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Asymptotic Behavior of Solutions to an Area-preserving Mo-
tion by Crystalline Curvature

Shigetoshi Yazaki

Abstract: Asymptotic behavior of solutions of an area-preserving crystalline
curvature flow equation is investigated. In this equation, the area enclosed by
the solution polygon is preserved, while its total interfacial crystalline energy
keeps on decreasing. In the case where the initial polygon is essentially admis-
sible and convex, if the maximal existence time is finite, then vanishing edges
are essentially admissible edges. This is a contrast to the case where the initial
polygon is admissible and convex: a solution polygon converges to the boundary
of the Wulff shape without vanishing edges as time tends to infinity.
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