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VARIABLE MEASUREMENT STEP
IN 2-SLIDING CONTROL

ARIE LEVANT

Sliding mode is used in order to retain a dynamic system accurately at a given constraint
and features theoretically-infinite-frequency switching. Standard sliding modes are known
to feature finite time convergence, precise keeping of the constraint and robustness with
respect to internal and external disturbances. Having generalized the notion of sliding
mode, higher order sliding modes preserve or generalize its main properties, improve its
precision with discrete measurements and remove the chattering effect. However, in their
standard form, most of higher order sliding controllers are sensitive to measurement errors.
A special measurement step feedback is introduced in the present paper, which solves that
problem without loss of precision. The approach is demonstrated on a so-called twisting
algorithm. Its asymptotic properties are studied in the presence of vanishing measurement
errors. A model illustration and simulation results are presented.

1. INTRODUCTION

Sliding mode control is well known as one of the most effective ways to overcome
uncertainty problems. The resulting so-called variable structure systems (VSS) fea-
ture high precision performance, their design is rather simple and clear [16, 17]. Yet,
sliding mode implementation is restricted by an intrinsic drawback. Providing for
keeping an uncertain dynamic system accurately within a given constraint, sliding
modes exist due to theoretically infinite frequency of control switching. In prac-
tice this leads to the so-called chattering effect which is exhibited by potentially
dangerous high-frequency vibrations of the controlled plant.

To avoid chattering some approaches were proposed. The main idea is to change
the dynamics in a small vicinity of the discontinuity surface in order to avoid real
discontinuity and at the same time to preserve the main properties of the whole
system [15]. The idea, exploited here, is to hide the discontinuity in higher deriva-
tives of the control. In the simplest case it may be realized by implanting a fast
stable actuator between the relay and the plant [8]. In the resulting mode the corre-
sponding state and velocity vibration magnitudes both tend to zero when switching
imperfections vanish, and at the same time the plant behavior is described by the
sliding mode equations. Corresponding modes are called higher order sliding modes
[1, 4, 5, 10, 13]. However, such mode is unstable if the implanted dynamics is chosen
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improperly. In the above case convergence to that special mode is not faster than
exponential [8] but it may feature a finite time as well if proper controllers are used
[1,2,5,8, 10, 13].

A higher order sliding mode (HOSM) is actually a movement on a discontinuity
set of a dynamic system, the sliding order characterizing the dynamics smoothness
degree in the vicinity of the set. If the task is to provide for keeping equality
of a smooth function o to zero, the sliding order is a number of continuous total
derivatives of o (including the zero one) in the vicinity of the sliding mode. Hence,
the rth order sliding mode is determined by the equalities

c=6=6=..=0""Y =0, (1)

forming an r-dimensional condition on the state of the dynamic system. The words
“rth order sliding” are often abridged to “r-sliding”. It is also known that with
discrete measurements r-sliding mode realization may provide for up to the rth
order of sliding precision with respect to the measurement interval [6, 10, 12].

The standard sliding mode has the first order, for ¢ is discontinuous. Trivial cases
of asymptotically stable HOSM are easily found in many classic VSSs. For example,
there is an asymptotically stable 2-sliding mode with respect to the constraint = 0
at the origin « = & = 0 (at one point only) of a 2-dimensional VSS keeping the
constraint x + & = 0 in a standard 1-sliding mode. It was mentioned above
that asymptotically stable or unstable HOSMs inevitably appear in VSSs with fast
actuators [8], revealing themselves by spontaneous disappearance of the chattering
effect in the stability case. Thus, examples of asymptotically stable or unstable
sliding modes of any order are well known [4, 5, 8, 10, 14]. Examples of r-sliding
modes attracting in finite time are known for » = 1 (which is trivial), for r = 2
[1, 2, 8, 10, 13] and for r = 3 [8]. Arbitrary order sliding controllers with finite-time
convergence were also presented [12].

Generally speaking, any r-sliding controller needs o, &, &, ..., 0"~ to be avail-
able. The only known exception is a 2-sliding controller [11, 10] which needs only
measurements of 0. As a matter of fact, values of some expression like sign(o("=1) —
h(o,6,...,0"=2)) are needed and not ¢("=1) itself. Therefore, in realization the
expression sign(Ac("2) —At-h(0, 6, ...,0""?))) is substituted for the previous one,
only first differences of o("~2) being practically used. Nevertheless, those controllers
are sensitive to measurement errors of ¢("~2). Indeed, let the maximum possible
error in the measurements of ¢("=2) be § > 0. It may be shown that, with At
fixed and ¢ sufficiently small, measurement errors do not interfere with the algo-
rithm performance. But the sliding accuracy deteriorates when At decreases or §
increases. It happens, for |U(7"_1)| is bounded, and the measurement error influence
starts to dominate in the above expression. Hence, measurement time step At is to
be adjusted in accordance with § evaluation which may appear to be complicated.

Due to smaller information requirements, 2-sliding algorithms look promising for
applications. Indeed, a few recent publications [1, 2, 3] are devoted to their imple-
mentation. As it was marked above, most of those controllers use first differences
of 0. They also provide for the second order sliding precision with respect to the
measurement time step. Unfortunately, according to the above reasoning any un-
controlled measurement-step reduction inevitably leads to system failure as a result
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of small measurement inaccuracies. Thus, in solving a real control problem one has
to check that the measurement step be larger than some critical value. It is shown
in the present paper that the measurement step may be taken proportional to the
square root of the maximal error of o measurements. However, that approach needs
some information on the measurement error which is not always available.

The problem is solved in the present paper by introducing a measurement step
feedback t;y1 — t; = 141 = ©(0(t;)). The idea is that 7 should be small with
small |o| and increase for large |o|. Certainly, there are upper and lower limits of 7:
™M > T 2> Tm > 0.

Only one controller — twisting algorithm [8, 10, 13] — is considered in the paper,
nevertheless the results may be extended to other higher order sliding controllers.
The step feedback 7 = A|o|? is shown to make the algorithm robust with respect
to measurement errors for certain positive values of p and A\. The utmost precision
o =0(712), ¢ = O(7,) is proved to be attained in finite time when § = 0 and p > 0.5
(such controllers are called second order real sliding algorithms [10, 13]). Thus,
there is no need for § evaluation and appropriate 7 adjustment. The corresponding
dependence on p is calculated of sliding precision asymptotics with respect to 6.

Some of these results have long been known to the author qualitatively as a recipe
and were mentioned as a remark in [10]. Nevertheless, they were not rigorously
formulated and proved, and the asymptotic dependences on p were not known. In
particular, it was not known that the best choice is p = 0.5 providing for o = O(J)
with 7 — 0. A model illustration and simulation results are presented.

2. GENERALIZED CONSTRAINT FULFILLMENT PROBLEM

Our intention is to replace the standard relay algorithm u = —sign o by a continuous
output of some dynamic subsystem. To simplify and detail the constraint fulfillment
problem, consider the dynamic system given by the equation

&= f(t,z,u) (2)

where x € X is a state variable, X is a smooth finite dimensional manifold, ¢ is
time, u € IR is control, f is a C'-function. Let o(t,2) € IR be a C*-function. The
only available current information consists of the current values of ¢, u(t) and o ()
(o(t) := o(t,x(t))). There is also a number of known constants defined below. The
goal is to force the constraint function o to vanish in finite time by means of control
continuously dependent on time.

Let K, Kar, 09, Co be positive constants, K, < Kjs, and assume the following:
1. Ju| < k, k = const > 1. Any solution of (2) is well defined for all ¢, provided
u(t) is continuous and |u(t)| < x for each t.

2. There exists u; € (0,1) such that for any continuous function u(t) with |u ()| >
uq, there is t1, such that o(t)u(t) > 0 for each ¢ > ¢;. Hence, the control
u(t) = —signo(tg), where tg is the initial value of time, provides for hitting
the manifold ¢ = 0 in finite time.

Denote Ay (1) = 2(-) + 2 () f(t,2,u), 6(t,z,u) = L,o(t, x).
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3. There is positive ug, ug < 1, such that if |o(¢,z)| < o9, then

0< K, < %d(t,x,u) < Ky

for all u, |u|] < k, and the inequality |u| > ug entails du > 0.

4. Within the region |o| < o the inequality |L,L,o(t,x)| < Cy holds for all ¢,
z, and u. It means that, calculated with fixed values of control u, the second
time derivative of constraint function o is uniformly bounded.

It follows from the theorem on implicit function that there is a function ueq(t, x)
(equivalent control [16]) satisfying the equation & = 0. Once o = 0 is achieved, the
control u = ueq(t, ) would provide for exact constraint fulfillment. Conditions 3 and
4 mean that |o| < g implies |ueq| < ug < 1, and that the velocity of ueq changing
is bounded. This provides for a possibility to approximate u.q by a Lipschitzian
control. Note also that linear dependence on control u is not required.

The proposed controllers depend on few constant parameters. These parameters
are to be tuned in order to control the whole class of processes and constraint
functions defined by the concrete values of og, Ky, K, Cy. By increasing the
constants K s, Cy and reducing K,,, og at the same time, we enlarge the controlled
class too. Such algorithms are obviously insensitive to any model perturbations and
external disturbances which do not stir the dynamic system from the given class.

The variable structure system theory deals usually with systems of the form
& = a(t,z) + b(t,z)v, where x € IR", v is control. Under conventional assumptions
the task of keeping the constraint ¢(t,2z) = 0 is reduced to the task stated above.
A new control v and a constraint function o are to be defined in that case by the
transformation

v=k®(x)u, o=ptz)/®(x), P(x)=vVaDzt+h, k h>0, (3)

where k,h > 0 are constants, D is a non-negative definite matrix.

In the simple case when & = A(t)z + b(t)u, p = c(t)x + £(t) all conditions
are reduced to the boundedness of ¢, ¢, ¢, 5, é, A, A, b, b and to the inequality
cb > const > 0 (i.e., the relative degree equals 1). The corresponding constants

determine the controlled class.

3. TWISTING ALGORITHM

Return to the generalized sliding problem stated above. The algorithm v = —sign o
is a standard 1-sliding algorithm. If values of o are measured at discrete times
to, t1, ta, ..., t; —t;—1 = 7 = const > 0, we get a real sliding algorithm w(t) =
—signo(t;), t € [ti,t;41). After some transient process first order real sliding is
achieved, sup |o(t)| = O(t).

Remind that 2-sliding mode is characterized by the equality ¢ = ¢ = 0 and
smoothness of o, ¢. The simplest way to achieve such a mode is to keep a new
constraint o 4+¢ = 0 in a 1-sliding mode provided by discontinuity of 6. In that case,
however, the mode would be attained only in infinite time. One of the controllers,
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featuring a finite-time transient process, is the so-called “twisting algorithm* [5, 6,
10, 13]

—u, |u| >1,
=< —apsigno, 06 >0,u| <1, (4)

—aupsigno, 06 <0, ul <1,

where apns > ay, > 0, > 4Ky /o0, i > Co/ Ky, Koy — Co > Kyag, + Co
(these conditions will always be satisfied from now on). Any admissible value of u
may be taken here as an initial value. Trajectories of algorithm (4) twist around the
second order sliding manifold and converge to it in finite time (see Appendices).

In the steady state the process is described by the zero dynamics [9] & = f(¢, z,
Ueq(t, z)). That means that 2-sliding mode may be used instead of the standard one
u = —sign o without any change in the ideal behavior of the system.

The exact value of the derivative is not available in practice. Instead of ¢ a first
difference Ao; may be used.

Let t € [ti,ti+1), tig1—ti =T, Aoc; = O'(tl) — O'(tifl) and

—u(ti), |u(t;)| > 1,
=4 —apsigno(t;), o(t;)Ao; >0, |u(t;)| <1, (5)
—Qu signo(t;), o(t;)Ao; <0, |u(t;)] < 1.

Theorem 1. [6, 10] Let 7 be sufficiently small, then after a finite-time transient
process algorithm (5) guarantees sliding accuracy |o| < a172, |¢| < aa7 for some
ay,as > 0.

In comparison, the standard 1-sliding algorithm guarantees only the inequalities
of the form |o| < a17, || < as.

Let 9 > 0 be the maximum of the possible error in the measurements of o. It
may be shown that, with 7 fixed and ¢ sufficiently small, measurement errors do
not interfere with the algorithm performance. But the sliding accuracy deteriorates
when 7 decreases and takes on values T < 1§/Kj;. It happens because |¢| <
Knr|u — teq| < 2K, and the measurement error is certain to exceed the increment
of 0. The problem is aggravated in case § cannot be estimated. A typical dependence
of the sliding error on § is shown qualitatively in Figure 1.

To overcome the problem, introduce the following measurement step feedback:

TM )\|(T(ti)| L > Twm,
T=ti1 —t; = Mot ?, mm < XNo(t)] ? < 1ars (6)

Tm » Mo(t:)] ? < T,

where 0 < 7, < a7, A >0, p > 0.
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Sliding Accuracy Sliding Accuracy
2K, ol 2K, oty
ah _ 00) :
0 2K, 3 02 0@ T

Fig. 1. Sliding accuracy of controller (5) with measurement errors.

Sliding Accuracy Sliding Accuracy

at,?

0 2K, 5 0 T
Fig. 2. Accuracy of controller (5) (6) with p = 0.5.

Theorem 2. Let constant parameters 7as, A be sufficiently small, A > 1/2. Then,
after a finite-time transient process, algorithm (5), (6) guarantees, for § < dy < oy,
and 7, sufficiently small, the following:

lo| < max (angm b152/(2p+1)) ;|6 < max (asz,b251/(2p+1)) ; (7)
where a1, as, b1, by are some positive constants dependent on p, A.

Theorem 2 means that algorithm (5), (6) is a second order real sliding algorithm
[10] which is robust with respect to measurements errors. The new typical depen-
dence of the sliding error on § is shown qualitatively in Figure 2. Note that this
algorithm does not need any evaluation of the measurement errors.

Having substituted 7,, = 0 into (7), receive some ideal dependence on ¢, which
is shown qualitatively for different p in Figure 3. With p < 1/2 algorithm (5), (6)
does not guarantee sup |o| — 0 with 7,, — 0 even when 6 — 0. Whereas the best
choice of p is obviously p = 0.5, the proper choice of ) is certainly a subject for some
optimization problem. Naturally, the algorithm may be simplified when ¢ is given a
priori. In that case 7 may be chosen as a function of §.

Theorem 3. Let 7 = X672, Ao > 0, and ap;/a,, be sufficiently large, then
algorithm (5) guarantees after a finite-time transient process that |o] < a1d, |d] <
a20'/2 for some positive constants ai, as.
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Sliding Accuracy
p>05

p=05

p<05

0 3
Fig. 3. Accuracy of controller (5), (6) for different p > 0.

Twisting algorithm in systems with relative degree 2. There are two
ways to provide for o = 0 by means of the twisting algorithm when the system has
relative degree 2 with respect to o. The latter means that o, = ¢/, =0, and ], > 0
for definiteness. One way is to keep some auxiliary constraint like o + ¢ = 0 in the
second order sliding, providing, thus, for keeping 0 = 0 in an asymptotically stable
3-sliding mode. The other is to form a discontinuous control signal by means of a
modified twisting algorithm

—ayprsigno(t;), o(t;)Aoc; > 0;
u =
—asigno(t;), o(t;)Aoc; <0;
where ap; > «;, > 0. The corresponding ideal sliding algorithm using values of ¢ is

formed in an obvious way, also some formal statement of the problem similar to the
one in Section 2 may be easily developed.

Weakening the smoothness conditions. The smoothness conditions on the
functions f and ¢ may be significantly weakened [6]: only Lipschitzian property is
required for f and partial derivatives of . It may be shown that in case a system
is linearly dependent on control, ® = (a;|z;| + h), a; > 0, h > 0 may be used in (3)
instead of a smooth ® described in Section 2.

4. ILLUSTRATIVE EXAMPLE

Consider a simple example of robot manipulator control (Figure 4). Let a light
hard rod be suspended by its end O and assume that it rotates around this end
without any friction. All motions are restricted to some vertical plane. A load of
known mass m is moving along the rod. Its distance from O equals R(t) and is not
measured. An engine is connected to the rod and transmits a torque v to it. Torque
v is considered as control. The task is to track function x. given in real time by the
angular coordinate z of the rod.
It is easy to see that the system is described by the equation
. k.1
T = —QEZ‘ — gﬁ sinz + mv
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Fig. 4. Illustrative example.

where g = 9.81 is the gravitational constant. Suppose that 0 < R,, < R < Ry, R,
R, i. and i, are bounded, z — x, is available. In the following & - &, is supposed
to be measured, otherwise some special robust differentiators may be implemented
[3, 11]. The corresponding constants determine a class of objects to be controlled
by the algorithm under design.

All parameters of the algorithm may be evaluated in accordance with the above-
mentioned constants restricting unknown functions R(t) and z.(¢) and their deriva-
tives. Experience shows that the parameter values are usually excessively large in
this case. The easiest way to find the parameters is to tune the parameters during
simulation. Of course, the controlled class may occur to be some-what smaller in
that case, but it will still allow significant disturbances of the considered realizations
of R and z.. It was taken for simulation that m = 1, and

R=1+0.25sin4t + 0.5cos't, Z. = 0.08sint + 0.12 cos 0.3¢.
A new control u is introduced

v =301+ x|+ [E)u,  o=[(E—d)+2(x—x)]/(1+ |z| + |2]),

— u(ty), Ju(t;)] > 1,
u(t) =< — Tsigno(t;),o(t;) Aoy > 0, |u(t;)]

<1,
—signo(t;),o(t;)Ao; <0, fu(t;)] <1

0.02, 0.015]0(£;)|*° > 0.02,
tivi —ti =14 0.015]|0(t:)]"®, 7 < 0.015 |0 (t;)]>® < 0.02,
Ty 0.015 |0 (t)]°° < T,

where 7, is 2:107% and less. The initial conditions z(0) = 0, z.(0) = 3, u(0) = 0
were taken.

The tracking precision |z —x.| < 5.7-107° and the sliding accuracy |o| < 5.7-107°
were achieved with 7,,, = 2-107%. 7,,, having been changing from 2-107% to 2-107°
and 2-1076, the sliding accuracy changed from 7.08-107% to 7.52-10~® and 7.51-10~1°
respectively.

It follows from the simulation data that in the steady state sup |o| is proportional
to 0 with a coefficient close to 2 — 2.5. For example, for § = 0.05: sup|o| = 0.12,
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U, Ueq X

Measurement error = 0

Measurement error =

U, Ueq x

aa Measurement error = 0.01 u Measurement error = 0.01
s

Fig. 5. Algorithm performance with 6 = 0 and § = 0.01.

for 6 = 0.01: suplo| = 0.024, for 6 = 0.001: sup|o| = 0.0025, for 6 = 0.0005:
sup |o| = 0.00088. Functions u(t), ueq(t) and z(t), z.(t) for the measurement errors
6 =0, § = 0.01 are shown in Figure 5. It has to be mentioned that with 7 = const =
2-10* a system failure happens already with § = 0.003. The smaller constant T,
the smaller critical § in that case (Figure 1).

The algorithm considered is a second order real sliding algorithm with respect to
the constraint function o. It also provides for the second order precision of tracking
in the steady mode, but it does not satisfy the definition of a second order real sliding
algorithm with respect to the constraint function ¢’ = x—z,, for its convergence time
tends to infinity when algorithm parameter 7,,, — 0 (its convergence is exponential-

like).

5. CONCLUSIONS AND REMARKS

The measurement step feedback principle was proposed and was shown to make the
twisting algorithm insensitive with respect to measurement errors. That method may
be applied to any real-time sliding controllers using first differences [1, 2, 5, 6, 10, 12],
providing the necessary basis for their practical applications.

Like its predecessor, the achieved modified twisting algorithm provides under
uncertainty conditions, the second order of sliding accuracy with respect to the
measurement step in the absence of measurement errors. Asymptotic estimations
of the sliding accuracy having been obtained, the best choice of a key parameter is
found.

The proposed algorithm may be successfully used in solving various tracking prob-
lems and problems of VSS theory. It features the main advantages of the standard
sliding mode control and at the same time precludes discontinuity of control. It also
provides for higher accuracy of constraint fulfillment with small measurement errors.
However, with significant measurement errors that new sliding algorithm may prove
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to be less precise than the standard 1-sliding mode.

6. APPENDICES

6.1. Auxiliary notions

Introduce some notions and reasoning useful for further consideration. Let I" be a
segment of a piece-wise smooth curve lying in the plane o, ¢, its ends being the
only intersections with the axis ¢ = 0. We call it a majorant curve for differential
inclusion %(a, ¢) € F(o0,0), if no phase trajectory of the inclusion may leave the
compact part of the plane bounded by I' and the axis without intersecting the axis.

Assume now that the half-plane o > 0 is partitioned into open sets O; by a finite
number of smooth curves ;, including the ray ¢ = 0, ¢ > 0 and the line o = 0. Let
the constants Rps; > 0, R, < Ry be juxtaposed with every O;, K > 0. Consider
a differential inclusion

d . . . .
5(070—) € F(U,J) = (KO’, I:mlnj:(rr,é')eoj Rm]a maxj.(s,6)€0; RM]]) . (8)
In all cases of further consideration phase trajectories of the vector field
Rmivd > 0;
MF(O',(j'):(Ké',—MR), Mg = (O’,()’)EOi (9)
Rriyo <0,

constitute majorants of the differential inclusion (8) in the half-plane o > 0. That
reasoning may obviously be transferred to the case o < 0.

Let G, be an operator constituted by a combination of the linear coordinate
transformation g, : (0,6) — (n?s,1¢), n > 0 and the time transformation ¢ — nt.
Operator G,, performs transformation of any inclusion of the form & € Q(o,¢) into
the inclusion & € Q(n~20,n"15).

6.2. Trajectories of the twisting algorithm

It is easy to demonstrate that, with 7 sufficiently small, every trajectory of system
(2), (5) reaches the constraint o = 0 in finite time with |u| < 1+ ap7. After that
the system state will stay in the region |o| < oy, |u| < 1+ ap7 forever. For the
ideal twisting algorithm (4) the region |o| < 0¢, |u| < 1 will be attractive.

Consider the performance of the ideal twisting algorithm (4) in the region |o| <
oo, Ju| < 1. Calculate, according to Section 3,

s [—Co, Co] + [Km,K]\/[ML. (10)

The operations on the sets are understood here in a natural way. Assume now that
at the initial time o = 0, |u] < 1. Tt is easy to see that with o # 0, |o] < ¢, the
equality v = 1 may be reached only with ¢signo < —K,,(1 — ug). Therefore

—[Kman — Co, Kpraps + Colsigno, o6 > 0,
e —[Kmam— Co, Kprap, + Colsigno, — Kp(1 —ug) < dsigno <0, (11)
—[Km — Co, Kpram + Colsigno, dsigno < -Km (1 — ug).
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G
~N\O o

Fig. 6. Twisting algorithm trajectories.

According to the reasonings of 6.1., the majorant of inclusion ( 11) may be
determined as a continuous curve consisting of the curves |o| + 0.562/(K,,an —
Cp signo) = const. Continuing the majorant from one half-plane to another a
twisting curve, shown in Figure 6, is achieved. Any real trajectory of the system
will inevitably twist “inside“ such a majorant curve. Designate by ¢, 61, 02, .. .the
points of the majorant intersections with the axis o = 0. It is easy to see that

Kyap, + Cy
KmOéM — CO

Oi+1
o}

< 1.

The convergence time is estimated by the sum > |6;|/(Kmaum — Cp), which is
bounded. Details may be found in [6, 13].

Now consider algorithm (5) of real sliding. The movement is now described by
inclusion (10), where

—aprsigno(t;), o(t;) Aoy >0,
U= —au signo(t;), o(t;) Ao; <0, dsigno > —K,, (1 — ug — apar),
—[l—aptm, an]signo(t;), o(t;) Ac; <0, signo < —K,,, (1—ug—an7ar)-

Here 73, > 0 is some sufficiently small upper bound of 7. For sufficiently small 7
all the trajectories after a finite time stay in the region |o| < o9, |d| < K, (1 —ug —
aps7ar). This may be shown by the majorant technique. After that |u| < 1 and

) { —aprsigno(t;), o(t;)Ao; > 0,
u =

(12)
—a signo(t;), o(t;)Ac; <0.

The motion is now described by the differential inclusion (10), (12). Fix a concrete
small value 7 = 79. There is a bounded set 2., such that all trajectories of inclusion
(10), ( 12) within finite time penetrate into ., to stay there. The corresponding
sliding accuracy is given by sup{o|(c,d) € Q,,} and sup{s|(c,d) € Q. }.

6.3. Plan of the proofs

All the Theorems are proved in the same way. Consider the proof of Theorem 3,
which is the most difficult. Examine the trajectories of the controlled differential
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inclusion (10), (5), (6), p > 0.5. It is easy to show that with ¢ + Kps(k + 1)7as +
0.5(K pan +Co)T3, < 0o no trajectory leaves the region |o| < oy once the manifold
o = 0 has been reached.

Let us say that there is a switching error at the time t € [t;,t;41), where t;, t;11 are
the measurement times, if sign(o(t;) — a(ti—1)) # signd(¢), or signa(t;) # signo(t).
Here o(t;), o(t;—1) are the measurement results, ¢;11 — t; = 7(c(¢;)). Denote by E,
and E; some sets lying in the plane o, ¢, and including all the points of possible
error in sign o and sign & correspondingly, O, = {(o,¢)|0? + 62 < r}.

Here are the main stages of the proof of Theorem 2.

Lemma 4. For any k > 1 with A, 7, sufficiently small there exists r = r(, 7.n),
such that » — 0 when 6 — 0, 7, — 0, and the sets FE,, F; may be taken in the
form

E, ={(0,6)|6%/|o| > kYU O,, Es = {(0,0)|6%/|0| ¢ [k, k]} UO,. (13)

Lemma 5. Let E,, E; be given by (13). Then with k sufficiently large any
trajectory of (13), (5), (6) accesses O, in finite time, which does not depend on r
and after that it stays inside the ball O,,, where ry = r1(r) > r, r; — 0 when r — 0.

Choose some 1 = 1(9, 7, ) so that G, (O,) be bounded and the diameter of G, (O, )
not tend to 0 when § — 0, 7,,, — 0. Apply operator G, and consider the movement
on the image plane. Any set of the form 62/|o| € 2, Q C IR, is invariant with respect
to the operator G, for any 7. According to Lemma 5 there is a ball Op attracting
the trajectories in finite time. Then after the inverse transformation G, -1 achieve
that the sliding accuracy is given by the inequalities |o| < n72R, |6| < n ! R.

6.4. Proof of Lemma 5

Instead of the differential inclusion (10), (5), ( 6) consider a differential equation

(Kpraps + Cp) sign g, (0,06) € Ej,
—(Kmam — Cy)signo, 06 >0, (0,0)€ E;\ Ey,
o= —(KMaM+Co)SigHU, oo <0, O’,O-')GEC',\EU, (14)

U,é’) ¢ E(, UEU,
O',(:)') §é E(;UEU,

—(Kap — Co)signo, o6 >0,

(
(
(
—(Kyam + Co)signo, 06 <0, (

It is easy to see that the phase trajectories of (14) constitute majorant curves for
inclusion (10), (5), (6) in the half-planes o > 0, & < 0.

The trajectory of (14) has successive intersections 61, &2, ... with the axis o = 0.
The region 62/|o| € [k, k] is invariant with respect to G,. This means that the
linear operator G, transforms trajectories of (14) into trajectories of (14) for points
of image and preimage being outside of O,.. Hence, the value of |6;41/d;] is constant
outside the ball O,.. Obviously, for k sufficiently large, |5;41/6;| < 1, and that proves
the Lemma. O
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6.5. Proof of Lemma 4
Lemma 6. Lemma 4 is true with respect to F,.

Any error in sign o may occur in the area |o| < § and at the points which may be
accessed from this area with not more than one measurement in the area (the point
is accessed without measurement if the last measurement was performed before the
trajectory entered the area).

Lemma 6 follows from a number of simple propositions. Consider a differential
inclusion

o€ [AmaAJWL (15)

and assume that the region of admissible points is bounded: |o| < oy, |0] < .
Let (o(t),c(t)) be a trajectory of (15), (¢;,0i,6;), i = 1,2,3 be the times and the
coordinates of the switching points, 7, = t;11 —¢; > 0.
Proposition 7. Let 7 = A(|o1| 4+ 6)?, A, >0, 61 >0, 01 < 0, then

1. with p > 1, X sufficiently small: sup{os|o; < 0} <§;

2. with 0.5 < p < 1, A sufficiently small, o7 < 0: g2 > §,

52> (1= p)1=P(20)° A~ (02 — 8)1 7.

Proposition 8. Let m=7(g;), |g; — 01| < J, 7 be given by (11), Aé” < 7,
A, >0,01>0,0 € [—(5, (5] Then oy < (5+0"2T(26) +05AM(7’(2(5) 2.

Proposition 9. Let 1y=m5=7,,, 1 > 0. Then

|0'3 — 0'1| <2017 + 2AMT731, |0'3 — O'1| < 2A0Tm.

The Propositions are proved by successive use of the trivial inequalities

0171 + 054,72 < 09 — o1 < 61711 + 0.5A T, (16)

AmTlgd'gfé'lSAMTl. (17)

In the second statement of Proposition 7 Ay is excluded by the simple reasoning
that with A sufficiently small, p > 0.5 and o bounded |o| + § > Ay A2(|o| +6)%°. O

Lemma 10. Lemma 4 is true with respect to F,.

It is easy to see that any error in the sign of 6; may occur only within the area
lo1] < 26/ min{7(¢)|¢ € [0 — d,0 + ]} and at the points which may be accessed
from that area with not more than two measurements. The following Propositions
are needed here.
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Proposition 11. Let |o1]| > §, 7, = A(|oi| +0)?, i = 1,2, then for any k& > 0 the
increments of o and ¢ satisfy

<2
o3 — 1| S A (k) 61171, (65— 61] < AGa(k) |61 with - > &,

|o1]

or
ot

o1

los — 01| < ACL(k) o | T2 165 — 64] < AGo(k) |o1]”  with <kl

Here &1, &9, (1, (5 are some decreasing positive functions of k.

This Proposition is a result of routine successive calculation with usage of (16),
(17). The next Proposition is a direct consequence of the previous one.

Proposition 12. With sufficiently small A under the conditions of Proposition 11
the following inequalities are satisfied:

-2

1

.2 2 2
. o o . (1-\Dy) (1-\Dy)
Lowith 2 k>0 22 min (RIS B0,

.2 -2 2
. o1 _1 o3 —1 4 4N\
2. with or <k oo < max (k 1B 71_>\E1> .

. 2p—1 . 2p—1 . 2p-1
Here Dy = glajy[ , Dy = £2UM , By = CIUM .

The same propositions are true with increments oo — o1, o9 — 1. It follows from
Propositions 9,12 that for any region Q = {(c,¢)|62%/|o| € [k, k]} U O, the region
of the points accessible from 2 with not more than 2 measurements is included into
another set Q; = {(0,)|62/|o|[k;*, k1]} U O,, where k; — oo, and 7, — 0 while
k—oo,7—0,A\—0, 7, — 0,5 — 0. Lemma 10 follows now from Propositions 7
to 9 and from the remark at the beginning of Lemma 10 proof. a

6.6. Completion of Theorem 2 proof

Substantiate the last stage of the plan 6.3.. According to Lemma 4, the error region
consists of the set ¢%/|o| ¢ [k~!, k] which is invariant with respect to operator G,
and of a bounded set included into O,. In agreement with 6.4, the latter set may
be represented as a union of specific sets. Calculate the images of these sets after
the transformation G,. Operator G, transforms any set given by an inequality
P(0,6) <0 into the set P(n=20,n715) < 0.

The sets are the intersections of the set 62/|o| € [k, k] with the following sets.

1. o] <9,
2. 6| <20/X/(|o| = d)r&|o| > 4,

3. the set corresponding to Proposition 7:
61> (1= p)1=*(20)pA"M(Jo| = 8)', o] > 5 with p < 1,

4. the set |o| <6 + |o|7(25) + 0.5A4,,7(26)? corresponding to Proposition 8;
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5. the set family of the points accessible from the measurement point (o1, 61) with
not more than one measurement on the way (Propositions 9,11 in accordance
with formula for 7) where (01, d1) takes on values in the sets 1) —4). The set
corresponding to Proposition 11 is

Sa. o — o1 < A (B7Y) |01 16 — 1] < Aa(k1) o[
The set corresponding to Proposition 9 is
5b. |0 — 01| < 2617 + 24072, |6 — 61| < 2A0Tm-

After the transformation G,, the set 6%/|o| € [k~!, k] does not change. Set 1)
transfers to |o| < n?d. Set 2) transfers to

6] < 20*716/A/(lo| = 1°6)”, |o] > n?s.

Set 3) transfers to
lo| > n? 711 = p) =P (20)° A" (o] — n?6) 77, |o| > n*S with 0.5 < p < 1.

Set 4) transfers to

lo| < 7?6 +n|a|T(26) + 0.5n Apr7(26)%
Set ba) transfers to

o — o1 SNk (o [ |6 — 60| < A (kT n' T e[
set 5b) transfers to
lo — 01| < 20617m + 202 Ay, |6 — 1] < 20 AN Tm,

where (01, 61) belongs now to the images of sets 1) and 2).

Consider two cases: a) § < 72°t' n = 7.1 and b) 7, < /@D 5 =
§—1/(r+1) Tt is easy to see that in both cases the image of the set Q is bounded
with p > 0.5. Apply Lemma 5 with images of F,, Es; substituted for E,, E;, and
receive that there is a bounded set attracting in finite time. After the inverse trans-
formation the desired evaluation of sliding accuracy is achieved in both cases. To
get the general estimation, it is sufficient now to utilize the fact that the values of
sup |o| and sup |d| in the steady mode are monotonously increasing functions of 4.

O

6.7. On the other proofs

Theorem 1 may be considered as a particular case of Theorem 2. Theorem 3 is
proved in a very similar way by the transformation G, with n = 512,

Remark. As follows from (16), (17) and the description of set 5a), with 0 < p <
0.5 the error domain obtained according to the above reasoning, fills all the plane
after transformation G, n — co. Hence, the applied method does not work here.
Simulation shows that in that case sliding accuracy does not tend to zero when
0—0, 7, —0.

(Received December 11, 1998.)
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