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MINIMUM ENTROPY OF ERROR ESTIMATE
FOR MULTI–DIMENSIONAL PARAMETER
AND FINITE–STATE–SPACE OBSERVATIONS1

Antońın Otáhal

The minimum entropy of error estimate (MEEE) is studied for a finite mixture of
probability densities on a finite-dimensional Euclidean space. It is proved that the MEEE
coincides with the conditional expectation in case all the densities in the mixture are
isotropic and unimodal; further a counter-example is given which shows that the result
cannot be generalized for symmetric non-isotropic densities.

1. INTRODUCTION

The minimum entropy of error principle was introduced by Weidemann and Stear
[6, 7] and the idea has been further pursued by Janžura, Koski and Otáhal [2, 3].
The principle consists in that one random variable (parameter) is estimated by
means of another random variable (observation), so that the (differential) entropy
of the estimation error is minimized. The principle is intuitively plausible, though
its application is, due to problems with differential entropy, somewhat technically
involved – cf. also Ikeda [1], Otáhal [4], Vajda [5],(10.20).

One of the main results of [2] states that the minimum entropy of error estimate
(MEEE) is the same as the conditional expectation in case the state space of the
observation is finite, the parameter space is (a subset of) the real line and all the
conditional densities (of the parameter given the observation value) are symmetric
and unimodal. The present paper studies a possibility of generalizing this result for
a multi-dimensional parameter.

2. BASIC NOTIONS

For convenience we define the real function Φ on [0,+∞) as

Φ(t) = −t · log(t)

with the usual convention Φ(0) = 0.
1Supported by the Grant Agency of the Czech Republic under Grant No. 201/94/0321.
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Suppose there is given an m-dimensional random vector U whose distribution
is absolutely continuous with respect to the m-dimensional Lebesgue measure with
the corresponding density fU . Further there is given another random variable Z
(observation, or data) which has a finite range of possible values Z = {z1, . . . , zn}.
For j = 1, . . . , n we denote fj(u) = fU |Z(u|zj) and αj = P{Z = zj}. The MEE
estimate is defined as the mapping G from Z to the m-dimensional Euclidean space
Rm minimizing the entropy of the error e = U − G(Z). In other words, denoting
tj = G(zj) we can express the problem of finding the MEEE as the problem of
minimizing, for t = (t1, . . . , tn) and ft(x) =

∑n
j=1 αjfj(x+ tj), the value of

H(t) =
∫

Rm

Φ(ft(x)) dx

with respect to the shifts t1, . . . , tn. We have to suppose
∫

Φ(fj(x)) dx < +∞.
In [2] we can find details of this construction, as well as further results: H is a
continuous and bounded function of t which takes on its minimum on (Rm)n. For
further reference we point out the following result:

2.1. Theorem. If m = 1 and all the densities f1, . . . , fn are symmetric unimodal,
then the minimum of H takes place at t = 0.

P r o o f . Cf. [2], Proposition 3.12. 2

3. ISOTROPIC UNIMODAL DENSITIES

If we want to generalize Theorem 2.1 to the case m > 1 we have to decide which gen-
eralization of symmetry is the ‘proper’ one to ensure that a similar result will hold.
We will show that under an assumption of isotropic (rotation invariant) densities
the result can be generalized and, by means of a simple example, we will establish
that a more general notion of symmetric (i. e. even) densities is not sufficient.

For x ∈ Rm we denote by |x| the usual Euclidean norm of x. A real function g
on Rm is isotropic if the value of g(x) depends only on |x|. An isotropic function g
is unimodal if g(x) is a non-increasing function of |x|.

Before coming to the main result we have to go through an auxiliary technical
one.

3.1. Lemma. Let V be a proper linear subspace of Rd and W be its orthogonal
complement. Suppose that there is given a real function g on Rd such that

∫

V

g(v + w) dv ≥ 0

for every w ∈W .

Then
∫

Rd g(x) dx ≥ 0.

P r o o f is an immediate consequence of the Fubini theorem. 2
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3.2. Theorem. Let, in the notations of Part 2, the conditional densities f1, . . . , fn

be isotropic and unimodal. Then the minimum of H takes place at t = 0, in other
words, the MEEE of U by means of Z is the same as the conditional expectation
E{U |Z}.

P r o o f will be carried out by induction in the dimension m.
1. For m = 1 the assertion is the same as that of Theorem 2.1, since on the real

line the notions of isotropy and symmetry are the same.
2. We will assume that the assertion holds for the dimension equal to m− 1 and

will prove it for m.
Fix an (m− 1)-dimensional subspace A in Rm, denote by π the orthogonal pro-

jection onto A and put τj = π(tj) for j = 1, . . . , n.
Now we first prove the inequality

H(τ1, . . . , τn) ≥ H(0, . . . , 0). (1)

In fact, denote, for a hyperplane B parallel to A and for j = 1, . . . , n, by f̃j the
restriction of fj to B. Since obviously all f̃j ’s are isotropic and unimodal in B (with
τ(0) playing the role of the origin), by the induction assumption we conclude that

∫

B

Φ


∑

j

αj f̃j(y + τj)


 dy ≥

∫

B

Φ


∑

j

αj f̃j(y)


 dy

and (1) follows by Lemma 3.1.
In the second step we prove

H(t1, . . . , tn) ≥ H(τ1, . . . , τn). (2)

For this we choose a unit vector a (of either orientation) in Rm orthogonal to A and
define, for j = 1, . . . , n, the real rj by the relation tj = τj + rja. For a straight
line p orthogonal to A and j = 1, . . . , n we consider the restriction f̂j of fj to p,
which is obviously a symmetric unimodal function on p. Hence by Theorem 2.1 the
inequality

∫

p

Φ


∑

j

αj f̂j(ξ + rj)


 dξ ≥

∫

p

Φ


∑

j

αj f̂j(ξ)


 dξ

is true and (2) again follows by Lemma 3.1.
Putting together (1) and (2) we complete the proof. 2

4. SYMMETRIC DENSITIES

In this section we will present an example of even unimodal densities for which the
MEEE differs from the conditional expectation.

Let us, for α, β, γ ≥ 0, denote

Ψ(α, β, γ) = Φ(α+ β + γ)−Φ(α+ β)−Φ(α+ γ)−Φ(β + γ) + Φ(α) + Φ(β) + Φ(γ).
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4.1. Lemma. For all α, β, γ ≥ 0 it holds

Ψ(α, β, γ) ≥ 0.

P r o o f . For fixed β and γ we define ψ(α) = Ψ(α, β, γ). Then ψ(0) = 0 and the
derivative of ψ is given as

ψ′(α) = log
(α+ β)(α+ γ)
α(α+ β + γ)

which is obviously non-negative. 2

4.2. Example. Suppose m = 2, i. e. the example takes place in the plane; we
write λ for the two-dimensional Lebesgue measure. By K we denote a rectangle
whose center is at the coordinate origin, whose width is w and whose length is `; we
take `À w. The orientation of K is such that its vertices are given by coordinates
(±`/2,±w/2). For η > 0 and the rotation ρ which rotates by the angle 2π/3 we
take the sets

K1(η) = K + (0, η),

K2(η) = ρ(K + (0, η)),

K3(η) = ρ2(K + (0, η)).

For positive reals α, β, γ such that (α+ β + γ) · λ(K) = 1 we put

h(η) =
∫

R2
(α · 1K1(η) + β · 1K2(η) + γ · 1K2(η)) dλ,

where 1M stands for the indicator function of a set M .
Let us for the sake of brevity write

ψ1 = ψ1(α, β, γ) = Φ(α) + Φ(β) + Φ(γ),

ψ2 = ψ2(α, β, γ) = Φ(α+ β) + Φ(α+ γ) + Φ(β + γ),

ψ3 = ψ3(α, β, γ) = Φ(α+ β + γ).

Then we can calculate for η ∈ [0, w/6]

h(η) =
(

6
4
√

3
w2 − 6

√
3η2)ψ3+

+( 2
4
√

3
w2 + 6

√
3η2)ψ2+

+(λ(K)− 10
4
√

3
w2 − 6

√
3η2

)
ψ1

and for η ∈ [w/6, w/2]

h(η) =
(

9
4
√

3
w2 − 3

√
3(wη − η2)

)
ψ3+

+
(
− 1

4
√

3
w2 + 3

√
3(wη − η2)

)
ψ2+

+
(
λ(K)− 7

4
√

3
w2 − 3

√
3(wη − η2)

)
ψ1.
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It is easy to see that the function h of η has a local maximum at 0, because Lemma
4.1 ensures that on the interval [0, w/6] the function h is decreasing. Since η = 0
corresponds to zero shifts of symmetric sets K1(0), K2(0) and K3(0), we have really
proved that for conditional densities given by their indicator functions the MEEE
differs from the conditional expectation.

The example is based on the fact that minimizing the differential entropy of a
mixture of shifted indicator functions of the sets K1,K2,K3 we seek for a small
volume of the intersection K1∩K2∩K3 while maximizing the pairwise intersections
K1 ∩K2, K2 ∩K3 and K1 ∩K3.

Just for the completeness of the analysis of the example let us mention that for η
large enough the sets K1(η), K2(η) and K3(η) are pairwise disjoint, h(η) = λ(K)ψ1

and h(η) > h(0). That is, the local maximum of h at 0 is not global. 2

This example seems to indicate (the exact calculations would be rather complicated)
that even for Gaussian densities, if they are suitably chosen (i. e. if their level ellipses
‘copy’ the shape of the sets considered in Example 4.2) the MEEE will not coincide
with the conditional expectation, which is a rather surprising statement.

(Received August 25, 1994.)
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