )/|t|n, t ∈ R.

Definition 2. Let µ be a simple probability metric (i. e. µ(X,Y ) ≡ µ(FX , FY ),
see [11, 13, 16]) and H = (Zk, k ≥ 1) H̃ = (Z̃k, k ≥ 1) be arbitrary sequences of
random variables. We write (admitting infinite values):

µ(H, H̃) := sup
k≥1

µ(Zk, Z̃k).

Actually, the following Theorem 1 is a particular case of Theorem 2 below. We
single out the former because it seems to be more important for applications and
because of a simple formula for calculating the constant c in inequality (2.1).

Theorem 1. Suppose that EXk = EX̃k, k = 1, 2, . . . and Q, Q̃ ∈ K2(s; r). Then

ρ(S, S̃) ≤ cµ2(Q, Q̃) <∞, (2.1)

where

c = max
{

2s− 1,
1
π

[
1 + s−1

σ2∗
+

1
σ̃2∗

]

× inf
λ:rλ−3/s<1

λ2

[
s(rλ−3/s)s +

4
1− (rλ−3/s)2

]}
.

(2.2)

Corollary 1. Let Sq := (Sn, n ≥ 1), S̃q := (S̃n, n ≥ 1). Under the conditions of
Theorem 1

ρ(Sq, S̃q) ≤ c µ2(Q, Q̃).

The usefulness of bound (2.1) is conditioned by a magnitude of c in (2.1), (2.2).
The following table gives an inkling of possible values of s, r and, so of c in (2.2) for
sequences of independent, identically distributed random variables with a common
density fX .

For the “best” density in this table, i. e. for the triangular one we find (taking
σ∗ = 1.5, σ̃∗ = 1.4 and λ = 1 in (2.2)) that c = max{3, 3.03021} = 3.03021. See also
Section 3 for further numerical examples.
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The density fX Q = (Xk, k ≥ 1) ∈ K2(s; r) Q = (Xk, k ≥ 1) ∈ K3(s; r)

Normal K2(1; 1.81959),K2(2; 0.90980) K3(2; 1.21306)

Uniform K2(3; 0.57735) K3(4; 0.57735)

Triangular K2(2; 0.66667) K3(3; 0.66667)

Exponential K2(3; 1) K3(4; 1)

Gamma
λα

Γ(α)
xα−1e−λx K2(2; 1.2)

with α = 4 K2(3; 0.8) K3(3; 1.06667)
(λ is arbitrary)

Gamma with
α = 6 K2(3; 0.75470)
λ is arbitrary)

Gamma with
α ≥ 2 and K2(2; 1.36470)
arbitrary λ K2(3; 0.9080)

Theorem 2. Let m ≥ 2 be a fixed integer. Suppose that EXj
k = EXj

k, k ≥ 1, j =
1, 2, . . . ,m− 1 and that Q, Q̃ ∈ Km(s; r). Then

ρ(S, S̃) ≤ cmµm(Q, Q̃)E
(
ν−

m−2
2

)
, (2.3)

where

cm = max
{

(2s− 1)m/2,
s1−m/2

π

[
γ(m, s)
σm∗

+
γ̃(m, s)
σ̃m∗

]

× inf
λ:rλ−(m+1)/s<1

λm [sψ1(λ) + ψ2(λ)]
}

;
(2.4)

γ(m, s) := sup
n≥2s

n− [n/2]
[n/2]m/2

n
m−2

2 , γ̃(m, s) = sup
n≥2s

[n/2]
(n− [n/2])m/2

n
m−2

2 <∞;

ψ1(λ) ≡ ψ1(λ; r,m, s) := sup
k≥s

λ−
(m+1)k

s
rkkm/2

k(m+ 1)−ms
<∞; (2.5)

ψ2(λ) ≡ ψ2(λ; r,m)

:=





23m/2−1

(
1− r2λ−

2(m+1)
s

)m/2

(
m− 2

2

)
! for m even,

2m/2

(
1− r2λ−

2(m+1)
s

)m/2

(m− 1)!(
(m−1)

2

)
!

for m odd.

(2.6)
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Corollary 2. Let Q = (Xk, k ≥ 1) and Q̃ = (X̃k, k ≥ 1) consist of identically
distributed random variables. Then, under the conditions of Theorem 2,

ρ(Sn, S̃n) ≤ cmµm(X1, X̃1)n−
m−2

2 , n = 1, 2, . . . . (2.7)

Remark 2. For m = 3 and X̃1, X̃2, . . . being normally distributed, inequalities
(2.7) give an estimate of the rate of convergence in the central limit theorem. (See,
for instance, [12 – 14, 16] for other, more specialized results on this developed topic.)

Remark 3. For m = 3 the calculation of ψ1(λ) in (2.5) (for a given λ) can be
carried out as follows:

(i) Calculate δ = rλ−4/s.

(ii) Compute the value of the function
δxx3/2

4x− 3s
at the points [x0] and [x0 + 1],

where [x] stands for the integer part of x and

x0 =
(

3
2
s log δ − 1

)
+

((
3
2
s log δ − 1

)2

+
9
2
s

)1/2

.

(iii) Take the greater value among the computed ones.

Also note that γ(3, 1) = 2
√

3, γ̃(3; 1) =
√

2.

Remark 4. Let us consider a family of sequences of independent identically dis-
tributed random variables Q(θ) = (X(θ)

k , k ≥ 1) depending on parameter θ ∈ R`,
(` ≥ 1). Let a common density f (θ)

X of Xk, k ≥ 1 exist and G(θ) be some distribu-
tion function on R` with a support B ⊆ R`. Assume that there are integers s ≥ 1,
m ≥ 2 such that

(i) Q(θ) ∈ Km(s; rθ), θ ∈ B;

(ii) sup
θ∈B

E|X(θ)
1 |m <∞;

(iii) sup
θ∈B

rθ ≤ r <∞.

By simple calculations one can verify that a sequenceQ of independent, identically

distributed random variable with a common “mixed” density fX(x) =
∫

B

f
(θ)
X (x)dG(θ)

belongs to the class Km(s; r).
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3. APPLICATIONS

Example 1. (The stability estimate of ruin probability.)
Let us consider the so-called classical risk process:

Z(t) = x+ κt−
N(t)∑

k=1

Zk (3.1)

and its approximation

Z̃(t) = x+ κt−
N(t)∑

k=1

Z̃k, (3.2)

(by convention,
∑0

k=1 = 0).
Here x > 0 is an initial capital, κ > 0 is a gross premium rate, N(t) is the Poisson

process modelling the number of claims occurred within [0, t] and the sequences of
nonnegative independent, identically distributed random variables Q = (Zk, k ≥ 1),
Q̃ = (Z̃k, k ≥ 1) (independent of N(t)) represent the costs of successive claims.

We are concerned with an upper bound for the following uniform distance

ρ(Ψ, Ψ̃) := sup
x≥0

|Ψ(x)− Ψ̃(x)|

between the ruin probabilities

Ψ(x) := P
(

inf
t≥0

Z(t) < 0
)
, Ψ̃(x) := P

(
inf
t≥0

Z̃(t) < 0
)
.

Let γ = EN(1); a := EZ1, ã := EZ̃1 < ∞ and FZ , FZ̃ denote, correspondingly,
a distribution function of Z1 and of Z̃1. It is well known (see, for instance, [8]) that
if the relative safety loading ρ := κ

γa − 1 is positive, then

Ψ(x) = (1− q)P

(
ν∑

k=1

Xk > x

)
, (3.3)

where the random variable ν has a geometric distribution with parameter q = ρ
1+ρ ,

it does not depend on sequence (Xk, k ≥ 1) and X1, X2, . . . are independent,
identically distributed random variable with the common distribution function

FX1(x) =
1
a

∫ x

0

(
1− FZ(u)

)
du, x ≥ 0. (3.4)

Let us assume that a = ã, EZ2
1 = EZ̃2

1 and E|Z1|3, E|Z̃1|3 <∞. Then (similarly
to (3.3) and (3.4))

Ψ̃(x) = (1− q)P

(
ν∑

k=1

X̃k > x

)
,

FX̃1
(x) =

1
a

∫ x

0

(1− FZ̃(u)) du, x ≥ 0, (3.5)
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and, moreover, EX1 = EX̃1; E|X1|2, E|X̃1|2 <∞.
Consequently, to estimate ρ(Ψ, Ψ̃) we can apply Theorem 1, assuming that the

sequences Q = (Xk, k ≥ 1) and Q̃ = (X̃k, k ≥ 1) belong to the class K2(s, r) (for
some s, r). Using (3.4) and (3.5) it is easy to show that:

σ2 = Var(X1) = (3a)−1EZ3
1 − (4a2)−1(EZ2

1 )2,
σ̃2 = Var(X̃1) = (3a)−1EZ̃3

1 − (4a2)−1(EZ̃2
1 )2,

On the other hand,

ρ(X1, X̃1) =
1
a

sup
x>0

∣∣∣∣
∫ x

0

[FZ(u)− FZ̃(u)] du
∣∣∣∣ =:

1
a
µ̄(Z1, Z̃1)

and by virtue of inequality (18.3.19) in [13]

ζ2(X1, X̃1) ≤ 1
2

∫ ∞

0

x2
∣∣dFX1(x)− dFX̃1

(x)
∣∣

=
1
2a

∫ ∞

0

x2|FZ(x)− FZ̃(x)|dx =
1
6a

k3(Z1, Z̃1),

where ζ2 is Zolotarev’s metric of order 2 defined in (4.1). As it is seen from the
proof of Theorem 2 (and, so of Theorem 1; see (4.10)) the distance µ2 in (2.1) can
be replaced by the distance max {ρ, ζ2} .

Thus, we get

ρ(Ψ, Ψ̃) ≤ c

a
(1− q)max

{
µ̄(Z1, Z̃1),

1
6

k3(Z1, Z̃1)
}
,

where the constant c is given by (2.2).
It is natural to ask: “When Q, Q̃ ∈ K2(s, r)?”. The nice property of distribution

functions given by (3.4), (3.5) is that Q, Q̃ ∈ K2

(
3, 2

a

)
for every pair of random

variables Z1, Z̃1. Indeed, integrating by parts in the definition of characteristic
function one can see that |ϕX1(t)| ≤ 2

/
a|t|, t > 0.

Example 2. (The stability estimate of a risk process.)

In the current example we consider risk processes Z(t) and Z̃(t) defined by
(3.1), (3.2), but we relax assumptions made in the preceding example. Namely,
we do not suppose that random variables Z1, Z2, . . . (correspondingly, Z̃1, Z̃2, . . . )
are identically distributed and we let N(t) to be any integer-valued process (inde-
pendent of (Zk), (Z̃k)). The goal is to manifest an upper bound for the quantity
sup
t≥0

ρ
(
Z(t), Z̃(t)

)
in terms of a deviation of Q = (Zk, k ≥ 1) from Q̃ = (Z̃k, k ≥ 1).

Supposing Q and Q̃ to be in the class K2(s; r) (for some s, r) and EZk = EZ̃k,
k ≥ 1 we can apply inequality (2.1) in Theorem 1 to give an upper bound of
ρ(Z(t), Z̃(t)). For instance, assume that a “real” density fk ≡ fZk

is represented
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as a mixture of Gamma densities with α ∈ [2,M ], β ∈ [β0, B], where β0,M,B are
some positive finite numbers. That is

fk(x) =
∫ M

2

∫ B

β0

βαxα−1

Γ(α)
e−βxdAk(α)dBk(β), k ≥ 1,

where Ak, Bk are given distribution functions. Let one be uncertain about Ak, Bk

and approximate them by distribution functions Ãk, B̃k, i. e. the density of the
approximating random variable Z̃k is

f̃k(x) =
∫ M

2

∫ B

β0

βαxα−1

Γ(α)
e−βxdÃk(α)dB̃k(β).

Assuming
∫ M

2

∫ B

β0

α

β
dAk(α)dBk(β) =

∫ M

2

∫ B

β0

α

β
dÃk(α)dB̃k(β)

for k = 1, 2, . . . , we find the hypotheses of Theorem 1 to be fulfilled with Q, Q̃ ∈
K2(3; 0.90980) (see the table and Remark 4 in Section 2). Therefore, taking λ = 1.3
in (2.2) we obtain from (2.1)

ρ(Z(t), Z̃(t)) ≤ max
{

5,
15
π

[
1.34
σ2∗

+
1
σ̃2∗

]}
µ2(Q, Q̃). (3.6)

Under the above mentioned restrictions on distributions of Z1 and on those of Z̃1

bound (3.6) considerably improves the stability estimates of the risk process given
in [13], Chapt. 16. In the particular case of the same distributions of numbers of
claims in the original risk process and in its approximation these bounds appear in
inequality (16.2.15) in [13]. Namely, requiring the existence of a bounded density ρt

of the random variable

[EN(t)]−1

N(t)∑

k=1

Z̃k,

(16.2.15) in [13] provides the following estimate:

ρ(Z(t), Z̃(t)) ≤ (12
√

5)1/3[1 + sup
x
ρt(x)][EN(t)]−1/3[k2(Z1, Z̃1)]1/3, (3.7)

which holds if EZ1 = Z̃1 and EZ2
1 = EZ̃2

1 .
If N(t) is the Poisson process (with parameter γ > 0), then for all sufficiently

large t
sup

x
ρ̄t(x) ≥ c′ > 0,

where ρ̄t is the density of the random variable
1√
γt

N(t)∑

k=1

Z̃k. This follows from the

central limit theorem for densities (see, e. g. the supplement to Chapt. VII in [12]).
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Thus supx ρt(x) is greater than
√
γtc′ for the mentioned t, and therefore, the time-

depending term in (3.7) is of order c′′t1/6 as t → ∞. On the other hand, making
minor modifications in the proof of (16.2.15) and taking advantage of inequality
(14.1.4), [13] one can get the following inequality valid when two first moments of
the random variables Z1 and Z̃1 are equal:

ρ(Z(t), Z̃(t)) ≤
[
1 + sup

x∈R
ρ̄t(x)

] [
2k2(Z1, Z̃1)

]1/3

. (3.8)

The main difference between (3.6) and (3.8) are the values of exponents (a linear
function against (·)1/3) involving in the factors measuring the accuracy of approx-
imation. (These factors are expected to be small in the setting of the stability
problem.) To make these comments more clear and to give a numerical illustration
we consider the following example.

Let Zk, k = 1, 2, . . . be identically distributed and Z̃k k = 1, 2, . . . be so. Let
Bk assigns masses 1 − p and p = 0.1 to the points β = 2 and β = 6.2/3. Also Ak

allocates a mass (1 − p) to α = 6 and a mass p − to α = 6.2. On the other hand,
we choose Ãk, B̃k to be concentrated at the points α = 6, β = 2, respectively. We
have Q, Q̃ ∈ K2(3; 0.73470) (see the table), σ2

∗ > 1.49929 and σ̃2
∗ = 1.5. Thus, we

find that c = max{5, 4.89405} = 5 and (3.6) turns into the following inequality:

ρ
(
Z(t), Z̃(t)

) ≤ 5max
{
ρ(Z1, Z̃1),

1
2

k2(Z1, Z̃1)
}
. (3.9)

Finally, we calculate by computer:

ρ(Z1, Z̃1) < 0.00051537, k2(Z1, Z̃1) < 0.0053486

to write out the following estimate (valid for every t):

ρ
(
Z(t), Z̃(t)

) ≤ 0.026743.

In contrast to this bound provided by (3.9) in the current example inequality
(3.8) offers the estimate

ρ
(
Z(t), Z̃(t)

) ≤
[
1 + sup

x
ρ̄t(x)

]
0.220339.

Remark 5. Concerning inequality (2.3) in Theorem 2 we note that if the number
of summands ν = max{1, N(t)}, where N(t) is the Poisson process with parameter
γt then, for some constant c̃

E
(
ν−

m−2
2

)
≤ c̃(γt)−

m−2
2 , t > 0.

Meanwhile in this case the right-hand side of inequality (16.2.15) in [13] is of
order t−

m−1
m+1 + 1

2 , as t→∞.
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Example 3. (Estimating the stability of the approximation by Erlang’s
distributions.)

The so-called Erlang’s distributions (Gamma distributions with integer parameter
α) proved to be useful to model a random service time (as well as, an input flow)
in queueing systems (see, e. g. [10, 11]). For instance, these distributions appear
in modelling of multiphase service. If n is a number of service phases and Xk is
the duration of the kth phase, then a total service time is Sn = X1 + · · · + Xn.
The problem of stability estimating arises every time when one tries to justify a use
of a customary approach to modelling replacing a “real” Xk by an exponentially
distributed random variable X̃k (say, with parameter βk > 0). Hence, S̃n = X̃1 +
· · · + X̃n is adopted to imitate Sn. When βk = β, k = 1, 2, . . . , n, S̃n has the
Gamma density with parameters nβ, β. In practice, nonnegative Xk, k = 1, 2, . . . , n
are different from exponential random variables, but often they are, in some sense,
close to them.

Denote: Q = (Xk, k ≥ 1), Q̃ = (X̃k, k ≥ 1), where X1, X2, . . . are independent
(as well as, X̃1, X̃2, . . . are) and X̃k has the exponential distribution with parameter
βk > 0, (k ≥ 1). We assume that EXk = EX̃k = 1

βk
, k ≥ 1. There are good statis-

tical tests to determine whether Xk is close to X̃k (in distribution). For instance,
let âk and σ̂2

k be some statistical estimates of mean and variance of Xk and suppose
that Xk belongs to the class of aging distributions called NBUE (new better that
used in expectation, see [11] for the definition). If σ̂2

k/ã
2
k ≈ 1, one can conclude that

the distribution of Xk is in close proximity to the exponential one. Moreover, the
following stability estimates are known [11, 13]:

ρ(Xk, X̃k) ≤
(

1− σ2
k

a2
k

)1/2

, ζ2(Xk, X̃k) ≤ 1
2
(a2

k − σ2
k),

where σ2
k := Var(Xk) ≤ a2

k := (EXk)2 and ζ2 is Zolotarev’s metric of order 2.
We additionally suppose that Q = (Xk, k ≥ 1) ∈ K2(3; 1), relaxing, if needed, the
condition (a) in Definition 1, assuming, instead: 0 < Var(Xk) <∞, k = 1, 2, . . . , n.
Note that all sequences of independent, identically distributed random variables
with distributions given in the table of Section 2 are in K2 (3;1). As it follows from
the proof of Theorem 1 the term 1

2 k2 in the definition of the metric µ2 (and in
Theorem 1, respectively) can be replaced by Zolotarev’s metric ζ2. Therefore, from
(2.1), (2.2) we obtain, for each n ≥ 1:

ρ(Sn, S̃n) ≤ max
{

5, 2.33334
πσ2 infλ>1

[
3
λ + 4λ4

λ2−1

]}

≤ max

{
max

1≤k≤n

(
1− σ2

k

a2
k

)1/2

, max
1≤k≤n

1
2
(a2

k − σ2
k)

}
,

(3.10)

where σ2 := min
{

min
1≤k≤n

σ2
k, min

1≤k≤n

1
β2

k

}
. Bound (3.10) is “acceptable” in the case

of relatively large σ and a small enough absolute deviation ε := supk(a2
k − σ2

k). For
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instance, let inf
k
σk ≥ 2 and inf

k
ak = inf

k

1
βk

≥ 2. (In some sense the former yields

the latter since in the approximation considered ak is somewhat like σk.) Then,
assuming ε ≤ 1 and taking λ = 1.5 in (2.2) we get:

ρ(Sn, S̃n) ≤ 2.5
√
ε.

4. THE PROOFS

Proposition 1 of Section 2 easily follows from the well-known fact (see, [3], Chapt. 15)
that f ′Z ∈ L1(R) yields |ϕZ(t)| = o(|t|−1) as t→∞.

In what follows, we shall use Zolotarev’s metric

ζm(X,Y ) = sup
ϕ∈Dm

|Eϕ(X)− Eϕ(Y )|, (4.1)

where Dm is the class of all functions ϕ : R → R having (almost everywhere) the
mth derivative bounded by 1. It is well known that (see [11, 13])

ζm(X,Y ) ≤ 1
m!

km(X,Y ) <∞,

provided that EXj = EY j , j = 1, 2, . . . ,m− 1, E|X|m, E|Y |m <∞.

Proof of Theorem 2. First of all, observe that

ρ(X + Z, Y + Z) ≤ sup
x
|f (m−1)

Z (x)|ζm(X,Y ), (4.2)

if the random variable Z has a density fZ such that a bounded derivative f (m−1)
Z

exists almost everywhere on R. Indeed,

ρ(X + Z, Y + Z) = sup
x∈R

∣∣∣∣
∫ ∞

−∞
FZ(x− t)d [FX(t)− FY (t)]

∣∣∣∣

and the functions

ϕx(t) :=
1

sup
x
|f (m−1)

Z (x)|
FZ(x− t), x ∈ R

have almost everywhere the mth derivative bounded by 1.
Now we take any positive λ satisfying the condition δ := rλ−

m+1
s < 1 and fix

arbitrary integers r, j such that j ≥ 0, n ≥ s. Denoting

Y =
λ

σ∗
√
n

(Xj+1 +Xj+2 + · · ·+Xj+n),

Ỹ =
λ

σ̃∗
√
n

(X̃j+1 + X̃j+2 + · · ·+ X̃j+n),
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we show that the derivatives f (m−1)
Y (x), f (m−1)

Ỹ
(x) of the corresponding densities

exist everywhere on R and, moreover,

sup
x∈R

|f (m−1)
Y (x)| ≤ 1

π
[sψ1(λ) + ψ2(λ)],

sup
x∈R

|f (m−1)

Ỹ
(x)| ≤ 1

π
[sψ1(λ) + ψ2(λ)].

Since the proofs are same for fY and fỸ , we focus on fY . Let ϕ̄k, ϕk and ϕY

denote the characteristic functions of Xk/σ∗, λXk/σ∗ and Y , respectively.

By inequality (b) in Definition 1
∫ ∞

−∞
|t|m−1|ϕY (t)|dt <∞ and, hence

f
(m−1)
Y (x) =

1
2π

∫ ∞

−∞
(−it)m−1e−itxϕY (t)dt exists,

and

sup
x
|f (m−1)

Y (x)| ≤ 1
2π

∫ ∞

−∞
|t|m−1

j+n∏

k=j+1

∣∣∣∣ϕk

(
t√
n

)∣∣∣∣ dt

=
1
2π


nm/2

∫

|t|≥1

|t|m−1

j+n∏

k=j+1

|ϕk(t)|dt

+ nm/2

∫ 1

−1

|t|m−1

j+n∏

k=j+1

|ϕk(t)|dt

 =:

1
2π

[I1 + I2].

(4.4)

We estimate I1 and I2 separately. By virtue of (b) in Definition 1

|ϕk(t)| = |ϕ̄k(λt)| ≤ r

|λt|m+1
s

= δ|t|−m+1
s . (4.5)

Consequently,

I1 ≤ 2nm/2δn

∫ ∞

1

tm−1− (m+1)n
s dt

= 2s
δnnm/2

n(m+ 1)−ms
≤ 2sψ1(λ; r,m, s),

(4.6)

(see the definition of ψ1 in (2.5)).

In view of (4.5) |ϕk(t)| ≤ δ < 1 for |t| ≥ 1. Thus, by Theorem 1, Chapt. 1 in
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[12], |ϕk(t)| ≤ 1− 1− δ2

8
t2 for |t| < 1. Therefore,

I2 ≤ 2nm/2
∫ 1

0
tm−1

[
1− (1−δ2)

8 t2
]n

dt

= 2
∫√n

0
xm−1

[
1− (1−δ2)

8
x2

n

]n

dx

≤ 2 limn→∞
∫√n

0
xm−1

[
1− (1−δ2)

8
x2

n

]n

dx

= 2
∫∞
0
xm−1 exp

(
− (1−δ2)

8 x2
)

dx,

(4.7)

by the Monotone Convergence Theorem. The last integral in (4.7) is calculated as
the corresponding absolute moment of the Gaussian distribution. Consequently,

I2 ≤ 2ψ2(λ; r,m), (4.8)

where the function ψ2 is defined in (2.6). Combining inequalities (4.4), (4.6) and
(4.8) we arrive at the desired bound (4.3).

For an arbitrary, but fixed n ≥ 2s let k = [n/2], where [x] is the integer part of
x. Denoting

Zk = X1 + · · ·+Xk; Z ′k = Xk+1 + · · ·+Xn;
Z̃k = X̃1 + · · ·+ X̃k; Z̃ ′k = X̃k+1 + · · ·+ X̃n,

we obtain by the triangle inequality:

ρ(Sn, S̃n) ≤ ρ(Zk + Z ′k, Zk + Z̃ ′k) + ρ(Zk + Z̃ ′k, Z̃k + Z̃ ′k). (4.9)

In view of (4.2), (4.3) we can write (using the homogeneity of ρ: ρ(aX, aY ) =
ρ(X,Y ), a 6= 0 and denoting b = 1

π [sψ1(λ) + ψ2(λ)]):

ρ(Zk + Z ′k, Zk + Z̃ ′k)

= ρ

(
λ

Zk

σ∗
√
k

+ λ
Z ′k
σ∗
√
k
, λ

Zk

σ∗
√
k

+ λ
Z̃ ′k
σ∗
√
k

)
≤ bζm

(
λ

Z ′k
σ∗
√
k
, λ

Z̃ ′k
σ∗
√
k

)
=: In.

The well-known (see [11, 16]) property of Zolotarev’s metric

ζm

(
a

n∑

i=1

ξi, a

n∑

i=1

ηi

)
≤ am

n∑

i=1

ζm(ξi, ηi), a ≥ 0

allows us to bound In as follows:

In ≤ b
(

λ
σ∗

)m
1

km/2

∑n
i=k+1 ζm(Xi, X̃i)

≤ b

(
λ

σ∗

)m
n− [n/2]
[n/2]m/2

1
m!

max
k+1≤i≤n

km(Xi, X̃i)

≤ b

m!
λm

σm∗
γ(m, s)km(Q, Q̃)n−

m−2
2 .

(4.10)
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In (4.10) km(Q, Q̃) <∞ by virtue of (a) in Definition 1 and of the definition of km.
The second summand on the right-hand side of (4.9) is estimated similarly:

ρ(Zk + Z̃k, Z̃k + Z̃ ′k) =

= ρ

(
λ

Zk

σ̃∗
√
n− k

+ λ
Z̃ ′k

σ̃∗
√
n− k

, λ
Z̃k

σ̃∗
√
n− k

+ λ
Z̃ ′k

σ̃∗
√
n− k

)
(4.11)

≤ b

m!
λm

σ̃m∗
γ̃(m, s)km(Q, Q̃)n−

m−2
2 .

Combining (4.9) – (4.11) shows that

ρ(Sn, S̃n) ≤ bλm

[
γ(m, s)
σm∗

+
γ̃(m, s)
σ̃m∗

]
µm(Q, Q̃)n−

m−2
2 (4.12)

for n = 2s, 2s+ 1, . . . .

By the regularity of the metric ρ we get for n = 1, 2, . . . , 2s− 1,

ρ(Sn, S̃n) ≤
n∑

k=1

ρ(Xk, X̃k) ≤ (2s− 1)ρ(Q, Q̃)

≤ (2s− 1)µm(Q, Q̃) ≤ (2s− 1)m/2µm(Q, Q̃)n−
m−2

2 .

(4.13)

Thus, remembering the definition of b and taking into account the fact that the
only restriction to choose λ in the above calculations was the inequality rλ−

m+1
s < 1,

we deduce from (4.12), (4.13) and (2.4) the following inequalities:

ρ(Sn, S̃n) ≤ cmµm(Q, Q̃)n−
m−2

2 , n = 1, 2, . . . .

To complete the proof it is sufficient to apply the total probability formula:

ρ(S, S̃) = sup
x∈R

∣∣∣∣∣P
(

ν∑

k=1

Xk ≤ x

)
− P

(
ν∑

k=1

X̃k ≤ x

)∣∣∣∣∣

≤
∞∑

n=1

sup
x∈R

∣∣∣∣∣P
(

n∑

k=1

Xn ≤ x

)
− P

(
n∑

k=1

X̃n ≤ x

)∣∣∣∣∣P (ν = n)

≤ cmµm(Q, Q̃)
∞∑

n=1

n−
m−2

2 P (ν = n).
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