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Czech Republic, e-mail: myris@myris.cz. — Sole agent for all “western” countries: Kubon
& Sagner, P.O. Box 34 01 08, D-8 000 München 34, F.R.G.

Published in February 2000.

c© Institute of Information Theory and Automation of the Academy of Sciences of the
Czech Republic, Prague 2000.

http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/361.html


KY BERNET I K A — V OL UME 3 6 ( 2 0 0 0 ) , N UM B ER 1 , PAGE S 6 3 – 7 5

APPLICATION OF A SECOND ORDER VSC
TO NONLINEAR SYSTEMS IN MULTI–INPUT
PARAMETRIC–PURE–FEEDBACK FORM

Antonella Ferrara and Luisa Giacomini

The use of a multi-input control design procedure for uncertain nonlinear systems ex-
pressible in multi-input parametric-pure feedback form to determine the control law for
a class of mechanical systems is described in this paper. The proposed procedure, based
on the well-known backstepping design technique, relies on the possibility of extending
to multi-input uncertain systems a second order sliding mode control approach recently
developed, thus reducing the computational load, as well as increasing robustness.

1. INTRODUCTION

Recently, the attention of some researchers has been focused on the possibility of
generating higher order sliding modes (Levant [9]) and appreciable results have been
attained in case of sliding regimes [15] of the second order (i. e., S = Ṡ = 0 in finite
time, with only S measurable and a control discontinuous on S directly affecting S̈)
(see Bartolini et al [3] and Levant [10]). To be more specific, a second order sliding
mode control (SOSMC) problem is that of steering to zero asymptotically the state
of the uncertain system described by

{
ẋi = xi+1, i = 1, . . . , n− 1

ẋn = φ0(x1, . . . , xn) + β0(x1, . . . , xn)u
(1)

with φ0(·), β0(·) uncertain scalar functions with known upper and lower bounds
(β0(·) with known sign), and unmeasurable xn. Yet, if the system to control in-
stead of being expressible in the form (1) has uncertainties of more general type,
for instance appearing at each state equation, the solution procedure suggested in
Bartolini et al [2] is no more directly applicable. In case the system, though nonlin-
ear and with some degree of uncertainty, is expressible in the so-called parametric-
strict or parametric-pure feedback forms [6, 11, 12], then a combined backstep-
ping/SOSMC design procedure can be conceived to solve the problem, as indicated
in Bartolini et al [1].
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The aim of this paper is to extend the results of Bartolini et al [1] to the case
of multi-input nonlinear systems with parameter uncertainties, making reference, in
particular, to some common mechanical systems typically expressible in the multi-
input parametric-pure feedback form. As outlined in Kokotović et al [8], the adaptive
backstepping design can be easily extended to this class of systems provided that the
matrix which pre-multiplies the control vector (i. e., the control matrix) is nonsingu-
lar and known. In particular cases of a certain applicative significance, the solution
to the multi-input SOSMC problem appears to be particularly simple [4] and suit-
able to be exploited within a backstepping framework. It is the case of positive (or
negative) definite and dominant diagonal control matrix.

The overall control design procedure for multi-input uncertain nonlinear systems
we propose consists in a modified state transformation which retains ρi − 1 trans-
formed state equations (ρi being the number of equations of each block of the original
system form), for each block, equal to those obtained via the backstepping proce-
dure, coupling them with two auxiliary equations, obtained by selecting, for each
block, a suitably sliding manifold, and considering its first and second derivative.
By grouping the auxiliary equations associated with each block, an uncertain sec-
ond order multi-input nonlinear auxiliary system is obtained belonging to the class
of systems to which the extension to the multi-input case of the SOSMC strategy
indicated in Bartolini et al [4] is applicable. In particular, if the control matrix,
apart from being positive definite, is also dominant diagonal, then m single-input
SOSM control signals (m being the number of blocks) need to be used to attain the
finite time reaching of the origin of the auxiliary system state space, and the same
convergence results as in the multi-input purely backstepping design are obtained,
even if the type of uncertainty dealt with is more general than that tractable via the
backstepping procedure.

To show the effectiveness of the proposed control design procedure, the applica-
tion to a two-link robotic arm with flexible joints is dealt with in this paper [5]. Such
a system turns out to be expressible in multi-input parametric-pure feedback form.
If some uncertainties, apart from the parameters vector components, are allowed,
the basic backstepping procedure does not apply, while the procedure proposed in
this paper can be used, provided some bounds on the relevant uncertain quantities
are determinable. Note that the resulting control vector signal is not affected by
the chattering effect since it results in being continuous, though with discontinuous
derivatives of its components.

2. PROBLEM STATEMENT

A multi-input dynamical system can be described by the system of differential equa-
tions

ẋ(t) = f(x(t), t) + φx(x(t), t)T θ + (b(x(t), t) + q(x(t), t)T θ) u(t) (2)

where x(t) ∈ IRn, u ∈ IRm, f(x(t), t) ∈ IRn, b(x(t), t) ∈ IRn×m, and φx(x(t), t),
q(x(t), t) belonging to IRp×n are known smooth matrix functions, while the constant
vector θ ∈ IRp represents some parametric uncertainties; θ = [θ . . . θ] ∈ IRp×m.
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The general form can be transformed into an equivalent one, more suitable for the
determination of the solution to the control problem, using an almost algorithmic
procedure by Su et al [14]. The transformed state vector can be suitably partitioned
in m subsystems (blocks), each of order ρi,

∑m
i=1 ρi = n. Thus, the multi-input

pure-feedback form can be expressed as





ẋγi+j = xγi+j+1 + φT
γi+j(x1, . . . , xρ1−ρi+j+1, . . . ,

xγm+1 , . . . , xγm+1−ρi+j+1)θ

ẋγi+1 =
∑m

j=1(βi,j(x) + qT
i,j(x) θ)uj + φT

γi+1
(x) θ

(3)

with i = 1, . . . , m, γk =
∑k−1

l=1 ρl, where x(t) = [x1(t), . . . , xγm
(t)]T ∈ IRn, θ =

[θ1, . . . , θp]T ∈ IRp vector of constant unknown parameters, and φγi+1(x(t)) ∈ IRp.
Let us define

β(x(t), v) =




β1,1 + qT
1,1v . . . β1,m + qT

1,mv
... . . .

...
βm,1 + qT

m,1v . . . βm,m + qT
m,mv


 ∈ IRm×m

where βi,j are known smooth nonlinear functions (note that in the definition of
β(x(t), v) it has been used the variable v ∈ IRp to be substituted in the sequel either
by θ or by the adapted vector θ̂). Moreover β(x(t), θ) is non singular. Note also
that the assumption of perfect knowledge of βi,j will be dispensed with later.

The control objective is to make the output signals νi(t) = xγi+1(t), i = 1, . . . ,m,
track the smooth reference trajectories yi,r(t) (tracking objective).

3. SOME PRELIMINARIES ON THE MULTI–INPUT BACKSTEPPING
DESIGN PROCEDURE

The backstepping design procedure in the case of multi-input systems and with refer-
ence to a tracking objective consists in the step-by-step construction of a transformed
system with state

zγi+j+1 = xγi+j+1 − y
(j)
i,r − αγi+j (4)

i = 1, . . . , m, j = 0, . . . , ρi − 1, where αγi+j is the so-called virtual control signal at
the design step γi+j, and y

(j)
i,r is the derivative of order j of the signal yi,r, which is the

reference for the output νi = xγi+1 (note that, for the sake of brevity, from now on
the dependence on t may be sometimes omitted). With this state transformation the
original tracking problem is transformed into a stabilization problem, i. e., αγi+j is
computed at step γi + j to drive z = [z1, . . . , zn]T to the equilibrium state [0, . . . , 0]T .
This latter is proved to be stable through a standard Lyapunov analysis.

For the reader’s convenience, let us recall the relevant relationships of the back-
stepping procedure for systems in multi-input pure-feedback form at step γi + j as
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in Kokotović et al [8], i. e.,

zγi+j+1 = xγi+j+1 − y
(j)
i,r − αγi+j (5)

Vγi+j =
γi+j∑

k=1

1
2

z2
k +

1
2

(θ̂ − θ)T Γ−1(θ̂ − θ) (6)

αγi+j = −zγi+j−1 − (cγi+j + sγi+j)zγi+j + ωT
γi+j(

γi+j−1∑

k=1

zk+1
∂αk

∂θ̂
Γ− θ̂

)
+

m∑

k=1

∂αγi+j−1

∂xk
xk+1

+
γi+j+1∑

k=1

∂αγi+j−1

∂yk−1
i,r

yk
i,r +

∂αγi+j−1

∂θ̂
τγi+j (7)

sγi+j = κγi+j |ωγi+j |22 (8)

ωγi+j = φγi+j −
m∑

k=1

∂αγi+j−1

∂xk
φk (9)

τγi+j = Γzγi+jωγi+j + τγi+j−1 (10)

żγi+j = −zγi+j−1 − cγi+jzγi+j + zγi+j+1 + ωT
γi+j θ̃

+
j−1∑

k=1

zk+1
∂αγi+j

∂θ̂
Γωγi+j − ∂αγk

∂θ̂
(τγi+j − ˙̂

θ)

with i = 1, . . . , m, j = 0, . . . , ρi−1, αγi = 0, τ0 = [0, . . . , 0]T ∈ IRp. The terms cγi+j

are design constants, while τγi+j is the so-called tuning function at step γi + j.
Note that, each time one reaches the equation relevant to ẋγi+j (since αγi = 0)

the iterative procedure considers zγi+1 = xγi+1 − yi,r.

4. THE PROPOSED MODIFIED STATE TRANSFORMATION

The standard multi-input backstepping procedure requires that the computations
relevant to step γi + j are repeated n times, so that, at step n, one obtains the
actual control

u(t) = β(x(t), θ̂)−1α(x(t)) + y(∗)
r (t) (11)

β(x(t), v) =




(
1− ∂αρ1−1

∂xρ1

)
β1 −

∑m
k=2

∂αρ1−1

∂xγk+1
βk

...(
1− ∂αn−1

∂xn

)
βm −∑m−1

k=1
∂αn−1
∂xγk+1

βk


 (12)
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with βi ith row of β(x(t)), y
(∗)
r = [y(ρ1)

1,r (t), . . . , y
(ρm)
m,r (t)]T , and

α(x(t)) =




αρ1 −
( ∑m

k=1
∂αρ1−1

∂xγk+1
βk

)
u

...
αn −

( ∑m
k=1

∂αn−1
∂xγk+1

βk

)
u


 (13)

In the modified design procedure we propose, the procedure (5) – (10) is instead
stopped m times, each time at step γi+1−1, computing αγi+1−1, and the transformed
state is completed to obtain γm+1+m state variables with the 2m auxiliary variables

yi,1 = xγi+1 − y
(ρi)
i,r − αγi+1−1 + c̃γi+1−1zγi+1−1 (14)

yi,2 = ẏi,1, i = 1, . . . ,m (15)

where c̃γi+1−1 are constants to be suitably choosen since they affect the dynamics
of zγi+1−1, and, together with other constants, the stability performances of the
controlled system, as it will become apparent in the sequel. With this transformation

żγi+1−1 = −zγi+1−2 − (cγi+1−1 + sγi+1−1 + c̃γi−1)zγi+1−1 + yi,1

+(θ − θ̂)T ωγi+1−1 −
∂αγi+1−2

∂θ̂
(τγi+1−1 − ˙̂

θ)

+
ρi−4∑

k=1

zγi+k
∂αγi+k

∂θ̂
Γωγi+1−1. (16)

This allows us to write the modified transformed system state space representation
as

ż = A(z, θ̂)z + W (z, θ̂)T θ̃ + D(z, θ̂)T ˙̂
θ + b̃y (17)

ẏ = F (y, z, θ, θ̂, u) + B(y, z, θ, θ̂)u̇ (18)

where z = [z1, . . . , zγi+1−1, zγi+1+1, . . . , zγm+1−1]T , y = [y1,1, . . . , ym,1, y1,2, . . . , ym,2]T

∈ IR2m, A(z, θ̂) ∈ IR(γm+1−m)×(γm+1−m), W (z, θ̂), D(z, θ̂), F (y, z, θ, θ̂, u) suitable
functions vectors, B(y, z, θ, θ̂) = [Om×m βT (x(t), θ̂)]T , and

b̃T =




O(ρ1−1)×2m 1 . . . O(ρm−1)×2m O1×(2m−1)

... 1
. . . 0




with Ol×h null matrix of dimension l × h. By selecting the adaptation mechanism

as ˙̂
θ = τγm+1−1 = ΓW (z, θ̂)z, with τγi = [0, . . . , 0] ∈ IRp, equation (17) reduces to

the closed loop form ż = Az(z, θ̂)z + W (z, θ̂)T θ̃ + b̃y, Az such that AT
z + Az is a

diagonal matrix.
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5. THE ROLE OF MULTI–INPUT SOSMC

Now, consider system (18). Let S := y1 = [y1,1, . . . , ym,1]T , ẏ1 = y2 = [y1,2, . . . ,

ym,2]T ∈ IRm and χ = [yT , zT , θT , θ̂T ]T . Then, the second order equation in (18)
can be written in a more compact form as

{
ẏ1 = y2

ẏ2 = F (χ, u) + B(χ) u̇.
(19)

The control problem can be restated as that of steering y1, y2 to zero in finite time
in spite of the uncertainties in the vector field F (χ, u) and in the matrix B(χ), and
of the non availability of the vector y2. Note that S = 0 can be regarded as an
m-dimensional sliding manifold. Thus, the problem is a second order sliding mode
control problem, according to the definition mentioned in the Introduction.

Assume that, the vector field FT (χ, u) = [F1(χ, u), . . . , Fm(χ, u)] is uncertain
but such that its components result in being bounded by known functions in such
a way that the second order sliding mode control problem relevant to the auxiliary
single input system {

ẏi,1 = yi,2

ẏi,2 = Fi(χ, u) + ηi

(20)

(i. e., the problem of steering yi,1 and yi,2 to zero in finite time by measuring only
yi,1) has a solution. This problem has been dealt with in the cited papers, [2, 3]
taking into account different types of uncertainty bounds, and, accordingly, different
operating procedure to implement the control strategy. In this paper, to keep the
treatment easier, it is assumed that

|Fi(χ, u)| < F̄i (21)

where F̄i is a known constant.
Matrix B(χ) (and, consequentely, matrix β(x(t))) is assumed, from now on, to be

uncertain, but with known bounds on its entries bij , and, for the sake of simplicity,
positive definite. Actually, more general cases could be dealt with: at least all those
indicated in Bartolini et al [4] to which the extension of SOSMC to the multi-input
case is feasible. Moreover, since it is sufficient for the applications we are interested
in, we suppose that B(χ) is not only positive definite but also dominant diagonal,
i. e.

0 <

m∑

j=1,j 6=i

|bij | < bii i = 1, . . . , m. (22)

Then, equation (19) can be rewritten, component-wise, as

ẏi,2 = Fi(χ, u) +
m∑

j=1,j 6=i

bij u̇j + biiu̇i. (23)

In Bartolini et al [2] it is proved that, in the case of a SISO second order uncertain
systems with incomplete state measure, the control u(t) can be chosen as a bang-bang



Application of a Second Order VSC to Nonlinear Systems . . . 69

control, [7] switching between two values −UMax, +UMax, relying on a commutation
logic based on the available state only. So, if instead of equation (23) we had

ẏi,2 = Fi(χ, u) + bii(χ)u̇i (24)

with Fi(χ, u) as in (21), the second order sliding mode would be attained, for in-
stance, by means of the following algorithm, based on the assumption of having the
capability of detecting the extremal values of yi,1 (e. g., by means of peak detectors).

Algorithm 1.

i) Set δ∗i ∈ (0, 1] ∩
(
0,

3B1i

B2i

)
, where B1i > 0, B2i ≥ B1i are known lower and

upper bounds of the quantity bii.

ii) Set yi,1Max
= yi,1(0).

Repeat, for any t > 0, the following steps.

iii) If [yi,1(t)− 1
2yi,1Max

][yi,1Max
− yi,1(t)] > 0 then set δi = δ∗i else set δi = 1.

iv) If yi,1(t) is extremal value then set yi,1Max
= yi,1(t).

v) Apply the control law

u̇i(t) = −δiUiMax sign
{

yi,1(t)− 1
2
yi,1Max

}
. (25)

Until the end of the control time interval.

Note that in (25), according to Bartolini et al, [2]

UiMax > max
(

F 1i

δ∗B1i

;
4F 1i

3B1i − δ∗B2i

)
. (26)

Then, consider equation (23) and remember the assumption of diagonal dominance
(22). By analogy with (25), one can assume that any control signal u̇i in (23) has
the form

u̇i = −δiUMax sign
{

yi,1(t)− 1
2
yi,1Max

}
. (27)

As a result, one obtains

ẏi,2 = Fi(χ, u)−
m∑

j=1,j 6=i

bijδjUMax sign
{

yj,1(t)− 1
2
yj,1Max

}

− biiδiUMax sign
{

yi,1(t)− 1
2
yi,1Max

}
(28)

or, analogously,

ẏi,2 = Fi(χ, u)− gi(χ) δiUMax sign
{

yi,1(t)− 1
2
yi,1Max

}
(29)
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where gi1(χ) < gi(x) < gi2(χ) with

gi1(χ) = biim −
m∑

j=1,j 6=i

|bijM
| (30)

gi2(χ) = biiM
+

m∑

j=1,j 6=i

|bijM
| (31)

where bijm
≤ bij ≤ bijM

, bijm
, bijM

known. Note that a value of UMax valid for
any u̇i (UMax = max1≤i≤m UiMax) can be derived taking into account the following
expressions

F ∗Max = max
1≤i≤m

F̄i (32)

ρ = max
1≤i≤m

{
max

[
1

δ∗gi1

;
4

3gi1 − δ∗gi2

]}
(33)

δ∗ ∈ (0 ; 1] ∩
(

0 ; min
1≤i≤m

3gi1

gi2

)
(34)

that is UMax ≥ ρF ∗Max.
Then, a control vector with components as in (27), and UMax satisfying inequal-

ities (32) – (34), is sufficient to steer the vectors y1 and ẏ1 = y2 to zero in finite
time. Summing up, it has been observed that if matrix B(χ) is positive definite and
dominant diagonal, then the multi-input auxiliary system can be splitted into m
single-input systems to which the single-input SOSMC approach described in Bar-
tolini et al [3] can be applied.

Note: The multi-input strategy just recalled, contained in Bartolini et al [4], is
applicable to systems in the double-integrator form (19). Systems in multi-input
parametric-feedback form are not suitable to be controlled through that strategy,
because of the presence of the unmatched uncertainties φT

i θ, i = 1, . . . ,m. The
backstepping procedure is used to generate, from a multi-input parametric-feedback
form, an auxiliary system that has a double-integrator form, to which Algorithm 1
is applicable.

Then, on the whole, the design procedure we propose to solve the control problem
in question can be expressed in algorithmic form as follows.

Algorithm 2.

i) Stop the backstepping procedure for m times at step γi+1 − 1 and compute

the quantities αγi+1−1, zγi+1−1, τγi+1−1. Set ˙̂
θ = τγm+1−1 = ΓW (z, θ̂) z.
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ii) Define the vectors

z̃ = [zρ1−1, . . . , zγi+1−1, . . . , zγm+1−1]T

c̃ = [c̃ρ1−1, . . . , c̃γi+1−1, . . . , c̃γm+1−1]

α̃ = [αρ1−1, . . . , αγi+1−1, . . . , αγm+1−1]T

x̃ = [xρ1 , . . . , xγi+1 , . . . , xγm+1 ]
T

ỹr = [y(ρ1)
1,r , . . . , y

(ρi)
i,r , . . . , y(ρm)

m,r ]T

and compute S = y1 = c̃z̃ + x̃− ỹr − α̃.

iii) Compute the upper bounds of the relevant functions in (18) to obtain the
bounds F i, gi1 and gi2 , i = 1, . . . ,m.

iv) Apply Algorithm 1 to determine each component u̇i of the control vector, with
UiMax = UMax as in (32) – (34).

If Algorithm 2 is applicable, the reaching of the origin of the auxiliary system state
space is guaranteed. Now, the behaviour of the remainder of the transformed system
(namely (17)) needs to be analyzed. To this end, choose, as a Lyapunov function,
V = 1

2 (zT z + (θ− θ̂)T Γ−1(θ− θ̂)). The derivative of V with the virtual functions as

synthetized in procedure (5) – (11), and ˙̂
θ replaced by ΓW (z, θ̂) z results

V̇ =
1
2
zT ż +

1
2
żT z − 1

2
θ̃T Γ−1 ˙̂

θ − 1
2

˙̂
θT Γ−1θ̃

= zT

(
Az + AT

z

2

)
z + zT b̃y. (35)

Due to the skew-symmetry of the matrix Az, Az +AT
z is a negative definite diagonal

matrix, whose elements are functions of ci and c̃i. Defining c0 = mini ci and c̃0 =
mini c̃i, and recalling that b̃y = y1, it yields

V̇ ≤ −c0|z|22 − c̃0|z̃|22 + z̃T y1 (36)

where | · |2 is the Euclidean norm. Then, there exists a ball centered at the origin of
the z-state space, of radius |y1|2

c̃0
, out of which V̇ is surely negative [8] (note that, for

sufficiently high ci, i = 1, . . . , n, the first derivative of V could be negative in all the
state space). In the case of β(x(t)) positive definite and dominant diagonal, vector
y1 is guaranteed to converge to zero in finite time. So, in such a case, the ball will
collapse to the origin in finite time as well.

6. COMPUTATIONAL LOAD

The overall number of steps required by Algorithm 2 are n, as in the standard
backstepping procedure, but the total number of on-line computations required is
reduced. For convenience, S has been written as c̃z̃ + x̃ − ỹr − α̃, but, the reader
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Fig. 1. Double link robotic arm with joint flexibility.

could easily see that x̃− ỹr − α̃ is the expression of [zρ1 , . . . , zγi+1 , . . . , zγm+1 ]
T , i. e.

the z transformation of the backstepping is completely done also in the combined
procedure. What differs is the computation of the control law. In the backstepping
procedure, the on-line computational load required to obtain u is equivalent to that
required to obtain the vector [αρ1−1, . . . , αγi+1−1, . . . , αγm+1−1]T . In the combined
procedure the control law is realized through a peak detector and a signum function.

The calculation previously required off-line (i. e., in the design of the control law)
and on-line (i. e., to generate the control law) are now required off-line only.

7. APPLICATION OF THE CONTROL DESIGN PROCEDURE
TO A TWO–LINK ROBOTIC ARM WITH JOINT FLEXIBILITY

As an example of application, in this section, we consider a two link non planar
robotic arm with flexibility [13] between each joint and the corresponding actuating
device as in Diong et al [5] (Figure 1), i. e., J(x) ẋ = g(x),
where

g(x) =





x2

−k1x1 + k1/n1x3 + m2s2l1(x2
6 + 2x2x6)

sin(x5) + m2s2g cos(x1 + x5)
+(m1s1 + m2l1)g cos(x1)

x4

k1/(jm1n1)x1 − k1/(jm1n
2
1) x3 − bm1/jm1x4

+1/jm1u1

x6

−k2x5 + k2/n2x7 + m2s2l1x
3
2 sin(x5)

+m2s2g cos(x1 + x5)
x8

k2/(jm2n2)x5 − k2/(jm2n
2
2) x7 − bm2/jm2x8

+1/jm2u2

(37)

Jj,j(x) = 1, j = 1, 3, 4, 5, 7, 8, J2,2(x) = j1+j2+m2(s2
2+l21)+m1s

2
1+2m2s2l1 cos(x5),
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J2,6(x) = J6,2(x) = j2 + m2s
2
2 + m2s2l1 cos(x5), J6,6(x) = j2 + m2s

2
2, all other terms

are zero.

m1 = 5, m2 = 6 link masses

l1 = 0.5, l2 = 0.5 link lengths

s1 = 0.25, s2 = 0.29167 centre of masses

j1 = 0.125, j2 = 0.15 link inertias

jm1 = 0.025, jm2 = 0.025 rotor inertias

k1 = 1000, k2 = 1000 joint stiffness

n1 = 10, n2 = 10 gear ratios

bm1 = 0.1, bm2 = 0.1 rotor damping

(38)

jm1 , jm2 , k1, k2, bm1 , bm2 are supposed unknown constant to the controller, but
known in bounds. In this particular case the control matrix is diagonal. The trans-
formed state vector according to the proposed design procedure is {z1, z2, z3, z5, z6, z7,

y1,1, y1,2, y2,1, y2,2}. The reference quantities, y1,r(t), . . . , y
(4)
2,r(t), come from a linear

reference model of suitable order. As for the variable structure part of the controller,
the sliding manifold is

S = y1 =

[
x4 − y

(3)
1,r + 10z3

x8 − y
(3)
2,r + 10z7

]
. (39)

This special choice of the manifold (i. e., the fact that x4 and x8 are used instead of z4

and z8) is motivated by the fact that ẋ3 and ẋ7 are not affected by uncertain terms.
In Figures 2, 3, 4, 5 some signals showing the good performance of the controlled
system are reported. Note that, the control signals have been zoomed to show that
they are continuous.

0 1 2 3 4 5 6 7 8 9
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t[sec]

x

x

x

x

  1

  1ref

  5

  5ref

Fig. 2. x1, x5 trajectories versus reference trajectories.
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Fig. 3. S1 in the proposed multi-input SOSMC procedure.
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Fig. 4. S2 in the proposed multi-input SOSMC procedure.

8. CONCLUSIONS

In the paper, a tracking control problem is considered consisting in forcing the m-
dimensional output of a nonlinear uncertain system to track an m-dimensional ref-
erence vector signal with the first ρi derivatives of each component known, bounded
and piece-wise continuous. Such an objective is attained designing a suitable control
vector on the basis of a procedure which goes through the construction of a trans-
formed system characterized by ρi − 1 per block differential equations (ρi being the
number of equations of the block of the multi-input pure-feedback form considered)
analogous to those attainable via a purely multi-input backstepping design, coupled
with an uncertain nonlinear multi-input second order auxiliary system. Under suit-
able assumptions on the control matrix, the control is chosen to be the extension
to the multi-input case of a SOSMC algorithm, so as to force the transformed state
variables involved in the second order auxiliary system to zero in finite time. The
remainder of the transformed system turns out to be a reduced order system for
which the same results valid for a purely backstepping controller still hold.

(Received December 11, 1998.)
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Fig. 5. u1, u2 signals in the proposed multi-input SOSMC procedure.
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