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LYAPUNOV DESIGN OF A NEW MODEL
REFERENCE ADAPTIVE CONTROL SYSTEM
USING PARTIAL A PRIORI INFORMATION

Alexandros J. Ampsefidis, Jan T. Bialasiewicz and Edward T. Wall

A new approach to adaptive model reference control, based on Lyapunov’s direct method,
is presented. A design procedure for single output systems has been developed and the re-
sults verified by computer simulation. The algorithm presented in this paper guarantees
asymptotic stability, provided that the transfer function of the equivalent error system is
strictly positive real. Since the direct Lyapunov’s method is used, the stability conditions
are sufficient but not necessary. Therefore, the assumptions are more stringent than they
need be. Consequently, as verified by simulation, the algorithm performs very well even
if those assumptions are violated. The implementation of the proposed algorithm requires
a priori partial information on the plant.

1. INTRODUCTION

In a model reference control system the design specifications are represented by a
reference model. A controller to be designed uses the model inputs, the model states,
and the error between plant and model output to generate the appropriate control
signals.

When the plant parameters are not well known, adaptive control is used to adjust
the control law. In this paper, using the second or direct Lyapunov method a system
is designed that adjusts the control law to minimize the error between the plant and
the ideal target system states. However, the verification of the assumptions made, as
well as effective implementation of the algorithm proposed, requires a priori partial
information on the plant, i. e., bounds on the plant parameters have to be known.

One of the first researchers who used Lyapunov’s second method to design a stable
adaptive controller for single input single output systems (SISO) was Parks [13].
Also, the same technique was used by Grayson [6], and Winsor and Roy [19] for the
design of multiple input multiple output model reference adaptive control systems.
However, these algorithms required the satisfaction of Erzberger’s perfect model
following (PMF) conditions. In other words, these adaptive controllers function
properly only if there exists a certain structural relationship between the plant and
the model.

Another adaptive algorithm (whose stability is ensured by the hyperstability cri-
terion of Popov) for multiple input multiple output continuous system subject to
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the PMF conditions was developed by Landau [8]. The papers by Broussard [5], and
Mabius and Kaufman [9] were among the first ones that reported designs of adaptive
controllers which do not require the satisfaction of PMF conditions.

In this paper, a new MRAC algorithm for SISO systems is presented. This
algorithm does not require the satisfaction of PMF conditions. The design, based
on Lyapunov’s direct method, guarantees asymptotic stability provided that the
transfer function of an equivalent error system is strictly positive real (SPR). In
addition, it is shown that the adaptive algorithm guarantees that the error remains
bounded under less restrictive positivity conditions.

Furthermore, the new MRAC system is quite simple, as compared to other MRAC
algorithms. Despite its simplicity, the new MRAC algorithm is at least as effective as
the more complex adaptive mechanisms. This may be demonstrated, by comparing
for the same plant, the performance of the system implementing this algorithm with
one based on adaptive model following control (AMFC) algorithm developed by
Landau [8].

The paper is organized in the following manner. Section 2 presents the new design
and formulates the stability theory which is proved in Appendix I. Section 3 presents
a simple design example and outlines the design procedure. Also, in this section the
simulation results are presented. These results give a comparison of the two systems
mentioned above. Section 4 summarizes the results obtained and outlines a possible
application of this algorithm to the adaptive control of the n-joint manipulator.

2. THE DESIGN PROBLEM

The design of a new MRAC system is based on a modification of the MRAC system
proposed by Bialasiewicz and Proano [4]. Both systems have the same general
structure, shown in Fig. 1, where the state estimator is described by the differential
equation of a reference model with feedback. Due to this feedback, the estimator
response is faster than that of the reference model, and therefore, the convergence
rate of the adaptation algorithm is grately increased. Further improvement of the
convergence rate is achieved by a modification of the algorithm used in [4]. This
modification is based on the ideas presented by Sobel and Kaufman [17] and Bar-
Kana [2].

Fig. 1. MRAC system.
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Fig. 2. Augmented system.

In order to develop the new adaptive algorithm we first formulate the design
problem. This formulation is based on the idea of the augmented system shown in
Fig. 2. We assume for simplicity that both the plant and the reference model are of
order n. The elements of the augmented system may be described by the following
equations:

PLANT:

ẋp = Ap xp + Bp u xp ∈ Rn (1)

yp = Cp xp yp ∈ R (2)

STATE ESTIMATOR:

ẋe = Am xe + Bm r + L(C1 xp − Ce xe) xe ∈ Rn (3)

ye = Ce xe ye ∈ R (4)

In particular, C1 = Cp. In this case for the second order system L = [`1 `2]T.
However, if xp is available or if xp is replaced by an estimate that for the second
order system can be assumed to be [yp ẏp]T, then one can choose C1 = Ce = I
and L = diag(`1, `2). This means that in the latter case the feedback term in (3)
becomes [`1yp `2ẏp]T.

PLANT INPUT:
u = K(t)xe + r. (5)

Then, the state space representation of the augmented system is given by
[

ẋp

ẋe

]
=

[
Ap BpK(t)
LC1 Am − L Ce

] [
xp

xe

]
+

[
Bp

Bm

]
r (6)

y =
[

Cp 0
] [

xp

xe

]
(7)

or in a compact form

ẋ = Ax + Br (8)
y = Cx. (9)
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The output of the augmented system (selected as the plant output) is required
to track the output of a nth order reference model

ẋm = Amxm + Bmr (10)
ym = Cmxm (11)

that is, it is required that
y = ym. (12)

Therefore, the purpose of the gain matrix K(t) is to permit an adjustment of the
dynamics of the augmented system so that it performs as a stable reference model.

Assume that there exists an ideal target system

ẋ∗ = A∗x∗ + Br (13)
y∗ = Cx∗ (14)

that satisfies the equation
y∗ = ym (15)

with

A∗ =
[

Ap BpK̃
LC1 Am − LCe

]
(16)

where K̃ is an unknown constant gain. We define the generalized state error as

ex = x∗ − x (17)

and the output error as

ey = ym − y = y∗ − y = Cx∗ − Cx = Cex. (18)

The augmented system state error equation then becomes

ėx = ẋ∗ − ẋ = ẋ∗ −A∗x + A∗x− ẋ = A∗x∗ + Br −A∗x + A∗x−Ax−Br

= A∗ex + (A∗ −A)x = A∗ex −B∗(K(t)− K̃)xe (19)

with

B∗ =
[

Bp

0

]
.

Therefore, an equivalent error system is

ėx = A∗ex −B∗(K(t)− K̃)xe

ey = Cex

(20)

which has the transfer function

Z(s) = C(sI −A∗)−1 B∗. (21)
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K(t) should be defined by an adaptation law such that ex approaches zero as t tends
to infinity. It is proposed that this adaptation law has the following form:

uc = K(t) xe (22)
K(t) = KP (t) + KI(t) (23)
KP (t) = ey xT

e S (24)

K̇I(t) = ey xT
e S (25)

where S and S are properly selected, positive-definite symmetric adaptive coefficient
matrices.

As discussed below, the proportional term (24) facilitates the direct control of
the output error ey. Because of this, as indicated in [3], the error can be ultimately
reduced to zero under the assumption of a disturbance free environment. It is worth-
while to note, that the adaptive controller, defined by the equations (22) through
(25), is extremely simple.

The following theorem formulates the stability result of the proposed design for
a new MRAC system:

Theorem. Consider the system described by equations (6), (7), (10) and (11), with
the adaptation law defined by equations (22) through (25). This system is asymp-
totically stable or, in other words, ex and ey (defined by (17) and (18)) approach
zero as t tends to infinity if

(a) S is a positive definite symmetric matrix,
(b) S is a positive semidefinite symmetric matrix, and
(c) Z(S), defined by (21), is strictly positive real (SPR).

P r o o f . This theorem is proven in Appendix 1. 2

Since the plant is not fully known it is not possible to verify the SPR condition.
Instead, one can assume the existence of a gain matrix K̃ such that A∗ is a stable
matrix that satisfies the Lyapunov equation

A∗TP + P A∗ = −Q (26)

where Q and P are positive-definite symmetric matrices. Then, the total derivative
V̇ (t) of the Lyapunov function candidate, specified by (A1) in the Appendix, has
the following form:

V̇ (t) = −eT
x Q ex − 2eT

x (PB∗ − CT) (K(t)− K̃) xe − 2e2
y xT

e S xe. (27)

For a stable system V̇ (t) is negative definite because K(t) is bounded and a positive
definite symmetric matrix S may be chosen to be sufficiently large. The third term
in (27) is

−2e2
y xT

e S xe = −2ey KP xe
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which is a negative definite quadratic in the output error ey, and is proportional to
the gain KP . Due to the proper selection of S, it can remain large even if the error
ey is arbitrarily reduced. As a result, the set {ex, KI |V̇ (t) = 0} may be arbitrarily
reduced.

Comment. The simulation results, presented below and obtained for a system which
does not meet the SPR condition, show that the designer does not necessarily need
to be concerned with the positivity condition. This is a consequence of the fact that
Lyapunov’s direct method sometimes provides very conservative stability conditions
which are sufficient, but not necessary except in very special cases [10]. In other
words, the assumptions made are usually more stringent than required. Similar
conclusions can be found in the papers by Bar-Kana [2] and Seraji [15], in which the
design based on Lyapunov’s direct method is presented.

3. AN EXAMPLE

A. Plant and reference model

The plant to be controlled is a single-link arm that consists of a rigid link coupled
through a gear train to DC-motor [18], which is shown in Fig. 3. Its linearized state
space equation is

ẋ =
[

0 1
−G/E −F/E

]
x +

[
0

H/E

]
Vs

where x = [θ1 θ̇1]T and the constants G, E, F, H are defined by the physical pa-
rameters of the plant, and Vs is the input voltage to the motor. Since the constants
E and G depend on M , the total mass of the link, the dynamics of the plant are
directly related to the playload and an adaptive controller is needed to make the
system performance independent of the mass of the link.

Figure 4 shows that the link dynamics changes drastically with the total mass
M . The required dynamics, represented by the reference model, are also shown in
Fig. 4 in the form of the unit step response.

Fig. 3. The plant.
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Fig. 4. Plant and model dynamics.

B. Design procedure

Since for a manipulator the full state xp is available one can choose Ce = C1 = I
and L = diag(`1, `2). Then, (3) becomes

ẋe = (Am − L)xe + Lxp + Bmr

and the matrix A∗ can be written as

A∗ =
[

Ap Bp K̃
L Am − L

]

The following steps are involved:

1. Choose L such that the submatrix A∗22 = Am − L is a stable matrix.

2. Using an a priori known range of plant parameters, check that there exists a
K̃ such that A∗ is a stable matrix. In the case of the system discussed, this
condition should be checked for all values of M . Recall that K̃ is not used in
the adaptation mechanism. If it cannot be found return to step 1.

3. Next, assume a positive-definite symmetric matrix Q and make sure that for all
values of M there exists a positive-definite symmetric matrix P that satisfies
(26). Return to step 1 if such a matrix P cannot be found.

4. Simulate the system, and varying S and S, try to obtain the best tracking
error response.

The following gain matrices have been experimentally found and used for the simu-
lation:

L = diag(10, 2), S = diag(200, 600), S = diag(600, 600).
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Simulation results

To illustrate the effectiveness of the new MRAC system, the design of a classical
AMFC system (developed by Landau [8]) for a single link manipulator is considered,
and the simulations for both systems performed. The results using three values of
M are shown in Fig. 5 through Fig. 7.

Fig. 5. Angular position error (M = 1kg) for tracking the unit step response of a

reference model.

Fig. 6. Angular position error (M = 3kg) for tracking the unit step response of a

reference model.
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Fig. 7. Angular position error (M = 7kg) for tracking the unit step response of a

reference model.

The simulation results show that the new MRAC algorithm is at least as effective
as the AMFC algorithm. Also, it was found that the new MRAC is much simpler
to implement. That is, it requires a smaller number of gains and integrators.

4. SUMMARY

In this paper the development and simulation results for a new model reference
adaptive control algorithm have been presented. This algorithm does not require
that the PMF conditions be satisfied. Therefore, the plant does not need to be
structurally similar to the reference model.

The design of the new control algorithm is based on Lyapunov techniques. Asymp-
totic stability is assured, provided that the transfer function of the equivalent error
system is strictly positive real. A discussion is given of what happens when the SPR
requirement is replaced by the condition of positivity. Since the positivity condi-
tions are imposed on the equivalent error system and not on the control plant, the
new adaptive controller is really quite versatile and can be used with many different
types of plant configurations.

Despite its simplicity the new MRAC system is robust to the changes in plant
dynamics. Therefore, it would be worthwhile to consider the application of this
algorithm to adaptive control of manipulators. This implementation could be done
following the Seraji approach to decentralized control of manipulators [15]. In this
application, the control law for each joint of an n-joint manipulator has the same
form and would involve only four gains and two integrators. The required dynamics
of each joint would be specified by a reference model.
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APPENDIX I

Proof of the stability theorem

The following function is chosen as a Lyapunov function candidate:

V (t) = eT
x P ex + tr[(KI − K̃) S−1(KI − K̃)T] (A1)

where K̃ is an unspecified matrix. K̃ appears only in the function V (t) and not in
the control algorithm. Then

V̇ (t) = ėT
x P ex + eT

x P ėx + 2tr[(KI − K̃)S−1 K̇T
I ] (A2)

which is calculated along the system trajectory (20) and has the following form:

V̇ (t) = eT
x (A∗T P + P A∗) ex − 2eT

x P B∗(K(t)− K̃)xe + 2tr[ey(KI − K̃)xe]. (A3)

Combining (A3), (23) and (24), one obtains

V̇ (t) = eT
x (A∗T P + P A∗) ex − 2eT

x (P B∗ −CT) (K(t)− K̃) xe − 2e2
y xT

e S xe. (A4)

Due to condition (b) of the theorem, the third term of (A4) is negative semidefinite.
In addition, we require the existence of a gain matrix K̃ such that

A∗TP + P A∗ = −Q and P B∗ = CT

where P and Q are positive-definite symmetric matrices. This requirement, accord-
ing to the Kalman–Yakubovitch Lemma [11], [16], is satisfied if, and only if, the
transfer function Z(s), defined by (21), is strictly positive real. This is guaranteed
by the condition (c) of the theorem. Then,

V̇ (t) = −eT
x Qex − 2e2

y xT
e S xe. (A5)

Therefore, V̇ (t) is negative definite in ex(t), and is negative semidefinite in the
augmented state [ex, KI(t)]. Since V (t) is positive the new MRAC system is stable.
The asymptotic stability can be seen using the Lemma of Barbalat [11, 16].

Note that V (t) is bounded from below because it is positive definite, and is a
nonincreasing function since V̇ (t) ≤ 0. Therefore, it converges to a finite value V∞
as t tends to infinity. Then,

lim
t→∞

∫ t

0

V̇ (t) dt = lim
t→∞

V (t)
∣∣∣
t

0
= V∞ − V (0) (A6)

exists and is finite. To use the Lemma of Barbalat, one still has to show that V̇ (t)
is uniformly continuous or that V̈ (t) is bounded. This can be seen from equation
(A5) since ėx, xe, and ẋe are bounded. Then

lim
t→∞

V̇ (t) = lim
t→∞

[−eT
x Q ex − 2e2

y xT
e S xe

]
= 0 (A7)
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or
lim

t→∞
ex = 0 and lim

t→∞
ey = 0. (A8)

Also, since xe is bounded, one obtains by (24), (25), and (A8) that the

lim
t→∞

KP (t) = 0 and lim
t→∞

K̇I(t) = 0. (A9)

Also, KI(t) is square integrable. Therefore, K(t), given by (23), is a bounded gain
matrix. Summarizing, it is shown that under the assumptions of the Theorem the
new MRAC system is asymptotically stable and that the output error ey tends to
zero as t approaches infinity. In other words, the output of the augmented system
approaches the output of the model asymptotically.

(Received January 7, 1992.)
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