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BOOTSTRAP IN NONSTATIONARY AUTOREGRESSION1

Zuzana Prášková

The first-order autoregression model with heteroskedastic innovations is considered and
it is shown that the classical bootstrap procedure based on estimated residuals fails for the
least-squares estimator of the autoregression coefficient. A different procedure called wild
bootstrap, respectively its modification is considered and its consistency in the strong sense
is established under very mild moment conditions.

1. INTRODUCTION

Let X1, . . . , Xn be observations of a time series satisfying the model

Xt = βXt−1 + Yt, t = 1, 2, . . . (1)

where |β| < 1 is an unknown parameter, Yt, 1 ≤ t ≤ n, are independent random
variables with EYt = 0, VarYt = σ2

t > 0 and X0 is a random variable independent
of Y1, . . . , Yn such that EX0 = 0, VarX0 = σ2

0 > 0.
In this paper, we deal with a bootstrap approximation of the distribution of

the least-squares estimator of the parameter β. Recently, the problem was solved
under the assumption that the innovations Yt are identically distributed (see e. g.
Bose [3], Kreiss and Franke [12], Prášková [16] for |β| < 1, Basawa et al [1] for
|β| > 1, Datta [6], and Heimann and Kreiss [11] for general β. Ferretti and Romo [9]
proposed bootstrap tests for β = 1 both for independent and autoregressive errors.
All the above quoted authors considered a bootstrap procedure based on estimated
residuals. Kreiss [13] treated asymptotic properties of this procedure in general
stationary autoregression.

However, in case of nonidentically distributed innovations the method need not
be consistent (even in a simple linear regression model, see e. g. Liu [14]). We shall
show that the bootstrap based on estimated residuals in model (1) generally fails
for the least-squares estimator of β. Then we shall consider procedure called wild
or external bootstrap and its modification which reflects the heteroskedasticity of
data and prove that these procedures consistently estimate the distribution of the
least-squares estimator of the parameter β. We shall demonstrate theoretical results
in a short simulation study.

1Partially supported by the Grant Agency of the Czech Republic under Grant No. 201/00/0769
and by the Grant MSM 113200008.
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2. ASYMPTOTIC RESULTS FOR β̂

First, we give some asymptotic results for the least-squares estimator of β in case of
nonidentically distributed innovations. Let us introduce the following assumptions:

A1: For some δ>0 and a positive constant K, E|Yt|2+δ≤K for all t, E|X0|2+δ≤K.

A2: 1
n

∑n
t=1 σ2

t → σ2 > 0 as n →∞.

A3: s2
n = 1

n

∑n
t=1 σ2

t EX2
t−1 → σ2 > 0 as n →∞.

Theorem 1. Suppose that assumptions A1 – A3 hold. Let β̂ be the least-squares
estimator of β based on X0, X1, . . . , Xn, i. e.

β̂ =
∑n

t=1 XtXt−1∑n
t=1 X2

t−1

. (2)

Then

(i) β̂ is strongly consistent, i. e. β̂ → β a. s. as n →∞;

(ii) the asymptotic distribution of
√

n(β̂ − β) is N (0, ∆2), where

∆2 =
(1− β2)2σ2

σ4
. (3)

P r o o f . With Y0 := X0 we can write Xt =
∑t

j=0 βjYt−j and utilizing the
Minkowski inequality we get

(
E|Xt|2+δ

) 1
2+δ ≤

t∑

j=0

(
|β|(2+δ)jE|Yt−j |2+δ

) 1
2+δ ≤

t∑

j=0

|β|jK 1
2+δ

which means that E|Xt|2+δ ≤ M for a positive constant M and t ≥ 0. Notice that

β̂ − β =
∑n

t=1 Xt−1Yt∑n
t=1 X2

t−1

. (4)

Further, E(Xt−1Yt|Ft−1) = 0, where Ft = σ{Y0, Y1, . . . , Yt} for t ≥ 0 is the
σ-algebra generated by Y0, Y1, . . . , Yt. Thus, {Xt−1Yt} is a martingale differences se-
quence. Next, Var (Xt−1Yt) = EX2

t−1Y
2
t ≤ C, where C is a constant, and according

to the strong law of large numbers for martingale difference sequences (see Davidson
[7], Theorem 20.11)

1
n

n∑
t=1

Xt−1Yt → 0 as n →∞ a. s. (5)
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In the following, we prove that

1
n

n∑
t=1

X2
t−1 →

σ2

1− β2
as n →∞ a. s. (6)

From (1) we get X2
t = Y 2

t + 2βXt−1Yt + β2X2
t−1 and

(1− β2)
1
n

n∑
t=1

X2
t−1 =

1
n

(X2
0 −X2

n) +
1
n

n∑
t=1

Y 2
t + 2β

1
n

n∑
t=1

Xt−1Yt. (7)

From A1 and the strong law of large numbers we have

1
n

n∑
t=1

Y 2
t −

1
n

n∑
t=1

σ2
t → 0 a. s. (8)

Combining this with (5), A1 and A2, we get (6) and assertion (i). Since

1
nsn

n∑
t=1

X2
t−1 →

σ2

σ̄(1− β2)
a. s.

and thus in probability, we prove (ii) when we show that
∑n

t=1 Xt−1Yt/(sn
√

n) has
asymptotically N (0, 1) distribution. It suffices to check that the following conditions
for martingale central limit theorem are satisfied (see Brown [5]):

∑n
t=1 E

(
(Xt−1Yt)2|Ft−1

)
∑n

t=1 E(Xt−1Yt)2
=

∑n
t=1 X2

t−1σ
2
t

ns2
n

→ 1 as n →∞ in probability, (9)

1
ns2

n

n∑
t=1

E
(
(Xt−1Yt)2I{|Xt−1Yt| > ε

√
nsn}

) → 0 as n →∞ (10)

for all ε > 0.
We prove that

1
n

n∑
t=1

σ2
t X2

t−1 −
1
n

n∑
t=1

σ2
t EX2

t−1 → 0 a. s. (11)

Then, because of A3, condition (9) will be satisfied.
Denote ξt = σ2

t (X2
t−1 − EX2

t−1). We shall show that for 1 < p < 2, {ξt} is the
Lp-mixingale of size −1, where Lp denotes the usual norm space of random variables
with finite moments of order p (see Davidson [7], Chapter 16.1 for the definition of
mixingales).

Obviously, E(ξt|Ft+s) = ξt a. s. for any s ≥ 0, thus ||ξt − E(ξt|Ft+s)||p = 0.

Further, we have Xt =
∑k−1

j=0 βjYt−j + βsXt−s and E(ξt|Ft−s) = σ2
t |β|2s(X2

t−s −
EX2

t−s), thus

||E(ξt|Ft−s)||p = σ2
t |β|2s||X2

t−s − EX2
t−s||p ≤ c|β|2s,
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where c is a positive constant independent of t. Then, from the strong law of large
numbers for mixingales, (11) holds a. s. according to Theorem 20.16 in Davidson [7].

Finally, we have

1
ns2

n

n∑
t=1

E
(
(Xt−1Yt)2I{|Xt−1Yt| > ε

√
nsn}

)

≤ 1
εδn1+δs2+δ

n

n∑
t=1

E|Xt−1|2+δE|Yt|2+δ ≤ M
1

εδn1+δs2+δ
n

n∑
t=1

E|Yt−1|2+δ (12)

from which(10) easily follows. 2

Remark 1. In case that σ2
t ≡ σ2 (asymptotic weak stationarity), assumption A2

holds trivially and A3 holds with σ̄2 = σ4(1− β2)−1. Thus, the results of Theorem
1 coincide with those for stationary AR(1) process (see Brockwell and Davis [4],
Chapters 7, 8.) Some other generalizations of the assumption of i.i.d. innovations in
autoregressive models of a finite order p ≥ 1 were considered and central limit theo-
rems were established (see e. g. Hall and Heyde [10], Dürr and Loges [8], Tjøstheim
and Paulsen [18] or Basu and Roy [2] among others.)

Notice that the asymptotic variance ∆2 depends on the parameter β (usually
unknown) and on limiting values σ2 and σ2 which are also unknown. In next sections
we shall deal with the bootstrap approximation of

√
n(β̂ − β).

3. BOOTSTRAP BASED ON ESTIMATED RESIDUALS

Let X0, . . . , Xn be observations and β̂ be the least-squares estimator of the parameter
β. Put

rt = Xt − β̂Xt−1, t = 1, . . . , n, r̄ =
1
n

n∑
t=1

rt (13)

and consider centered estimated residuals Ŷt = rt − r̄, t = 1, . . . , n. Let Fn be the
empirical distribution function based on Ŷ1, . . . , Ŷn and Y ∗

0 , Y ∗
1 , . . . , Y ∗

n be i.i.d. with
the distribution function Fn.

Define X∗
0 = Y ∗

0 and generate bootstrap values

X∗
t = β̂X∗

t−1 + Y ∗
t , t = 1, . . . , n. (14)

Let

β̂∗ =
∑n

t=1 X∗
t−1X

∗
t∑n

t=1 X∗2
t−1

be the bootstrap counterparts of β̂.

In the case of i.i.d. innovations Yt the above bootstrap procedure is consistent,
i. e. the bootstrap distribution of

√
n(β̂∗ − β̂) converges to the true distribution of√

n(β̂ − β) (see e. g. Bose [3], Kreiss and Franke [12], Prášková [16], Kreiss [13].)
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However, when Yt are independent with zero mean but different variances, the
method becomes inconsistent. We shall show it in the next theorem.

Theorem 2. Under assumptions A1 – A3, as n →∞,

sup
x
|P ∗(√n(β̂∗ − β̂) < x)− Φ(x/

√
1− β2)| → 0 a. s.

where P ∗ denotes the bootstrap probability and Φ is the distribution function of
N (0, 1).

P r o o f . Let E∗, Var∗ be the expectation, respectively the variance related to
P ∗. Then

E∗Y ∗
1 =

1
n

n∑
t=1

Ŷt =
1
n

n∑
t=1

(rt − r̄) = 0

Var∗Y ∗
1 =

1
n

n∑
t=1

Ŷ 2
t =

1
n

n∑
t=1

r2
t − r̄2 := σ∗2.

(15)

Since rt = Xt − β̂Xt−1 = Yt − (β̂ − β)Xt−1, we can deduce from A1, the strong law
of large numbers for {Yt} and from the consistency of β̂ that r̄ → 0 a. s. Similarly,
from (5), (6), (8) and A2 we get that 1

n

∑n
t=1 r2

t is asymptotically σ2 a. s. Thus, we
can conclude that

σ∗2 → σ2 as n →∞ a. s. (16)

From the relation X∗
t =

∑t
j=0 β̂jY ∗

t−j and the independence of Y ∗
0 , . . . , Y ∗

n it follows

1
n

n∑
t=1

E∗X∗2
t−1 =

σ∗2

1− β̂2

[
1− 1

n
· 1− β̂2n

1− β̂2

]

and from (16) and the strong consistency of β̂ we get

1
n

n∑
t=1

E∗X∗2
t−1 →

σ2

1− β2
a. s. (17)

Similarly,

s∗2n =
1
n

n∑
t=1

E∗X∗2
t−1E

∗Y ∗2
t = σ∗2

1
n

n∑
t=1

E∗X∗2
t−1 →

σ4

1− β2
a. s. (18)

When we apply a version of Marcinkiewicz strong law of large numbers (Lemma 1
in Liu [14]) we get with δ from Assumption 1

1
n

n∑
t=1

|Yt|2+ δ
2 − 1

n

n∑
t=1

E|Yt|2+ δ
2 → 0 a. s.
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hence,
1
n

n∑
t=1

|Yt|2+ δ
2 = O(1) a. s. (19)

From the same Lemma we also get that

1

n1+ δ
2

n∑
t=1

|Yt|2+δ → 0 a. s. (20)

Hence, max1≤t≤n |Yt| = o(n
1
2 ) a. s. and thus max1≤t≤n |Xt| = o(n

1
2 ). From here and

from (6) we have 1
n

∑n
t=1 |Xt−1|2+ δ

2 = o(n
δ
4 ) a. s. When we use Theorem 20.11 in

Davidson [7] with p = 2 and an = n
1
2+ε for some ε > 0, we can see that

β̂ − β = o(n−
1
2+ε) a. s. (21)

and with properly chosen ε

1
n

n∑
t=1

|rt|2+ δ
2 ≤ 4

(
1
n

n∑
t=1

|Yt|2+ δ
2 + |β̂ − β|2+ δ

2
1
n

n∑
t=1

|Xt−1|2+ δ
2

)
= O(1) a. s.

(22)
It means that with δ as in Assumption 1,

E∗|Y ∗
1 |2+

δ
2 =

1
n

n∑
t=1

|rt − r̄|2+ δ
2 = O(1) a. s. (23)

In a similar way we obtain

1
n2

n∑
t=1

|Yt|4 → 0 a. s. (24)

and thus

E∗|Y ∗
1 |4 =

1
n

n∑
t=1

|rt − r̄|4 = o(n) a. s. (25)

Now, let us write

√
n(β̂∗ − β̂)√

1− β̂2

=

(
1

s∗n
√

n

n∑
t=1

X∗
t−1Y

∗
t

) 


√
1− β̂2

ns∗n

n∑
t=1

X∗2
t−1



−1

.

According to an extension of Lemma 1 in Michel and Pfanzagl [15] (see Basu and
Roy [2], Lemma 2.1), for any ε > 0 and real V there exists 0 < c < 1 such that

sup
x

∣∣∣∣∣∣
P ∗


√n

β̂∗ − β̂√
1− β̂2

≤ x


− Φ(x)

∣∣∣∣∣∣
≤ sup

x

∣∣∣∣∣P
∗
(

1
s∗n
√

n

n∑
t=1

X∗
t−1Y

∗
t < x

)
− Φ(x)

∣∣∣∣∣

+P ∗




∣∣∣∣∣∣

√
1− β̂2

ns∗n

n∑
t=1

X∗2
t−1 − V

∣∣∣∣∣∣
> ε


 + ε + c|V − 1|. (26)
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Put

V =

√
1− β̂2

ns∗n

n∑
t=1

E∗X∗2
t−1.

Then, (17), (18) and the strong consistency of β̂ yields

V − 1 → 0 a. s. (27)

Further, from the Chebyshev inequality we have

P ∗




∣∣∣∣∣∣

√
1− β̂2

ns∗n

n∑
t=1

X∗2
t−1 − V

∣∣∣∣∣∣
> ε


 ≤ 1− β̂2

ε2s∗2n

E∗
[

1
n

n∑
t=1

(X∗2
t−1 − E∗X∗2

t−1)

]2

and since

(1− β̂2)
1
n

n∑
t=1

(X∗2
t−1 − E∗X∗2

t−1)

=

[
1
n

((X∗2
0 − E∗X∗2

0 )− (X∗2
n − E∗X∗2

n )) +
1
n

n∑
t=1

(Y ∗2
t − σ∗2) + 2β̂

1
n

n∑
t=1

X∗
t−1Y

∗
t

]

we can easily check that

E∗
[

1
n

n∑
t=1

(X∗2
t−1 − E∗X∗2

t−1)

]2

=
1

(1− β̂2)2

[
1
n

(E∗Y ∗4
1 − σ∗4)

]
+

4
n

β̂2s∗2n + Zn

where Zn is o(1) a. s.
From here and from (16), (18) and (25) we can conclude that

E∗
[

1
n

n∑
t=1

(X∗2
t−1 − E∗X∗2

t−1)

]2

→ 0 a. s. (28)

and thus the second term on the right-hand side of (26) tends to zero a. s.
Notice that with (28) the bootstrap version of (11) and (9) is satisfied in P ∗-

probability.
Finally,

1
ns∗2n

n∑
t=1

E∗((X∗
t−1Y

∗
t )2I{|X∗

t−1Y
∗
t | > εs∗n

√
n})

≤ 1

ε
δ
2 n1+ δ

4 (s∗n)2+
δ
2
E∗|Y ∗

1 |2+
δ
2

n∑
t=1

E∗|X∗
t−1|2+

δ
2 (29)

and since

E∗|X∗
t−1|2+

δ
2 ≤ E∗|Y ∗

1 |2+
δ
2

(
1− |β̂|t
1− |β̂|

)2+ δ
2
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which follows from the Minkowski inequality, we can conclude, using (23) and (18)
that the right-hand side of (29) is asymptotically zero a. s. and the bootstrap version
of (10) is satisfied. It means that

sup
x

∣∣∣∣∣P
∗
(

1
s∗n
√

n

n∑
t=1

X∗
t−1Y

∗
t < x

)
− Φ(x)

∣∣∣∣∣ → 0 a. s.

which together with the strong consistency of β̂ concludes the proof. 2

We can see that the asymptotic variance of
√

n(β̂∗−β̂) differs from that of
√

n(β̂−
β) given in (3). The bootstrap scheme (14) does not reflect the heteroskedasticity of
the original data because it works with the innovations Y ∗

t which are (conditionally
on X0, . . . , Xn ) independent and identically distributed.

Another bootstrap procedure can solve the problem of heteroskedasticity.

4. WILD BOOTSTRAP

In Kreiss [13] the bootstrap procedure is discussed, which mimics a procedure called
wild bootstrap proposed for regression models with heteroskedastic errors (see e. g.
Wu [19] or Liu [14]).

With residuals rt = Xt−β̂Xt−1, where β̂ is given in (2), the bootstrap innovations
are generated as

Y w
t = rtKt, t = 1, . . . , n (30)

where Kt are i.i.d. random variables with zero mean and the unit variance, inde-
pendent of X0, . . . , Xn. Given observations X0, . . . , Xn, the bootstrap observations
are generated to satisfy

Xw
t = β̂Xt−1 + Y w

t , t = 1, . . . , n (31)

and the corresponding bootstrap estimator of β is then defined as the least-squares
estimator in the regression model

Xw
t = βXt−1 + Y w

t , t = 1 . . . , n

with constant regressors Xt−1, i. e.

β̂w =
∑n

t=1 Xt−1X
w
t∑n

t=1 X2
t−1

. (32)

In Kreiss [13], the procedure is considered and its consistency (in probability) is stud-
ied in models with i.i.d. errors, respectively in stationary models with conditional
heteroskedasticities. Here we give a proof of the strong consistency of the procedure
in nonstationary model (1) under weaker moment conditions than in Kreiss [13].
Instead of Assumption A1 let us assume

A1’: For some δ > 0 and a positive constant M, E|Yt|3+δ ≤ M for all t, E|X0|3+δ ≤
M. Random variables K1, . . . , Kn are i.i.d. with zero mean, unit variance and
finite moment of order 2 + δ′, δ′ ≥ δ.
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Theorem 3. Under assumptions A1’, A2, A3, as n →∞,

sup
x
|Pw(

√
n(β̂w − β̂) < x)− Φ(x/∆))| → 0 a. s.

where Pw is the conditional probability given X0, . . . , Xn and ∆ is given in (4).

P r o o f . Notice that

√
n(β̂w − β̂) =

1√
n

∑n
t=1 Xt−1Y

w
t

1
n

∑n
t=1 X2

t−1

is a linear combination of independent random variables Y w
t for which

EwY w
t = E(rtKt|X0, . . . , Xn) = 0,

VarwY w
t = r2

t VarKt = r2
t , (33)

Ew|Y w
t |2+δ = |rt|2+δE|Kt|2+δ = c|rt|2+δ

where c = E|K1|2+δ < ∞.
Since (6) remains valid under assumptions of Theorem 3, it suffices to prove the

asymptotic normality of
∑n

t=1 Ztn, where Ztn = Xt−1Y
w
t /
√

n. Let us denote

B2
n =

n∑
t=1

VarwZtn =
1
n

n∑
t=1

X2
t−1r

2
t . (34)

Then we have

B2
n =

1
n

n∑
t=1

X2
t−1Y

2
t − 2(β̂ − β)

1
n

n∑
t=1

X3
t−1Yt + (β̂ − β)2

1
n

n∑
t=1

X4
t−1. (35)

Since X2
t−1(Y

2
t − EY 2

t ) and X3
t−1Yt are martingale differences, we can easily check,

using Assumptions A1’, A3 and (11), that the a. s. limit of the first term on the
right-hand side of (35) is σ2 and the second term tends to 0 a. s. Under Assumption
A1’, max1≤t≤n |Yt| = o(n

1
3 ) a. s. and the same holds for max1≤t≤n |Xt|. Combining

this with (21) we obtain that the last term on the right-hand side of (35) is o(n−
1
3+ε)

for some ε > 0, thus, B2
n → σ2 a. s.

To verify the Feller–Lindeberg condition, write

1
B2

n

n∑
t=1

Ew

[(
Xt−1Y

w
t√

n

)2

I

{∣∣∣∣
Xt−1Y

w
t√

n

∣∣∣∣ > εBn

}]

≤ c
1

εδB2+δ
n

· 1

n1+ δ
2

n∑
t=1

Ew|Xt−1Y
w
t |2+δ ≤ 1

εδB2+δ
n

· 1

n1+ δ
2

n∑
t=1

|Xt−1rt|2+δ (36)

further,

1

n1+ δ
2

n∑
t=1

|Xt−1rt|2+δ

≤ 4
1

n1+ δ
2

n∑
t=1

|Xt−1|2+δ|Yt|2+δ + 4(β̂ − β)2+δ 1

n1+ δ
2

n∑
t=1

|Xt−1|4+2δ. (37)



398 Z. PRÁŠKOVÁ

The second term on the right-hand side of (37) tends to zero a. s. similarly as the
last term in (35) while for the first one we get

1

n1+ δ
2

n∑
t=1

|Xt−1|2+δ(|Yt|2+δ − E|Yt|2+δ) → 0 a. s.

according to the strong law of large numbers for martingale differences and

1

n1+ δ
2

n∑
t=1

|Xt−1|2+δE|Yt|2+δ → 0 a. s.

which follows from (6) and (20). The proof is finished. 2

Corollary 1. Under assumptions of Theorem 3, as n →∞,

sup
x
|Pw(

√
n(β̂w − β̂) < x)− P (

√
n(β̂ − β) < x)| → 0 a. s.

5. MODIFIED WILD BOOTSTRAP

Bootstrap procedure (31) can be modified in the following way. Consider again the
bootstrap innovations Y w

t defined by (30) and generate bootstrap observations as
follows. Put X∗w

0 = 0 and further generate

X∗w
t = β̂X∗w

t−1 + Y w
t , t = 1, . . . , n, (38)

β̂ is defined by (2). Notice that procedure (38) generates bootstrap observations
that follow the same model as original observations.

Let β̂∗w be the least-squares estimator of autoregressive parameter in the boot-
strap model (38), i. e.

β̂∗w =
∑n

t=1 X∗w
t−1Y

w
t∑n

t=1(X
∗w
t−1)2

.

To prove the strong consistency of β̂∗w we need to replace Assumption A1’ by

A1”: For some δ > 0 and a positive constant M, E|Yt|4+δ ≤ M for all t, E|X0|4+δ ≤
M. Random variables K1, . . . , Kn are i.i.d. with zero mean, unit variance and
finite moment of order 4.

Remark 2. Consistency of β̂∗w was studied by Kreiss [13] in stationary autore-
gression and in Prášková [17] for nonstationary model (1) under strong moment
conditions.
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Theorem 4. Under assumptions A1”, A2, A3, as n →∞,

sup
x
|Pw(

√
n(β̂∗w − β̂) < x)− Φ(x/∆))| → 0 a. s.

where Pw is the conditional probability given X0, . . . , Xn and ∆ is given in (4).

P r o o f . We will proceed similarly as in the proof of Theorem 2.
From (38) we have

X∗w
0 = 0,

X∗w
t−1 =

t−2∑

k=0

β̂kY w
t−1−k =

t−1∑

j=1

β̂t−1−jY w
j for t ≥ 2,

hence,

1
n

n∑
t=2

Ew(X∗w
t−1)

2 =
1
n

n∑
t=2

t−1∑

j=1

β̂2(t−1−j)r2
j =

1
n

n−1∑
t=1

r2
t

n∑

k=t+1

β̂2(k−t−1)

=
1

1− β̂2

[
1
n

n−1∑
t=1

r2
t −

1
n

n−1∑
t=1

r2
t β̂2(n−t)

]
. (39)

Now, we can see that the first term in the last equality in (39) is asymptotically
σ2

1−β2 a. s. and

1
n

n−1∑
t=1

r2
t β̂2(n−t) ≤ max

1≤t≤n−1
|rt|2 1

n
· β̂2 − β̂2n

1− β̂2
= o(1) a. s.

since max |rt| = o(n
1
4 ) under A1”. Thus,

1
n

n∑
t=2

Ew(X∗w
t−1)

2 → σ2

1− β2
a. s. (40)

Similarly,

sw2
n =

1
n

n∑
t=1

Ew(X∗w
t−1Y

w
t )2 =

1
n

n∑
t=2

r2
t

t∑

j=1

β̂2(t−1−j)r2
j . (41)

When we insert rt = Yt − (β̂ − β)Xt−1 into (41) and split the factors, then, using
Assumptions A1”, A3, the strong law of large numbers for martingale differences
(Y 2

t −EY 2
t )

∑t−1
j=1 β2(t−j−1)Y 2

j , similar considerations that led to (11) and the strong
consistency of β̂, we get that

1
n

n∑
t=2

Y 2
t

t∑

j=1

β̂2(t−j−1)Y 2
j → σ2 a. s.
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and after very careful analysis of the other terms that appear on the right-hand side
of (41) we obtain

sw2
n → σ2 a. s. (42)

Now, analogously to (26), we get

sup
x

∣∣∣∣∣P
w

(√
n(β̂∗w − β̂)

∆
<x

)
−Φ(x)

∣∣∣∣∣ ≤ sup
x

∣∣∣∣∣P
w

(
1

sw
n

√
n

n∑
t=1

X∗w
t−1Y

w
t <x

)
−Φ(x)

∣∣∣∣∣

+Pw

(∣∣∣∣∣
∆

sw
n

1
n

n∑
t=1

(X∗w
t−1)

2 − V

∣∣∣∣∣ > ε

)
+ ε + c|V − 1| (43)

where

V =
∆

sw
n

1
n

n∑
t=1

Ew(X∗w
t−1)

2 → 1 a. s.

which follows from (40) and (41). Further, repeating considerations that led to (28)
with the only modification that Varw(Y w

t )2 = r4
t (EK4

1 − 1) we get under A1” by
using the Chebyshev inequality that

Pw

(∣∣∣∣∣
∆

sw
n

1
n

n∑
t=1

(X∗w
t−1)

2 − V

∣∣∣∣∣ > ε

)
→ 0 a. s. (44)

It remains to prove that a bootstrap analogy of (9) and (10) holds true. Due to (41)
and analogously to (11) it suffices to prove that

Pw

(∣∣∣∣∣
1
n

n∑
t=2

r2
t (X∗w

t−1)
2 − 1

n

n∑
t=2

r2
t Ew(X∗w

t−1)
2

∣∣∣∣∣ > ε

)
→ 0 a. s. (45)

and that

1
sw2

n

1
n

n∑
t=1

Ew[(X∗w
t−1Y

w
t )2I{|X∗w

t−1Y
w
t | > ε

√
nsw

n }] → 0 a. s. (46)

To prove (45), observe that

1
n

n∑
t=2

r2
t ((X∗w

t−1)
2 − Ew(X∗w

t−1)
2) = S1 + S2
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where

S1 =
1
n

n−1∑
t=1

(Y w2
t − r2

t )ct,

S2 =
2
n

n∑
t=3

r2
t

t−3∑

j=0

β̂2jV w
t−j−1 =

2
n

n−1∑
t=2

ctV
w
t ,

ct =
n∑

j=t+1

r2
j β̂2(j−t−1),

V w
t = Y w

t

t−1∑

k=1

β̂kY w
t−k.

Hence, from the Chebyshev inequality

Pw

(∣∣∣∣∣
1
n

n∑
t=2

r2
t ((X∗w

t−1)
2 − Ew(X∗w

t−1)
2)

∣∣∣∣∣ > ε

)
≤ 1

ε2
(2EwS2

1 + 2EwS2
2).

Next,

EwS2
1 =

1
n2

n−1∑
t=1

c2
t E

w(Y w2
t − r2

t )2 = (EK4
1 − 1)

1
n2

n−1∑
t=1

c2
t r

4
t .

Obviously, under A1”, max1≤t≤n−1 |ct| = o(n
1
2 ) a. s. and 1

n

∑n
t=1 r4

t remains bounded,
thus, EwS2

1 → 0 a. s.
Similarly, we find that

EwS2
2 =

4
n2

n−1∑
t=2

c2
t r

2
t

t−1∑

k=1

β̂2kr2
t−k =

o(n)
n

· 1
n

n−1∑
t=2

r2
t

t−1∑

k=1

β̂2kr2
t−k → 0 a. s.

and thus (45) holds.
For the proof of (46) let us write

1
sw2

n

1
n

n∑
t=1

Ew[(X∗w
t−1Y

w
t )2I{|X∗w

t−1Y
∗w
t | > ε

√
nsw

n }]

≤ 1
εsw3

n

√
n

1
n

n∑
t=1

Ew|X∗w
t−1|3Ew|Y w

t |3. (47)

Since
Ew|Y w

t |3 = |rt|3E|K1|3 ≤ c(|Yt|3 + |β̂ − β|3|Xt−1|3),

Ew|X∗w
t−1|3 ≤ c




t−1∑

j=1

|β̂|t−1−j |Yj |



3

+ c|β̂ − β|3



t−1∑

j=1

|β̂|t−1−j |Xj−1|



3
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where c is a generic positive constant, we get after some computations, utilizing
strong consistency of β̂, (21) and the fact that max1≤t≤n |Yt|, respectively max

1≤t≤n
|Xt|

are of order o(n
1
4 ) a. s. under A1”, that

1
n

3
2

n∑
t=1

Ew|X∗w
t−1|3Ew|Y w

t |3 ≤ c
1

n
3
2

n∑
t=2

|Yt|3



t−1∑

j=1

|β|t−1−j |Yj |



3

+ o(1)

holds almost surely. Further,

1
n

3
2

n∑
t=2

|Yt|3



t−1∑

j=1

|β|t−1−j |Yj |



3

≤ c
max2≤t≤n |Yt|2

n
1
2

1
n

n∑
t=2

Y 2
t




t−1∑

j=1

|β|t−1−j |Yj |



2

= o(1) a. s.

which concludes the proof of (46). 2

Corollary 2. Under assumptions of Theorem 4, as n →∞,

sup
x
|Pw(

√
n(β̂∗w − β̂) < x)− P (

√
n(β̂ − β) < x)| → 0 a. s.

Remark 3. We presented here results for nonstationary AR(1) process, only. How-
ever, we can extend them to a general nonstationary process

Xt = β1Xt−1 + · · ·+ βpXt−p + Yt, t ≥ 0, X−1 = · · · = X−p = 0

under the assumption that all the roots of the polynomial λp− β1λ
p−1− · · · − βp lie

inside the unit circle. In such case we can write Xt in the form

Xt =
t∑

j=0

cjYt−j , t ≥ 0

where cj are coefficients that depend on parameters β1 . . . , βp and geometrically
decay to zero (see e. g. Brockwell and Davis [4], Chapter 3). Then we can obtain
consistency results for wild bootstrap procedures by using limit theorems for vector
martingale differences.

6. SIMULATIONS

We studied all considered bootstrap procedures numerically. We generated nonsta-
tionary process (1) with Yt being independent and normally distributed, with zero
mean and the variances σ2

t = 1+0.5(−1)t for various values of β and sample sizes n.
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In Figure, true value of asymptotic mean square error of β̂ is drawn (bold line) as
well as its estimates by residual based bootstrap (dotted line), wild bootstrap (thin
line) and modified wild bootstrap (dashed line) for values of β varying from 0.1 to
0.9 and n = 100, n = 200. We generated 1000 series for each combination of β and
n, and 1000 bootstrap replications in each series. The results show that residual
based bootstrap does not work well while wild bootstrap does; it gives somewhat
better results than modified wild bootstrap for larger values of β but yields larger
standard deviations, especially for small values of β.
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Fig. Estimates of the asymptotic mean square error of bβ by bootstrap

for n = 100 (left panel) and n = 200 observations (right panel).
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