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ASYMPTOTIC DISTRIBUTION OF THE CONDITIONAL
REGRET RISK FOR SELECTING GOOD
EXPONENTIAL POPULATIONS1

Shanti S. Gupta and Friedrich Liese2

In this paper empirical Bayes methods are applied to construct selection rules for the
selection of all good exponential distributions. We modify the selection rule introduced
and studied by Gupta and Liang [10] who proved that the regret risk converges to zero
with rate O(n−λ/2), 0 < λ ≤ 2. The aim of this paper is to study the asymptotic behavior
of the conditional regret risk Rn. It is shown that nRn tends in distribution to a linear
combination of independent χ2-distributed random variables. As an application we give a
large sample approximation for the probability that the conditional regret risk exceeds the
Bayes risk by a given ε > 0. This probability characterizes the information contained in
the historical data.

1. INTRODUCTION

The family of exponential distributions has fundamental meaning in reliability the-
ory, survival analysis and general in the area of life time distributions. For an
overview and more details we refer to Johnson, Kotz and Balakrishnan [12] and
Balakrishnan and Basu [1]. We consider k independent exponential populations
π1, . . . , πk with expectations θ1, . . . , θk which are unknown. But a control value θ0 is
given. Each population πi is called good if θi ≥ θ0 and bad otherwise. We study the
problem of finding all good populations. This is a typical subset selection problem,
see Gupta and Panchapakesan [4]. We use the Bayes approach and assume that
the θi are realizations of the random variables Θi with distributions Gi. Then for
a given loss function the best selection rule, being the Bayes selection rule, depends
on the distributions Gi. We allow that the distributions Gi are not known. But we
suppose that historical data are available and can be included in the decision rule.
This is the empirical Bayes approach due to Robbins [17]. Empirical Bayes methods
have been applied in different areas of statistics. Deely [2] constructed empirical
Bayes subset selection procedures. In a series of papers Gupta and Liang [5, 6, 10]

1This research was supported in part by US Army Research Office, Grant DAAH04-95-1-0165
Purdue University.

2This research was done while this author was Visiting Professor at the Department of Statistics,
Purdue University.
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and Gupta, Liang and Rau [7], [8] have studied different selection procedures using
the empirical Bayes approach.

Assume Y = (Y1, . . . , Yk) are the actual data from the populations π1, . . . , πk
which are used to make a decision. If L is a given loss function then the risk of
the selection rule d is R(d) = EL(d(Y ),Θ) where Θ = (Θ1, . . . ,Θk). The optimal
selection rule d0

G is easily seen to depend on the unknown joint distribution G =∏k
i=1Gi of Θ. The central idea of the empirical Bayes approach is the construction

of a good decision rule d∗n on the basis of historical data X n being independent
of (Y ,Θ). The quality of d∗n is characterized by the overall Bayes risk R(d∗n) =
EL(d∗n(Xn, Y ),Θ) and the nonnegative regret risk R(d∗n) − R(d0

G). The aim of the
above mentioned papers dealing with empirical Bayes methods was to construct
suitable decision rules d∗n and to evaluate the regret risk. The main goal was to
prove the convergence to zero of R(d∗n)−R(d0

G) at a certain rate. Gupta and Liang
[10] constructed for the problem of selecting good exponential populations a selection
rule d∗n and proved R(d∗n) − R(d0

G) = O(n−λ/2) where the value of the parameter
0 < λ ≤ 2 depends on additional assumptions.

Denote by EXn
and E(Y ,Θ), the expectation with respect to Xn and (Y ,Θ),

respectively. By the independence of Xn and (Y ,Θ) the risk R(d∗n) of the empirical
Bayes selection rule d∗n is a random variable which may be written in the form

R(d∗n) = E(Y ,Θ)L(d∗n(Xn, Y ),Θ). (1)

The difference

Rn = R(d∗n)− R(d0
G) (2)

= E(Y ,Θ)(L(d∗n(Xn, Y ),Θ)− L(d0
G, Y ))

is called the conditional regret risk, so that the regret risk is the expectation of the
conditional regret risk with respect of the previous data

R(d∗n)− R(d0
G) = E(L(d∗n(Xn, Y ),Θ)− L(d0

G, Y ))
= EXn

[
E(Y ,Θ)(L(d∗n(Xn, Y ),Θ)− L(d0

G, Y ))
]

= EXn
Rn.

When we study the asymptotic behavior of Rn and ask for the asymptotic dis-
tribution, the situation is comparable with the asymptotic theory of parameter es-
timation where different types of estimators are compared by the limit distribution
of
√
n(θ̂n − θ0) in general and not by a direct evaluation of the variance of θ̂n. So,

in this paper we study distributions instead of expectations. A new selection rule
d̂n for the problem of selecting a good exponential distribution is introduced by a
modification of the Gupta and Liang rule [10]. We show that nRn converges in dis-
tributions to a linear combination of independent χ2-distributed random variables
each with one degree of freedom. The coefficients in the linear combination are ex-
plicitly calculated. The main idea for the new selection rule is to use the fact that
the construction of the optimal selection rule dG needs only the value of the unique
zero ηi0 of some function mi which depends on Gi and is consequently unknown.
The main part of this paper is the construction of a suitable estimator η̂in for ηi0
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and the proof of a limit theorem for
√
n(η̂in − ηi0). The problem of estimating the

zero of an unknown function is studied in part 3 of the paper in a general setting and
is then applied to the selection problem. We transform the problem of estimation
of the zero of the function mi into the problem of finding the point at which the
integrated function has a local maximum. To this end we apply general ideas and
techniques from the theory of empirical processes.

2. FORMULATION OF THE SELECTION PROBLEM

Consider k independent exponential populations π1, . . . , πk which we assume to have
the density functions g(yi|θi) = I[0,∞)(yi) 1

θi
exp{−yi

θi
}, i = 1, . . . , k. Here IA is the

indicator function of the set A. Set θ = (θ1, . . . , θk) ∈ Ω = (0,∞)k. Given a
standard value θ0 > 0 we call a population πj good if θj ≥ θ0. Our aim is to select
all good populations. Therefore the decision space is D = {0, 1}k = {(a1, . . . , ak) :
aiε{0, 1}} and πi is selected if and only if ai = 1. Similar as in Gupta and Liang
[6, 10] we use the loss function

L(θ, a) =
k∑

i=1

`(θi, ai) (3)

where

`(θi, ai) = aiθi(θ0 − θi)I(0,θ0)(θi) + (1− ai)θi(θi − θ0)I(θ0,∞)(θi). (4)

If θi ≥ θ0 so that the population πi is good and we make a false decision, i. e. ai =
0, then the penalty increases with the distance of θi from θ0. For a bad population
πi and a false decision we get the loss θi (θ0 − θi) which is an increasing function
on

(
0, 1

2θ0
)

and decreasing for
(

1
2θ0, θ0

)
. The behavior on

(
0, 1

2θ0
)

is an unpleasant
side effect of the loss function l (θi, ai) which was mainly motivated by the fact that
it allows the construction of an unbiased estimator for an unknown function which
provides the optimal decision rule d0

G, see (18). If the r.v. Θi take values in
(
0, 1

2θ0
)

only with small probabilities then the behavior of l (θi, 1) has small influence on the
risk. Hence the use of the loss function l (θi, ai) is reasonable if the populations are
not too bad.

By a selection rule d = (a1, . . . , ak) we shall mean a measurable mapping of the
sample space Y = (0,∞)k into the decision space D. As we will apply the Bayes
and the empirical Bayes approach to the selection problem we assume that the θi
are realizations of independent random variables Θi. The Θi are assumed to take
values in (0,∞) and have distribution Gi. The distribution G of the random vector
Θ = (Θ1, . . . ,Θk) is then the product of the Gi.

The random variables Θ1, . . . ,Θk are not observable, but we can observe Y =
(Y1, . . . , Yk) where the Y1, . . . , Yk are independent and the conditional density of Yi
given Θi = θi is g(yi|θi) = I[0,∞)(yi) 1

θi
exp{−yi

θi
}

If we have one measurement Yi from each population πi then the risk of the
selection rule d is given by

R(d) = EL(d(Y ),Θ). (5)
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In terms of densities the risk can be written in the form

R(d) =
∫ (∫

L(θ, d(y))g(y|θ) dy
)

dG(θ)

where g(y|θ) =
∏k
i=1 g(yi|θi) and dy = dy1, . . . dyk. Using the loss function L(θ, a)

(3) we get

R(d) =
k∑

i=1

E`(Θi, qi(Yi)) (6)

where
qi(yi) = Eai(Y1, . . . , Yi−1, yi, Yi+1, . . . , Yk).

The formula (6) shows that due to the special structure of the loss function we may
restrict ourselves to randomized decisions qi which depend on the data of πi only.
We assume ∫ ∞

0

θ2i dGi(θi) <∞, i = 1, . . . , k. (7)

Then the Bayes risk R(d) = EL(d(Y ),Θ) is finite and the following holds

R(d) =
k∑

i=1

∫ ∞

0

∫ ∞

0

qi(yi)(θ0 − θi)e
− yi

θi dGi(θi) dyi + γi

=
k∑

i=1

∫ ∞

0

qi(yi)mi(yi) dyi + γi (8)

where
γi =

∫ ∞

0

θi(θi − θ0)I(θ0,∞)(θi) dGi(θi)

mi(yi) =
∫ ∞

0

(θ0 − θi)e
− yi

θi dGi(θi).

Using the relation (8) we see that infd R(d) is attained by the selection rule d0
G =

(d0
1, . . . , d

0
k), where

d0
i (yi) =

{
1 if mi(yi) < 0

0 otherwise.
(9)

As in Gupta and Liang [10] one obtains by integration by parts

mi(yi) = θ0ψi1(yi)− ψi2(yi) (10)

where

ψi1(yi) =
∫ ∞

0

e
− yi

θi dGi(θi)

=
∫ ∞

0

∫ ∞

yi

1
θi
e
− ti

θi dti dGi(θi) = EI[0,∞)(Yi − yi) (11)

ψi2(yi) =
∫ ∞

0

θie
− yi

θi dGi(θi)

= E(Yi − yi)I[0,∞)(Yi − yi). (12)
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We see from (9) that the Bayes selection rule d0
i is trivial, i. e. takes on the value

0 or 1 for every yi, unless mi has a zero on (0,∞). To give necessary and sufficient
conditions for the existence of a zero we need some auxiliary results. For any not
necessarily finite measure µ on the Borel sets of (0,∞) we set

κµ(y) =
∫

(0,∞)

exp
{
−y
θ

}
µ(dθ)

and assume that κµ(y) < ∞ for every y > 0. Then by Hölder’s inequality for
0 < α < 1

κµ(αy1 + (1− α)y2) ≤ [κµ(y1)]
α [κµ(y2)]

1−α
.

Consequently, lnκµ is convex and κ′µ
κµ

is nondecreasing. Moreover, if µ is nonde-
generate, i. e. µ is not concentrated at one point, then lnκµ is strictly convex and
κ′µ
κµ

strictly increasing. Put for any a > 0

mµ(y) = −aκ′µ(y)− κµ(y).

As κµ(y) > 0 and κ′µ
κµ

is strictly increasing we see that mµ has at most one zero on
(0,∞). The derivative m′

µ of mµ can be written as

m′
µ = −m′

eµ,

where the measure µ̃ is defined by µ̃(dθ) = 1
θµ(dθ). Consequently, m′

µ has again at
most one zero on (0,∞) and the same statement holds also for every derivative of

mµ of higher order. As κµ(y) > 0 and κ′µ
κµ

is strictly increasing a zero of mµ exists
on (0,∞) if and only if

lim
y↓0

κ′µ(y)
κµ(y)

< −1
a
< lim
y↑∞

κ′µ(y)
κµ(y)

. (13)

The limit on the left hand side is

lim
y↓0

κ′µ(y)
κµ(y)

= −
∫
(0,∞)

1
θµ(dθ)

µ((0,∞))
(14)

provided that both denominator and the numerator are finite. The calculation of
the limit on the right hand side of (13) requires more effort. We set for any finite
measure µ

bµ := inf{t : µ((t,∞)) = 0},

where we have used the convention inf ∅ = ∞. If bµ < ∞ then the measure µ is
concentrated on (0, bµ].
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Lemma 1. For any measure µ on the Borel sets of (0,∞) with 0 < µ((0,∞)) <∞,
it holds

lim
y↑∞

κ′µ(y)
κµ(y)

= − 1
bµ

(15)

where 1
bµ

= 0 for bµ = ∞.

P r o o f . First, we introduce the abbreviation

J
(1)
b (y) =

∫

(0,b)

1
θ

exp
{
−y

(
1
θ
− 1
b

)}
µ(dθ)

J
(2)
b (y) =

∫

[b,∞)

1
θ

exp
{
−y

(
1
θ
− 1
b

)}
µ(dθ)

K
(1)
b (y) =

∫

(0,b)

exp
{
−y

(
1
θ
− 1
b

)}
µ(dθ)

K
(2)
b (y) =

∫

[b,∞)

exp
{
−y

(
1
θ
− 1
b

)}
µ(dθ).

Fix 0 < b < bµ and notice that for 0 < θ ≤ b

1
θ

exp
{
−y(1

θ
− 1
b
)
}

≤ 1
θ

exp
{
− y

2θ

}
for 0 < θ ≤ b

2
1
θ

exp
{
−y(1

θ
− 1
b
)
}

≤ 2
b

for
b

2
< θ.

Consequently, by the Theorem of Lebesgue

lim
y→∞

J
(1)
b (y) = 0, lim

y→∞
K

(1)
b (y) = 0. (16)

For every b < bµ it holds K(2)
b (y) > 0, so that

0 ≤ lim sup
y→∞

[
−κ

′
µ(y)
κµ(y)

]
= lim sup

y→∞
J

(1)
b (y) + J

(2)
b (y)

K
(1)
b (y) +K

(2)
b (y)

= lim sup
y→∞

J
(2)
b (y)

K
(2)
b (y)

≤ lim sup
y→∞

1
bK

(2)
b (y)

K
(2)
b (y)

≤ 1
b
.

Taking b ↑ bµ we get

lim sup
y→∞

[
−κ

′
µ(y)
κµ(y)

]
≤ 1
bµ

which completes the proof if bµ = ∞ as κ′µ(y) ≤ 0. If bµ <∞ we get from (16)

lim inf
y→∞

[
−κ

′
µ(y)
κµ(y)

]
≥ lim inf

y→∞

1
bµ
K

(2)
b (y)

K
(2)
b (y)

≥ 1
bµ
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which completes the proof in the case bµ <∞. 2

The previous Lemma is now applied to get conditions under which the Bayes
selection procedures are nontrivial. Let the measure µ be defined by

µ(B) =
∫

B

θ dGi(θ).

The assumption (7) implies that µ is a finite measure. Furthermore,

bµ = bG.

By the definition of ψi1 and ψi2 in (11) and (12), respectively

κ′µ(y)
κµ(y)

= −ψi1
ψi2

.

This yields
lim
y↓0

κ′µ(y)
κµ(y)

= − 1
EΘi

and by Lemma 1
lim
y→∞

κ′µ(y)
κµ(y)

= − 1
bGi

.

As the Bayes selection rule d0
i is nontrivial if and only if the function mi has a zero

on (0,∞) we get from (13) the following statement.

Proposition 2. If the distribution Gi is nondegenerate and has finite second mo-
ment then the Bayes selection rule d0

i is nontrivial if and only if

EΘi < θ0 < bGi . (17)

Now we discuss the cases in which condition (17) is not fulfilled. If θ0 ≤ EΘi ≤ bGi

then the decreasing function θ0 ψi1
ψi2

− 1 is less or equal to zero. Hence

mi(yi) = ψi2(yi)
(
θ0
ψi1(yi)
ψi2(yi)

− 1
)
≤ 0

and d0
i (yi) ≡ 1. Conversely, if EΘi ≤ bGi ≤ θ0 then by Lemma 1

(
θ0
ψi1(yi)
ψi2(yi)

− 1
)

≥ lim
yi→∞

(
θ0
ψi1(yi)
ψi2(yi)

− 1
)

=
θ0
bGi

− 1 ≥ 0

so that
mi(yi) = ψi2(yi)

(
θ0
ψi1(yi)
ψi2(yi)

− 1
)
≥ 0



578 S. S. GUPTA AND F. LIESE

and d0
i (yi) ≡ 0. This is also intuitively clear as for bGi

≤ θ0 the random variable Θi

is bounded above by θ0.
We illustrate the condition (17) by an example.
Let γαi,βi

(s) = I[0,∞)(s)
βαi
i

Γ(αi)
sαi−1e−βis

αi > 1, βi > 0, be the density of a gamma distribution. We assume that 1
Θi

has the
density γαi,βi or equivalent that Θi has the density 1

t2 γαi,βi(
1
t ). Then

fi(yi) = E
1
Θi
e
− yi

Θi =
αiβ

αi
i

(yi + βi)αi+1
.

Similarly,
ψi1(yi) = Ee−

yi
Θi =

βαi
i

(yi + βi)αi

and
ψi2(yi) = EΘie

− yi
Θi =

βαi
i

(αi − 1)(yi + βi)αi−1
.

Consequently, −ψi1(yi)
ψi2(yi)

= 1−αi

yi+βi
and

mi(yi) =
βαi
i

(yi + βi)αi−1

(
θ0

yi + βi
− 1
αi − 1

)

so that the zero η0i of mi is ηi0 = θ0(αi−1)−βi. Otherwise, EΘi = βi

αi−1 This means
that the zero η0i is positive if the expectation EΘi is smaller than the critical value
θ0 and this is the statement of Proposition 2 if we take into account that bGi = ∞.

To apply the selection rule d0
i from (9) we need the zero ηi0 ofmi(yi) = θ0ψi1−ψi2.

But ψi1, ψi2 as well as ηi0 depend on the unknown prior distribution Gi. Otherwise,
the unknown function mi = θ0ψi1 − ψi2 is the expectation of a function of the
observable data Yi. Indeed, we get from (11) and (12)

mi(yi) = Eh(Yi − yi) (18)

where h(t) = (θ0 − t)I[0,∞)(t). The relation (18) connects the unknown function mi

with the observable data Yi and is the key of the empirical Bayes methods in our
model. Assume we have data from the past which can be taken into the decision.
More precisely, we assume that for i = 1, . . . , k the random variables Xi1, . . . , Xin

are i.i.d. with common density given by

fi(yi) =
∫ ∞

0

1
θi
e
− yi

θi dGi(θi), (19)

which is the density of the actual observation Yi. The relations (11) and (12) show
that

m̂in(y) =
1
n

n∑

`=1

(θ0 + y −Xi`)I[y,∞)(Xi`)

=
1
n

n∑

`=1

h(Xi` − y) (20)
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is an unbiased and consistent estimator for the unknown function mi(y) = θ0ψi1(y)−
ψi2(y). Using this fact Gupta and Liang [10] introduced an empirical Bayes selection
procedure dn by setting

din(Xin, yi) =

{
1 if m̂in(y) < 0

0 otherwise.

Our approach is slightly different. We have already seen that under the condition
(17) the function mi(y) has a unique zero, say ηi0, and it holds mi(y) > 0 for 0 ≤
y < ηi0 and mi(y) < 0 for y > ηi0. Using the historical data Xin = (Xi1, . . . , Xin)
from population πi we construct a consistent estimator η̂in(Xi) for ηi0 and introduce
the modified Gupta–Liang rule by

d∗in(Xin, yi) =

{
0 if 0 ≤ y < η̂in

1 otherwise.
(21)

Set d∗n(Xn) = (d∗1n(X1n), . . . , d
∗
kn(Xkn)) for Xn = (X1n, . . . , Xkn).

Gupta and Liang [10] studied the rate of convergence to zero of ERn and proved
that under some assumptions ERn = O( 1

n ). But it seems to be extremely hard to
get the constant limn→∞ nERn which is necessary to characterize the efficiency of
the Gupta–Liang rule. In this paper we establish the limit distribution of nRn to
characterize the efficiency of the selection rule d∗in.

Applying (8) we get a representation for the conditional regret risk of the selection
rule d̂n

Rn =
k∑

i=1

∫ ∞

0

d∗in(Xi, yi)mi(yi) dyi −
∫ ∞

0

d0
i (yi)mi(yi) dyi.

Using (8), (9) and (21) we arrive at

Rn =
∫ ∞

bηin

mi(yi) dyi −
∫ ∞

ηio

mi(yi) dyi

= Mi(ηio)−Mi(η̂in) (22)

where
Mi(yi) =

∫ yi

0

mi(s) ds. (23)

3. ESTIMATION OF THE ZERO OF AN UNKNOWN FUNCTION

To prepare the main results we study the problem of estimating the zero of an
unknown functionm. Despite the fact that the unknown functionm is continuous we
have to deal with estimators for m which are not continuous functions. To overcome
this difficulty we smooth the functions by integrating and construct estimators of
the maximum point of the integrated function. Moreover, this approach allows us
to apply the well-developed theory of M -estimators.
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The function h appearing in (18) belongs to the class H of functions h: R1 → R1

which may be written in the form

h(x) =
r∑

i=1

ciI[xi,∞)(x) + g(x) (24)

with some r ∈ {0, 1, . . .}, some real numbers ci, nonnegative xi and a Lipschitz
continuous function g which vanishes on (−∞, 0]. If r = 0 then the corresponding
sum is supposed to be zero. Lipschitz continuity means the existence of a constant
L such that |g(y)− g(x)| ≤ L|y − x| for every x, y ∈ R1. Put c =

∑r
i=1 |ci| then

|h(x)| ≤ c+ L|x|. (25)

We use the notation a∧b = min{a, b} and set H(x, t) = 0 for t ≤ 0 and put for t > 0

H(x, t) =
∫ t

0

h(x− s) ds (26)

=
∫ t∧x

0

h(x− s) ds

where the last equality follows from h(t) = 0 for t < 0. Using the notation γh =∑r
i=1 |ci|+ 1

2L we see that for x ≥ 0

|H(x, t)| ≤ γh(x+ x2). (27)

If X is a non-negative random variable with EX2 <∞ then

EH(X, t) ≤ γh

[
(EX2)1/2 + EX2

]

so that
M(t) = EH(X, t) (28)

is a bounded function

M(t) ≤ γh

[
(EX2)1/2 + EX2

]
. (29)

If h is a pure jump function I[x0,∞) then the corresponding function M is closely
related to the cumulative distribution function F (t) = P(X < t) of X. In this case

M(t) =
∫ t

0

(1− F (x0 − s)) ds.

This shows that the function M has a derivative at t from the right given by
D+M(t) = 1−F (x0− t) whereas the derivative from the left is given by D−M(t) =
1− F (x0 − t− 0). If F is continuous then D+M(t) = D−M(t) so that M is differ-
entiable with derivative

M ′(t) = Eh(X − t)
= m(t). (30)
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If h ∈ H has no jump part then an application of the theorem of Lebesgue shows
that (30) is valid, too. This means that for every h ∈ H and every r.v. with finite
second moment and continuous c.d.f. F the statement (30) holds. The continuity of
F implies the continuity of m(t). Hence by (30)

M(t) =
∫ t

0

m(s) ds =
∫ t

0

Eh(X − s)) ds = E
∫ t

0

h(X − s)) ds. (31)

Now we assume that there is some η0 > 0 such that

m(t) = M ′(t) > 0 for t < η0 and m(t) = M ′(t) < 0 for t > η0. (32)

This condition together with (31) show that the function M(t) has a unique max-
imum at η0. Sometimes we need a quadratic behavior of M at η0, i. e. we suppose
that there is some c > 0 and some sufficiently small α0 such that

M(η0)−M(t) ≥ c

2
(t− η0)2 for |t− η0| ≤ α0. (33)

We assume thatX1, X2, . . .,Xn are independent copies ofX. To estimate η0 we define
for t ≥ 0

M̂n(t) =
1
n

n∑

i=1

H(Xi, t) (34)

and notice that in view of (31) M̂n(t) is an unbiased estimator for M(t). Further-
more, the stochastic process M̂n is pathwise continuous and every path is constant
for all sufficiently large t which follows from (26) and h(x) = 0 for x < 0. Conse-
quently M̂n(t) attains its maximum on [0,∞), say at η̂n. The next theorem gives
the asymptotic distribution of η̂n. In Theorem 3 and in the following statements we
denote the distribution of the r.v. Y by L(Y ) and the weak convergence by ⇒.

Theorem 3. Assume X1, X2, . . . , Xn are non-negative, i.i.d. random variables,
the common c.d.f. is continuous and EX1 < ∞. Suppose h ∈ H and the condition
(32) is fulfilled. If M̂n is defined by (34), η̂n ∈ argmax M̂n and M from (31) is twice
continuously differentiable in a neighborhood of η0 and c = −M ′′(η0) > 0 then

L(
√
n(η̂n − η0)) ⇒ N

(
0,
σ2

c2

)

where σ2 = V(h(X1 − η0)) is the variance of h(X1 − η0).

Using the Taylor expansion of M at η0 one obtains the following statement.

Corollary 4. Under the assumptions of Theorem 1 it holds

L(n(M(η0)−M(η̂n)) ⇒ L
(
σ2

2c
χ2

1

)

where χ2
1 has a χ2-distribution with one degree of freedom.



582 S. S. GUPTA AND F. LIESE

4. APPLICATION TO THE SELECTION PROBLEM

We assume to have available i.i.d historical data Xi1, . . . , Xin with common density
(19) for every population πi. Set h(t) = (θ0 − t)I[0,∞)(t). Then by (10), mi(yi) =
Eh(X1i−yi) = θ0ψi1(yi)−ψi2(yi) and under the assumption (17) the function mi(yi)
has a unique zero, say ηi0. Set

Mi(t) =
∫ t

0

mi(s) ds. (35)

Then
Mi(t) = E

∫ t

0

h(Xi1 − s)) ds.

In accordance with (34) for t ≥ 0 we introduce the estimator M̂in(t) for Mi(t) by

M̂in(t) =
1
n

n∑

i=1

H(Xij , t)

=
1
n

n∑

i=1

∫ t

0

h(Xij − s) ds

=
1
n

n∑

i=1

(
θ0 −Xij +

1
2
(Xij ∧ t)

)
(Xij ∧ t).

Suppose η̂in ∈ argmax M̂in and define the empirical Bayes selection rule by

d∗in(yi) =

{
0 if yi ≤ η̂in

1 if yi > η̂in
(36)

d∗n = (d∗1n, . . . , d
∗
kn).

Then by (22) and (35) the conditional regret risk of d∗n is

Rn =
k∑

i=1

(Mi(ηi0)−Mi(η̂in)). (37)

The next theorem is the main result of this paper. It gives the asymptotic distribu-
tion of Rn and is a direct consequence of Corollary 4.

Theorem 5. Assume the Gi are nondegenerate, have finite second moment and
the assumption (17) is fulfilled for i = 1, . . . , k. If the empirical Bayes selection rule
is defined by (36 ) then for the distribution of the conditional regret risk (37), the
following result holds

L(nRn) ⇒n→∞ L
(

k∑

i=1

κiχ
2
i

)

where the χ2
1, . . . , χ

2
k are i.i.d. with common χ2-distribution with one degree of

freedom and κi = 1
2 (−m′

i(ηi0))
−1V((θ0 − (Yi1 − ηi0))I[0,∞)(Yi1 − ηi0)).
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When we apply the empirical Bayes selection rule (36) we have the risk R(d∗n)
introduced in (1). In order to characterize the information contained in the data
from the past we may consider the probability

P(R(d∗n) > R(d0
G) + ε)).

Proposition 6. Under the assumptions of Theorem 5 it holds

lim
n→∞

P
(
R(d∗n) > R(d0

G) +
t

n

)
= 1−H(t)

where H(t) is the c.d.f. of
∑k
i=1 κiχ

2
i .

5. PROOFS

The proof of Theorem 3 is divided into different steps. In the beginning we prove the
consistency of η̂n. The next step is to establish the

√
n-consistency which is followed

by the proof of the asymptotic normality of η̂n. Due to the lack of smoothness of
h we cannot apply the standard Taylor expansion. Instead we apply ideas from
empirical process theory for which we refer to van der Vaart and Wellner [20].

Lemma 7. Assume h ∈ H and EX2
1 <∞. If the condition (32) is fulfilled then for

η̂n ∈ argmax M̂n holds
η̂n →P η0

where →Pis the symbol for stochastic convergence.

P r o o f . We use the notation
∥∥∥M̂n −M

∥∥∥ = sup0≤t<∞ |M̂n(t)−M(t)|. It holds

{|η̂n − η0| > ε} ⊆
{

sup
|t−η0|>ε

M̂n(t) > M̂n(η0)

}

⊆
{

sup
|t−η0|>ε

M(t) +
∥∥∥M̂n −M

∥∥∥ ≥M(η0)−
∥∥∥M̂n −M

∥∥∥
}

⊆
{∥∥∥M̂n −M

∥∥∥ ≥ 1
2
[M(η0)− sup

|t−η0|>ε
M(t)]

}
.

Due to the assumption (32) the function M is strictly increasing for 0 ≤ t ≤ η0 and
strictly decreasing for η0 ≤ t < ∞. Hence M(η0)− sup|t−η0|>εM(t) > 0. Therefore
it remains to show that ∥∥∥M̂n −M

∥∥∥ →P 0.

The inequality (27) implies that for every ε > 0 there is some Tε such that

E
∫ ∞

Tε

|h(X1 − s)| ds < ε.
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By inequality (25) for 0 ≤ s ≤ t

E sup
|s−t|<δ

∣∣∣∣∣∣
1
n

n∑

i=1

t∫

s

h(Xi − τ) dτ

∣∣∣∣∣∣
≤ δ(c+ LE|X1|).

Choose 0 = t0 < . . . < tN = Tε such that |tk − tk−1| ≤ ε [c+ LE|X1|]−1 =: δ. Then

E sup
0≤t<∞

|M̂n(t)−M(t)| ≤ E max
0≤k≤N

|M̂n(tk)−M(tk)|

+2E max
k,tk−1≤t≤tk

|M̂n(tk)− M̂n(t)|

+2E
∞∫

Tε

|h(X1 − s)| ds

≤ E max
0≤k≤N

|M̂n(tk)−M(tk)|+ 4ε.

To complete the proof we have only to note that E|M̂n(tk) −M(tk)| →n→∞ 0 by
the law of large numbers. 2

To continue the proof of Theorem 3 we need a special case of a fluctuation in-
equality established in Ibragimov and Has’minskii [11].

Lemma 8. Assume [a, b] is a finite interval and V (t), a ≤ t ≤ b is a continuous
stochastic process. If E|V (s)|2 ≤ α and E|V (t) − V (s)|2 ≤ α|t − s|2 for every
a ≤ s, t ≤ b then there is a universal constant ρ such that

E sup
|s−t|≤δ

|V (t)− V (s)| ≤ ρ
√
αδ. (38)

We fix h ∈ H , 0 < a < η0 < b and study the stochastic process

Vn(t) =
1√
n

n∑

i=1

[h(Xi − t)− Eh(Xi − t)] . (39)

Using the inequality (25) we see that

E|Vn(s)|2 ≤ E(c+ L|X1|)2.
Assume now in addition that h is Lipschitz continuous. Then

E|Vn(t)− Vn(s)|2 ≤ L2|t− s|2.
Setting α = max(E(c+ L|X1|)2, L2) we arrive at

E sup
|s−t|≤δ

|Vn(t)− Vn(s)| ≤ ρ
√
αδ (40)
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and

E sup
a≤t≤b

|Vn(t)| ≤ E|Vn(η0)|+ E sup
|s−t|≤b−a

|Vn(t)− Vn(s)|

≤ c(a, b, h) (41)

where c(a, b, h) =
√
α+ ρ

√
α(b− a). Now we suppose that h = I[x0,∞)(x) is a pure

jump function. Then

Vn(t) =
√
n(F (x0 + t)− Fn(x0 + t)) (42)

where Fn(s) = 1
n

∑n
i=1 I(−∞,s)(Xi) and F (s) = P(X1 < s) are the empirical and the

cumulative distribution function, respectively. Dvoretzky, Kiefer and Wolfowitz [3]
proved that there is a universal constant K such that

P(
√
n ‖Fn − F‖ ≥ x) ≤ K exp

{−2x2
}
.

Hence

E sup
t
|Vn(t)| =

∫ ∞

0

P( sup
t
|Vn(t)| ≥ x) dx ≤

∫ ∞

0

K exp
{−2x2

}
dx.

As the set of all h ∈ H for which supn E supa≤t≤b |Vn(t)| <∞ holds is a linear subset
we see that for every h ∈ H and every finite interval [a, b] we find some c(a, b, h)
such that

sup
n
E sup
a≤t≤b

|Vn(t)| ≤ c(a, b, h). (43)

Now we study the process M̂n in a neighborhood of η0. We have for every δ > 0 and
t ≥ η0

E sup
η0≤t≤η0+δ

√
n|(M̂n(t)− M̂n(η0))− (M(t)−M(η0))|

= E sup
η0≤t≤η0+δ

∣∣∣∣∣
1√
n

n∑

i=1

∫ t

η0

(h(Xi − s)− Eh(Xi − s)) ds

∣∣∣∣∣

≤ E sup
η0≤t≤η0+δ

∣∣∣∣
∫ t

η0

Vn(s) ds
∣∣∣∣ ≤

∫ η0+δ

η0

E sup
η0≤t≤η0+δ

|Vn(t)| ds

≤ c(a, b, h)δ.

A similar inequality holds for η0 − δ ≤ t ≤ η0. Consequently

E sup
|t−η0|≤δ

|(M̂n(t)− M̂n(η0))− (M(t)−M(η0))| ≤ c(a, b, h)√
n

δ.

Now we are ready to apply Theorem 3.2.5 in van der Vaart and Wellner [20].

Lemma 9. Assume the assumptions of Lemma 7 are fulfilled then η̂n is
√
n−con-

sistent. i. e. the sequence
√
n(η̂n − η0) is stochastically bounded.
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P r o o f . The estimator η̂n is consistent by Lemma 7. Set φn(δ) = c(a, b, h)δ and
rn =

√
n to apply Theorem 3.2.5 in van der Vaart and Wellner [20]. 2

The
√
n−consistency of η̂n allows us to introduce the local parameters ξ. Set

Wn(ξ) =
n∑

i=1

(
H

(
Xi, η0 +

ξ√
n

)
−H(Xi, η0)

)
.

Then ξ̂n =
√
n(η̂n − η0) is a maximum point of Wn and due to the

√
n-consistency

of η̂n the new sequence ξ̂n is stochastically bounded. We approximate Wn(ξ) by a
stochastic term linear in ξ and a nonstochastic term which is nonlinear in ξ. Introduce

W̃n(ξ) =
n∑

i=1

(h(Xi − η0)− Eh(Xi − η0))
ξ√
n
− E(H

(
Xi, η0 +

ξ√
n

)−H(Xi, η0))
)
.

We show that for any fixed real numbers c1, c2

sup
c1≤ξ≤c2

|Wn(ξ)− W̃n(ξ)| →P 0 as n→∞. (44)

Indeed, for ξ ≥ 0 by (39)

|Wn(ξ)− W̃n(ξ)| =

∣∣∣∣∣
√
n

∫ η0+ξ/
√
n

η0

[Vn(s)− Vn(η0)] ds

∣∣∣∣∣
≤ ξ sup

|s−η0|≤ ξ√
n

|Vn(s)− Vn(η0).

Using a similar representation for ξ ≤ 0 we get

sup
c1≤ξ≤c2

|Wn(ξ)− W̃n(ξ)| ≤ |ξ| sup
|s−η0|≤| ξ√

n
|
|Vn(s)− Vn(η0)| (45)

To prove (44) we note that the set of all h ∈ H for which (44) holds, is a linear
set. Therefore we have only to consider the special cases in which h is Lipschitz
continuous or a pure jump function. If h fulfils a Lipschitz condition then (44)
follows from (45) and (40). If h is a pure jump function then by (42) Vn(t) =√
n(F (x0 + t)− Fn(x0 + t)). Let B be the Brownian bridge. The distribution of the

stochastic processes Vn converge to the process −B(F (x0+ ·)) which is continuous
as F (t) = P(X1 < t) is continuous by assumption. Consequently the sequence Vn is
asymptotically equicontinuous, i. e.

lim
δ→0

lim
n→∞

P

(
sup

|s−t|<δ
|Vn(t)− Vn(s)| > ε

)
= 0.

This statement and (45) yield (44). Now we evaluate the processes W̃n(ξ), c1 ≤ ξ ≤
c2. Recall that M(s) = EH(Xi, s) is differentiable and has a local maximum at η0.
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This gives M ′(η0) = Eh(Xi − η0) = 0. Then the twice differentiability of M at η0
provides

W̃n(ξ) = ξ
1√
n

n∑

i=1

h(Xi − η0) +M ′′(η0)
ξ2

2
+ o(1).

Let Z be a random variable having a normal distribution N(0, σ2), where σ2 =
V(h(Xi− η0)). Introduce the process W by W (ξ) = ξZ+M ′′(η0) ξ

2

2 and notice that
W has a unique maximum at ξ̂ = −[M ′′(η0)]−1Z. The central limit theorem and
(44) show that the distributions of the processes Wn(ξ) c1 ≤ ξ ≤ c2 converge weakly
to the distribution of W. Now we apply the Argmax continuous mapping Theorem
3.2.2 in van der Vaart and Wellner [20] to see that the distributions of the maximum
points ξ̂n =

√
n(η̂n − η0) of Wn converge to the distribution L(ξ̂) of the maximum

point ξ̂ of W. This completes the proof of Theorem 3.
Theorem 5 is a direct consequence of Corollary 4 as the Xij have the density fi

and consequently, the c.d.f. is continuous. The assumption (17) provides (32).
Proposition 6 follows directly from Theorem 5.
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