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H2 OPTIMAL DECOUPLING
OF PREVIEWED SIGNALS
IN THE DISCRETE–TIME CASE

Giovanni Marro, Domenico Prattichizzo and Elena Zattoni

The synthesis of a feedforward unit for H2 optimal decoupling of measurable or pre-

viewed signals in discrete-time linear time-invariant systems is considered. It is shown that

an H2 optimal compensator can be achieved by connecting a finite impulse response (FIR)

system and a stable dynamic unit. To derive the FIR system convolution profiles an easily

implementable computational scheme based on pseudoinversion (possibly nested to avoid

computational constraints) is proposed, while the dynamic unit is derived by solving a

standard LQR problem, in general cheap or singular.

1. INTRODUCTION

The aim of this paper is to present an algorithmic framework for the solution of
H2 optimal decoupling of previewed or measurable signals, i. e. the problem of
minimizing the effect at the output of a signal which can either be known in advance
by a certain amount of time or can be completely given a priori. In very recent years
many papers and books have been written, dealing with the H2 optimal control
problem, see e. g. [11, 12, 33, 34, 37]. However, to the best of our knowledge,
the possibility of taking advantage of either a partial or a complete preview of the
signal to be decoupled by adding a suitable feedforward compensator to the feedback
control scheme has not been considered yet.

The decoupling problem is a classical control problem typically treated with
the geometric approach tools: the unaccessible disturbance localization was first
approached in [2] and independently in [40]. A few years later the localization of
measurable signals was investigated in [7]. Extensions were provided in [38] and
[20], while the dual problem, i. e. unknown input observation with differentiators,
had been already solved with stability in [5], one year before. In this context,
see also [9, 10]. Instead, more recently, the problem was extended to include
also the case of previewed signals for dealing with cases where the stabilizability
condition is not satisfied and a preaction steering the state along the unstable zero
dynamics is therefore mandatory: see e. g. [1] and [26], where efficient algorithms for
discrete-time MIMO systems were presented. However, if the geometric conditions
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which guarantee perfect decoupling are not satisfied, then an approach which aims
at minimizing some norm of the decoupling error is mandatory. In particular,
an H2 optimal decoupling appears to be convenient for its simplicity from the
computational viewpoint. Furthermore, an exactly solvable decoupling problem
reduces to an H2 optimal decoupling problem that is cost-free solvable.

In this paper, the control target is achieved through a feedforward compensator
unit which consists of the cascade of a dynamic system and a finite impulse response
system. This latter choice is innovative. In fact, within control theory, FIR systems
have usually been used for filtering rather than for control purposes, see e. g. [31]
and the references therein. As far as the algorithm for designing the FIR system
gain matrix is concerned, it is worth noticing that it is based on pseudoinversion
techniques provided with a mean to overcome the dimensionality constraint intrinsic
to the use of such techniques.

The interest of this work from a practical standpoint is mainly due to the close
connection existing between decoupling and perfect tracking, this latter also exten-
sively studied in the literature ([13, 16, 17, 32, 35, 36]). As recently pointed out
in [26], any perfect tracking (or right-inversion) problem can be recast as a signal
decoupling problem. Hence, H2 optimal decoupling includes H2 optimal tracking
as a special case. In the light of this achievement, the attempt to extend to decou-
pling the advantages (widely exploited in tracking) of preview and preaction comes
naturally. In fact, it is well known that perfect or almost perfect tracking can be
achieved also in the non-minimum phase case if the signal to be tracked is known in
advance. See, for instance, [15] and [19] for the infinite horizon nonlinear and linear
case, respectively, while refer to [18] and to [23] for two different approaches to the
receding horizon SISO case.

The results presented within the signal decoupling problem also apply to the dual
setting, i. e. H2 optimal observation (with a possible delay) of a linear function of
the state in the presence of unknown inputs.

Throughout this paper, IR stands for the field of real numbers; sets, vector spaces
and subspaces are denoted by script capitals like V, matrices and linear maps
by slanted capitals like A, the image and the null space of A by im A and kerA
respectively, the trace by tr A, the transpose by A′, the pseudo-inverse by A# and,
finally, the spectrum by σ(A).

2. RECALLS ON LQ OPTIMAL CONTROL
WITH CONSTRAINED FINAL STATE

This section recalls some results on the solution of the finite-horizon linear quadratic
optimal control problem with both the initial and the final states assigned. This
problem has been widely investigated in the regular case, namely under the assump-
tion that the matrix (usually denoted by R) weighting the control input in the cost
function is positive definite: see for instance [8, 14, 21]. However, in order to solve
the H2 optimal decoupling problem, which is the object of this paper, the solution
of the above cited problem with R =0 is required. In [27], the authors presented
a solution based on pseudoinversion to the problem with both a terminal cost in
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the performance index and a non-stiff constraint on the terminal state under the
assumption of R not necessarily invertible. In this section, the algorithm presented
in [27] is modified to cope with a stiff terminal constraint.

Consider the discrete time-invariant linear system

x(k + 1) = Ax(k) + B u(k) , x(0) = x0 ,

y(k) = C x(k) + D u(k) ,
(1)

with x∈ IRn, u∈ IRp, y ∈ IRq, k∈ [0, N − 1], and with terminal state sharply as-
signed, i. e.

x(N) = x1 . (2)

Assume that the matrix [B′ D′] is of full rank, the pair (A,B) is controllable and
the final time instant N is greater than or equal to the system controllability index.
Furthermore, system (1) is assumed to be left-invertible, i. e.

V̂∗ ∩ Ŝ∗ = {0} ,

where V̂∗ denotes the maximum (Â, im B̂)-controlled invariant contained in ker Ĉ
and Ŝ∗ the minimum (Â, ker Ĉ)-conditioned invariant containing im B̂, with
(Â, B̂, Ĉ)= (A,B, C) if D =0 or

Â :=
[

A 0
C 0

]
, B̂ :=

[
B
D

]
, Ĉ :=

[
0 Iq

]
,

if D 6=0. This corresponds to add a unit delay at the output, as suggested in [6]. The
left invertibility assumption guarantees uniqueness of the optimal control sequence,
but can easily be removed by re-stating the problem as shown in Remark 2.

The discrete-time finite-horizon linear quadratic optimal control problem with
the terminal state sharply assigned can be stated as follows.

Problem 1. Consider system (1) and find a control sequence u(k), k∈ [0, N − 1],
such that the cost function

J :=
N−1∑

k=0

y(k)′y(k) (3)

is minimized under the constraint (2).

A solution to Problem 1, also working for D′D not necessarily positive definite,
can be obtained by simple algebraic manipulations, provided that the problem is
suitably re-stated. To this aim, it is convenient to introduce the following notation
for the sequences of the control inputs and of the controlled outputs,

uN :=




u(0)
u(1)

...
u(N − 1)


 , yN :=




y(0)
y(1)

...
y(N − 1)


 , (4)
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respectively. The system equations written for each k∈ [0, N − 1] yield the following
relation between uN and yN ,

yN = AN x0 + BN uN , (5)

where

AN :=




C
CA
...

CAN−1


 , BN :=




D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAN−2B CAN−3B · · · D


 . (6)

The constraint (2) on the terminal state can be written as a linear function of uN

and x0 as
x1 = ANx0 + LN uN , (7)

where
LN :=

[
AN−1B AN−2B · · · B

]
, (8)

Finally, the cost function (3) can be written as the square of the Euclidean norm of
yN , i. e.

J = ‖yN‖22 . (9)

Hence, Problem 1 can be recast as follows

Problem 2. Find uN minimizing (9) with yN given by (5) under the constraint
(7).

The following Theorem 1 provides the solution of Problem 2. Then, the solution
of Problem 1 can be retrieved from the former by means of equations (4).

Theorem 1. A control input sequence vector uo
N solving Problem 2 and the

corresponding controlled output sequence vector yo
N are respectively given by

uo
N = TN x0 + VN x1 , (10)

yo
N = CN x0 + DN x1 , (11)

where

TN := −
(
I −K (BNK)# BN

)
L#

NAN −K (BNK)# AN , (12)

VN :=
(
I −K (BNK)# BN

)
L#

N , (13)

CN :=
(
I −BNK (BNK)#

) (
AN −BNL#

NAN
)

, (14)

DN :=
(
I −BNK (BNK)#

)
BNL#

N , (15)

with K denoting a basis matrix for kerLN .
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P r o o f . The constraint (7) can be solved with respect to uN as

uN = L#
N

(
x1 −AN x0

)
+ K ν , (16)

where ν parameterizes the solutions in kerLN . From (5) and (16), it ensues

yN =
(
AN −BNL#

NAN
)

x0 + BNL#
Nx1 + BNKν . (17)

The expression of ν ensuring the minimum Euclidean norm of yN is

ν = − (BNK)#
(
AN −BNL#

NAN
)

x0 − (BNK)# BNL#
Nx1 + Hγ , (18)

where γ parameterizes the solutions in ker (BNK), whose basis matrix is denoted by
H, clearly without affecting the cost. In other words, γ is a free parameter of our
solution and it does not influence the value of the cost. Hence, from (17) and (18),
it follows

yN =
(
I −BNK(BNK)#

) (
AN −BNL#

NAN
)

x0 +
(
I −BNK(BNK)#

)
BNL#

Nx1 ,

i. e. yo
N is given by (11) with (14) and (15). Finally, from (16) and (18), it ensues

uN = −
((

I −K(BNK)#BN

)
L#

NAN + K(BNK)#AN

)
x0

+
(
I −K(BNK)#BN

)
L#

Nx1 + KHγ ,

i. e. uo
N is given by (10) with (12), (13) and γ =0 (an arbitrary value for γ). 2

Corollary 1. The optimal value Jo of the cost function can be written as a
quadratic function of the initial state x0 and the terminal state x1:

Jo =

[
x0

x1

]′ [
C ′NCN C ′NDN

D′
NCN D′

NDN

][
x0

x1

]
. (19)

Thus, the optimal control sequence and cost are computed as functions of x0 and
x1 by means of pseudoinversion-based procedures. Optimality is guaranteed by the
application of pseudoinversion to the equation derived from (17) assuming yN = 0.
In fact, this minimizes the value of ‖yN‖22, which actually is the expression of the
cost J , see eq. (9). The main drawback of such procedures is the fact that they
become unfeasible for large values of N . In [27] a recursive approach is proposed
coping with large control time intervals by solving a sequence of nested problems.

3. H2 OPTIMAL DECOUPLING OF PREVIEWED SIGNALS

Consider the system

x(k + 1) = Ax(k) + B u(k) + H h(k) , (20)

y(k) = C x(k) + D u(k) + Gh(k) , (21)
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with state x∈ IRn, control input u∈ IRp, previewed or measured input h∈ IRs, con-
trolled output y ∈ IRq. Assume that the matrices [B′ D′] and [H ′ G′] are of full
rank. Refer to the block diagram in Figure 1, where Σc denotes a linear controller
exploiting the N -step preview of signal h(k). It is worth noticing that the preview
interval N is taken into account by the delay block shown in the figure, so that
the overall system having hp(k)= h(k +N) as input and y(k) as output is causal.
Denote by W (z) the transfer function matrix of the overall system from hp(k) to
y(k) and by w(k) the corresponding impulse response matrix. Then, the H2 optimal
decoupling problem of the previewed signal h(k) consists in deriving a regulator Σc

that minimizes

‖W‖2 =
(

1
2π

tr
[∫ π

−π

W (ejω)W ∗(ejω) dω

]) 1
2

=

(
tr

[ ∞∑

k=0

w(k)w′(k)

]) 1
2

=




∞∑

k=0

s∑

j=1

q∑

i=1

w2
ij(k)




1
2

. (22)

From (22) it ensues that an equivalent statement of the problem is to find a linear
system Σc whose impulse response consists of the sequences uj(k), j =1, . . . , s,
k = 0, 1, . . ., minimizing

∞∑

k=0

y′j(k) yj(k) , j = 1, . . . , s ,

where yj(k), j =1, . . . , s, denotes the output generated by the input signal hp,j(k),
equal to the jth vector of the natural basis of IRs at the time instant k =0 and equal
to zero for k 6=0.

We briefly recall some geometric results derived in [26]. First, consider the
condition

im Ĥ ⊆ V̂∗ + Ŝ∗ , (23)

with Ĥ :=H and V̂∗ and Ŝ∗ referred to the triple (A,B, C) if both D and G are null
matrices, or Ĥ := [H ′ G′]′ and V̂∗ and Ŝ∗ referred to the extended triple (Â, B̂, Ĉ)
if not. It guarantees perfect decoupling if system (20, 21) is minimum phase with
respect to input u. This is the case considered in [38] and, in this case, only a relative-
degree preaction is required. On the other hand, if the system is non-minimum phase,
condition (23) enables perfect decoupling only if the preaction time N approaches
infinity. Almost perfect decoupling is achieved when the preaction time is large
enough with respect to the time constant of the unstable zero closest to the unit
circle. In the above-mentioned cases ‖W‖2 is zero or almost zero. These cases were
presented and discussed in [26].

If condition (23) is not met or the system is non-minimum phase and the available
preaction time is not large enough, H2 optimality is a convenient resort.
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Σ
Σc

N -delay
h (k)=h(k+N)

p h(k)

u(k)
y(k)

Fig. 1. Decoupling of a measurable or previewed signal.

4. H2 OPTIMAL DECOUPLING AS A COMPOSED LQ OPTIMAL
CONTROL PROBLEM

In order to solve the optimal decoupling problem stated in the previous section, the
linear controller Σc introduced in Figure 1 is specified here in its inner structure (see
also Figure 2). It consists of a FIR system

v(k) =
N∑

`=0

Φ(`)hp(k − `) , (24)

which accounts for the feedforward action (preaction) based on the preview of signal
h(k), and of a dynamic unit Σ1 satisfying equation (20) with state feedback K, i. e.
evolving according to

x̃(k + 1) = AK x̃(k) + B v(k) + H h(k) , (25)

with AK :=A + BK. The matrix K is the optimal state feedback of the infinite-
horizon Kalman regulator problem referred to system (1) with the optimal cost

c∞ =
∞∑

k=0

y′(k) y(k) .

This latter problem can be cheap or singular depending on the output matrices
C and D. The standard routines solving the cheap or singular Kalman regulator
problem, like function dare.m in Matlab 5 or that proposed in [29] (that, unlike
dare.m, also applies to non-left invertible systems), provide the optimal infinite-time
cost matrix S∞ weighting the initial state, other than the optimal feedback matrix
K. The optimal cost is expressed by the quadratic function

c∞ = x′2 S∞ x2 , (26)

where x2 represents the generic initial state. The matrix S∞ will be used in the
following algebraic manipulation to account for the H2 cost from time k = N +1 to
k =∞. For the sake of simplicity we assume N ≥ ν. This assumption can be relaxed,
as it will be pointed out in Remark 1.
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+
+

h (k)=h(k+N)p
N- delay

h(k)

u(k)
y(k)

v(k)
x(k)

FIR 1

Σ

Σ

K

Fig. 2. Structure of the feedforward unit Σc.

Refer to Figure 2 and suppose that an impulse h(k) = h̄ δ(k−N) (which will occur
at k = N), is known in advance at time k =0, i. e., in the setting of Figure 2,
hp(k)= h̄ δ(k). Then the H2 optimal control problem with previewed signal consists
in joining an LQ optimal control problem from k =0 to k = N with constrained
final state of the type considered in Section 2 and a standard infinite horizon LQR
problem from k =N +1, while taking into account the occurrence of the impulse.
Figure 3 represents a typical state trajectory for this problem.

Let the state of system Σ1 and the control input at k = N be referred to as x̃1

and u1, respectively, and the state at k =N +1 as x̃2, so that, according to (25),

x̃2 = AK x̃1 + B u1 + H h̄ . (27)

By using equations (19), (26) and (27), it is an easy matter to verify that the overall
cost is expressed by

c(ζ) = ζ ′M1 ζ + 2 M2 ζ + M3 , (28)

with ζ := [x̃′1 u′1]
′ and

M1 =

[
D′

NDN + C ′C + A′KS∞AK C ′D + A′KS∞B

D′C + B′S∞AK D′D + B′S∞B

]
, (29)

M2 =
[

h̄′G′C + h̄′H ′S∞AK h̄′G′D + h̄′H ′S∞B′ ]
, (30)

M3 = h̄′G′G h̄ + h̄′H ′S∞H h̄ , (31)

where DN is assumed to refer to the quadruple (AK , B, C, D). The optimal values
of x̃1 and u1 are simply obtained by differentiating (28) with respect to the unknown
parameter ζ. Therefore,

ζo =
[

x̃o
1

uo
1

]
= −M#

1 M2 . (32)

The generic previewed signal hp(k) can be H2-optimally decoupled through the FIR
system (24) whose gain matrices are computed through the following steps:
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1. Substitute h̄ with the s× s identity matrix Is in (30) and (31).

2. From equation (32), evaluate the optimal parameter matrices

Xo
1 ∈ IRn×s, Uo

1 ∈ IRp×s. (33)

3. By using (10) with x0 =0n×s, x1 =Xo
1 , compute the gain matrices of the FIR

system as

Φ(j) =
[

φ(1) φ(2) · · · φ(N)
] [

VNXo
1

Uo
1

]
, (34)

with {
φ(i) = 0s for i 6= j ,

φ(i) = Is for i = j .

0 N

Fig. 3. A typical optimal state trajectory for an N -step previewed impulse signal.

Remark 1. The assumption N ≥ ν can be easily removed by suitably constraining
the intermediate state x1 to lie on the N -step reachable subspace. Let RN be a
basis matrix of the column space of LN in (8). Solve the optimal reduced-dimension
problem obtained by assuming

ζ =
[

RN 0
0 Ip

] [
λ
u1

]

in equation (28), thus simply replacing the unknown variable x1 with λ, which pa-
rameterizes the optimal state vector x1 on the N -step reachable subspace. Compute
the matrix solution [Λo′ Uo

1
′]′ obtained with h̄ = Is as before, and finally replace Xo

1

with RN Λo in equation (34).

Although from a theoretical point of view the left-invertibility assumption is not
mandatory, it is usually introduced to simplify computational procedures, since most
of the available routines for the solution of cheap/singular LQR problems only work
with left-invertible systems. This assumption can easily be removed by using the
geometric argument described in the following remark.
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Remark 2. (Extension to non left-invertible systems) If the quadruple (A,B,C, D)
is not left-invertible, the previous procedure should be applied to (Ā, B̄, C, D), with
1. Ā :=A +BF̄ , where F̄ is a state feedback matrix such that (A + BF̄ )V∗⊆V∗
and all the elements of σ(A + BF̄ )|RV∗ , that are arbitrarily assignable, are stable.
RV∗ denotes the reachable subspace of V∗, computable as RV∗ =V∗ ∩S∗.
2. B̄ :=B Ū , where Ū is a basis matrix of the subspace Ū := (B−1 V∗)⊥, the orthog-
onal complement of the inverse image of V∗ with respect to B.
Let ū(k) and x̄(k) be the optimal sequences of controls and states referring to
(Ā, B̄, C, D). The corresponding control sequences for (A,B,C, D) are computed
as u(k)= Ū ū(k)+ F̄ x̄(k).

0 10 20 30 40 50 60 70 80
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0 10 20 30 40 50 60 70 80
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Fig. 4. Convolution profiles for the inputs.
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Fig. 5. H2-optimally decoupled outputs.
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5. A NUMERICAL EXAMPLE

Let us assume in system (1) the following matrices:

A =




0.5 1 −0.4 0
0.1 0.7 0 −0.5
0 0 0.4 0
0 0 0 0.6


 , B =




1 0
0 1
1 0
0 1


 , H =




0
1

0.1
1


 ,

C =




1 0 0 0
0 1 0 0
1 0 1 2


 , D =




0 0
0 0
0 0


 , G =




0
0
0


 .

The characterizing controlled and conditioned invariants are

V̂∗ = im







0
0
0
0





 , Ŝ∗ = im







1 0
0 1
1 0
0 1





 .

The system is left-invertible, since V̂∗ ∩ Ŝ∗= {0}. Condition (23) is not satisfied,
so that, although the plant is minimum-phase (it has no invariant zeros), preaction
improves the minimum H2 norm. Preaction clearly appears in the plots of the
optimal inputs and outputs. Figure 4 shows the convolution profiles u1(k) and
u2(k) which optimally decouple a previewed unit impulse h(k)= δ(k−N) occurring
at k =40, while Figure 5 shows the corresponding optimal responses y1(k), y2(k)
and y3(k).

6. CONCLUDING REMARKS

It has been shown that H2-optimal decoupling of an N -step previewed signal (that
for N =0 reduces to H2-optimal decoupling of a measurable signal) can be achieved
by a feedforward unit consisting of a FIR system and a stable dynamic unit. This
latter ensures optimality from the strict mathematical viewpoint, but in practice can
also be replaced by a FIR system realizing the same (truncated) impulse response
or computed with the algorithm presented in Section 2 and final state set to zero.
In fact, it can be shown that in both cases the error uniformly approaches zero as
the impulse response interval of the FIR system increases. The results obtained in
this paper can be directly applied to the dual problem, H2 optimal unknown-input
observation of a linear function of the state with N -step postknowledge. This duality
was analyzed in [26], where the geometric conditions ensuring zero or almost zero
H2 norm were derived and an algorithm for computing the input convolution profiles
for the zero-cost case was presented.

(Received October 10, 2001.)
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[22] M. Malabre and V. Kučera: Infinite structure and exact model matching problem: a
geometric approach. IEEE Trans. Automat. Control AC-29 (1982), 3, 266–268.

[23] G. Marro and M. Fantoni: Using preaction with infinite or finite preview for perfect or
almost perfect digital tracking. In: Proceedings of the Melecon’96 – 8th Mediterranean
Electrotechnical Conference, Bari 1996, Vol. 1, pp. 246–249.

[24] G. Marro, D. Prattichizzo, and E. Zattoni: Geometric insight into discrete-time cheap
and singular linear quadratic Riccati (LQR) problems. IEEE Trans. Automat. Control
47 (2002), 1.

[25] G. Marro, D. Prattichizzo, and E. Zattoni: H2 optimal decoupling of previewed signals
with FIR systems. In: Proc. 1st IFAC Symposium on System Structure and Control
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