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ON THE RELATION BETWEEN GNOSTICAL
AND PROBABILITY THEORIES

Zdeněk Fabián

A description of continuous probability distributions by means of influence and weight
functions of distribution has been developed. The applicability of the new concepts is
briefly discussed. It is shown that in the case of special probability distribution these func-
tions correspond to “irrelevance” and “fidelity” of the gnostical theory introduced in [10].
Gnostical model of uncertainty, claimed by its author to be independent of probabilistic
concepts in [12 – 13], can be thus replaced by a special case of the classical probabilistic
model.

1. INFLUENCE FUNCTION OF A CONTINUOUS DISTRIBUTION

R denotes real line. Let T ⊂ R be an open interval and BT the σ-field of its Borel
subsets. Let UT be a T -valued random variable with distribution PT , distributi-
on function FT and density pT . ΠT denotes the set of all absolutely continuous
distributions on (T,BT ) with densities twice continuously differentiable a. e.

Recall the concept of the score function of an R-valued random variable UR:

hR(x) =
d
dx

(− log pR(x)) = −p′R(x)
pR(x)

. (1)

It is known that, for T = R and the location model, the score function is proportional
to the influence function of the maximum likelihood estimator.

A generalization of (1) for T -valued random variable, where T 6= R, has been
proposed in [4]. It has been assumed that the set ΠT is an image of the set ΠR

under a given diffeomorphism ϕ : R → T . Then, any UT on (T,BT ) has a unique
“prototype” UR on (R,BR) given by UR = ϕ−1(UT ). Such UT and UR and their
distributions we call ϕ-related. The relation between their distribution functions is
obviously

FT (u) = FR(ϕ−1(u)). (2)

The generalized score function belonging to UT with distribution PT ∈ ΠT , here
called the influence function of the distribution of UT , is defined as an image of the
score function of its prototype under the mapping ϕ.
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Definition 1. Let T ⊂ R be an open interval and UT a random variable with dis-
tribution PT ∈ ΠT . Let a mapping ϕ : R → T be strictly increasing diffeomorphism
and let UR = ϕ−1(UT ) be a random variable with distribution PR ∈ ΠR and with a
score function hR. Real-valued function hT : T → R, given by

hT (u) = hR(ϕ−1(u)), (3)

will be called the influence function of random variable UT or the influence function
of distribution PT (IFD).

An explicit form of the IFD is given by the following proposition.

Proposition 1. The IFD of random variable UT specified in Definition 1 is given
by

hT (u) =
1

pT (u)
d
du

(−L(u) pT (u)), (4)

where

L(u) =
(

d(ϕ(x))
dx

)

x=ϕ−1(u)

. (5)

P r o o f . Denote v = ϕ−1(u). According to (2), the density of UT is

pT (u) =
dFT (u)

du
=

dFR(v)
dv

dv

du
=

pR(v)
L(u)

(6)

by the formula for the inverse function derivative. By (3) and (4)

hT (u) = hR(v) =
1

pR(v)
d
dv

(−pR(v)) =
1

L(u) pT (u)
d
du

(−L(u) pT (u)) · L(u). 2

The relation inverse to (4) is

pT (u) = c−1 exp
(
−

∫
L−1(u) [hT (u) + L′(u)] du

)
(7)

(supposing that c =
∫

T
pT (u) du exists).

Let us consider the halfline model, where T = R+ = (0,∞) and ϕ : R → T is the
exponential function ex. In this model Z = UR+ is related to its prototype X = UR

by the formula
Z = ϕ(X) = eX ,

or equivalently by X = ϕ−1(Z) = ln Z. Denote by p(z), h(z), z ∈ R+ the corre-
sponding density and influence function of Z. Then it follows from Proposition 1
that

L(z) = z (8)
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and that the IFD of Z is given by

h(z) = −1− zp′(z)/p(z). (9)

The particular mapping ϕ proposed for T = R+ has a statistical motivation. Namely,
positive data are often logarithmically transformed and there are well-known “loga-
rithmically related” pairs of distributions on R+ and R (the lognormal and normal,
the log-Cauchy and Cauchy etc.).

Let Θ ⊂ Rm be an open convex set and PT = {Pθ|θ ∈ Θ} a parametric family
of distributions on (T,BT ), dominated by the Lebesgue measure, with densities
{pT (u|θ)|θ ∈ Θ}. The evaluation of influence functions of distributions for the
family PT is straightforward:

hT (u|θ) =
1

pT (u|θ)
d
du

(−L(u) pT (u|θ)), θ ∈ Θ, (10)

where L(u) is given by (5).

Consider now the location and scale model, where T = R and ϕ(x) = σx + x0.
Then it follows from Proposition 1 that pT (x|x0, σ) = σ−1p̃((x − x0)/σ) where
p̃ = pR is the parent prototype density and x0 ∈ R and σ ∈ R+ are location and
scale parameters. The score function is, by (1), hR(x|x0, σ) = σ−1h̃((x − x0)/σ)
where h̃ is the “prototype” score function.

If pR(x|θ) = pR(x|x0, θ2, . . . , θm) then we define the transformed location param-
eter u0 ∈ T of any ϕ-related distribution PT on (T,BT ) by the formula u0 = ϕ(x0).
For example, in the halfline model the transformed location parameter is z0 = ex0 .
Since in this case L(z) is given by (8), it follows from (6) that the densities in the
exponentially related transformed location and scale model are given by the formula

pR+(z|z0, σ) = p(z|z0, σ) = (zσ)−1p̃(σ−1(ln z − ln z0)) = (zσ)−1p̃(ln(z/z0)1/σ).
(11)

According to (4), the corresponding IFDs are

hR+(z|z0, σ) = h(z|z0, σ) = σ−1h̃(ln (z/z0)1/σ). (12)

2. PROPERTIES OF IFD s

We list properties of IFDs. Some of them were discussed in more details in [5] – [7].

i) IFD represents an equivalent description of the distribution, which is often
simpler than the density.

Due to assumptions, relation (4) and its inverse (7) represent a one-to-one corre-
spondence between the density and the IFD of a continuous probability distribution.
The simplicity of IFDs is apparent from some examples given in Table 1.
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Table 1. IFDs and densities of distributions on (R,BR)

and of ex−related distributions on (R+,BR+).

hR(x) pR(x) h(z) p(z)
x 1√

2π
e−

1
2 x2

ln z 1√
2π z

e−
1
2 ln2z

ex − 1 exe−ex

z − 1 e−z

tgh(x/2) 1
4cosh−2(x/2) (z − 1)/(z + 1) 1/(z + 1)2

sinh x 1
2K0(1)

e−cosh x 1
2 (z − 1/z) 1

2K0(1) z e−
1
2 (z+1/z)

In the first three rows of Table 1 are standardized forms of pairs of exponentially
related distributions: normal and lognormal, double exponential and exponential,
logistic and log-logistic. In the fourth row K0 is the Bessel function of the third
kind. The distribution with density pR in the fourth row seems to be new – it is
logarithmically related to the standardized form p(z) of the Wald distribution (see
[16]) in this row.

ii) If the vector of parameters of a distribution contains the transformed location
parameter, IFD is proportional to the likelihood score for this parameter.

Recall that the likelihood scores are defined as

rj(u|θ) =
∂

∂θj
(log p(u|θ)), j = 1, . . . , m.

Proposition 2. Let u0 be the transformed location parameter of a parametric
family {PTθ

|θ ∈ Θ} on (T,BT ), where θ = (u0, α), α = θ2, . . . , θm. Let the likelihood
score r1(u|u0, α) exists. Then

hT (u|u0, α) = L(u0) r1(u|u0, α).

P r o o f . Let PTθ
= ϕ(PRθ′ ) where θ′ = (ϕ−1(u0), α) and denote v = ϕ−1(u) −

ϕ−1(u0). Analogically to (6), pT (u|θ) = L−1(u) pR(v|α). Then

r1(u|θ) =
1

pT (u|θ)
∂pT (u|θ)

∂u0
=

L(u)
pR(v|α)

∂(L−1(u)pR(v|α))
∂v

dv

du0

= −pR
′(v|α)

pR(v|α)
L−1(u0) = hR(v|α)L−1(u0) = L−1(u0)hT (u|θ). 2

iii) The IFD-moments sometimes better numerically characterize continuous ran-
dom variables than the classical moments.

Consider T and ϕ specified in Definition 1. Let pT be the density and hT the
influence function of random variable UT with distribution PTθ

∈ ΠT . Let k ∈ N .
The kth IFD-moment of random variable UT has been defined in [4] by the integral

Mk(θ) =
∫

T

hk
T (u|θ) pT (u|θ) du. (13)
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It has been proved in [7] that under the considered conditions the IFD-moments exist,
even for distributions with non-existing usual moments (Cauchy and log-logistic
distributions, for instance).

Let c1 = inf{u : u ∈ T}, c2 = sup{u : u ∈ T}. By (4) and (6),

M1 =
∫

T

hT (u) pT (u) du = −L(u) pT (u)|c2−c1
= −pR(x)|∞−∞ = 0. (14)

(14) obviously holds in the parametric case, too. All the other IFD-moments (13) are
expressed by means of parameters only and not by functions of parameters, which
is typical for the usual moments. This is important when estimates θ̂ of the true
parameter θ0 are defined as solutions of the equations

n−1
n∑

i=1

hk
T (ui|θ̂) = Mk(θ̂), k = 1, . . . , m, (15)

where u1, . . . , un are observed values of independent, identically distributed (i.i.d.)
random variables with distribution Pθ0 . In the halfline model the equations (15)
take on according to (14) and (12) the form

n−1
n∑

i=1

h̃(ln (zi/ẑ0)1/σ̂) = 0, (16)

n−1
n∑

i=1

h̃2(ln (zi/ẑ0)1/σ̂) = σ̂2M2(ẑ0, σ̂). (17)

According to Proposition 2, the first moment equation (16) is identical with the max-
imum likelihood equation for the transformed location parameter. It has been shown
in [6] that if estimates (15) exist (e. g. when h̃ is monotonous) then they are consis-
tent and asymptotically normal. Moreover, in cases of distributions with bounded
IFDs, the asymptotic variances of estimates (15) are near to the Cramér–Rao bound.
Simultaneously, IFD-moment estimates of both location and scale parameters are
robust, whereas the ML estimates of the scale parameter are known to be sensitive
to the outliers.

iv) The second IFD-moment is proportional to the Fisher information of a distri-
bution.

The Fisher information is usually defined and interpreted in parametric models.
The non-parametric Fisher information (the Fisher information of the distribution)
is defined as mean value of the score function (e. g. [1, p. 494]). An alternative
definition of the Fisher information of the distribution has been proposed in [5],
namely

M2 =
∫

T

h2
T (u) pT (u) du.

M2 is defined for distributions on arbitrary (T,BT ) even in parametric models, where
M2(θ) =

∫
T

h2
T (u|θ) pT (u|θ) du is finite for all Cramér–Rao regular distributions. The
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advantage of the definition using IFD is that, according to Proposition 2, M2(θ) in
the transformed location model is proportional to the classical Fisher information
FI(u0), M2(u0) = L−1(u0)FI(u0) even when T 6= R.

3. DERIVATIVE OF THE IFD

By means of the IFD, a reasonable distance of points u1, u2 ∈ T can be introduced
by the formula

ρ(u1, u2|θ) = |hT (u2|θ)− hT (u1|θ)| =
∫ u2

u1

gT (u|θ) du (18)

where
gT (u|θ) = dhT (u|θ)/du. (19)

By Proposition 2, (18) is proportional to a distance introduced in the sample space
by the likelihood function of transformed location parameter. If hT is continuous
and strictly increasing, (18) is a metric. The space (T, ρ) is in such a case a one-
dimensional Riemannian metric space.

Let gR be a derivative of the score function of a distribution PR ∈ ΠR. It follows
from the direct differentiation of (10) and Proposition 1 that the derivative of the
IFD of the ϕ−related distribution on (T,BT ) is given by

gT (u|θ) = L−1(u) gR(ϕ−1(u|θ)). (20)

In the spirit of the Riemannian geometry, the term

wT (u|θ) = gR(ϕ−1(u|θ)) (21)

may be called a weight function of the distribution PTθ
(WFD). It represents a

relative importance of an observed point u ∈ T under the assumption that the
distribution is PTθ

.
Consider for simplicity a distribution without parameters, with density pT (u) and

IFD hT (u), so that gT (u) = dhT (u)/du. Taking derivatives of (1) and (9), (20) are
on (R,BR) and (R+,BR+) expressed by densities as

gR(x) =
(

p′R(x)
pR(x)

)2

− p′′R(x)
pR(x)

, gR+(z) = g(z) = −p′(z)
p(z)

+ z

[(
p′(z)
p(z)

)2

− p′′(z)
p(z)

]
.

Weight functions of distributions from Table 1 are given in Table 2.

Table 2. Weight functions gR of distributions PR

and w(z) = zg(z) of the exponentially related distributions.

pR(x) gR(x) p(z) w(z)
1√
2πz

e−
1
2 x2

1 1√
2πz

e−
1
2 ln2 z 1

exe−ex

ex e−z z
1
4 cosh−2 x 1

2 cosh−2 x 1/(z + 1)2 2/(z1/2 + z−1/2)2
1

2K0(1)
e− cosh x cosh x 1

2K0(1) z e−
1
2 (z+1/z) 1

2 (z + 1/z)
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Finally, using (12) and (20), it holds in the case of the transformed location and
scale model on (R+,BR+)

gR+(z|z0, σ) = g(z|z0, σ) = σ−1dh̃(ln(z/z0)1/σ)/dz = σ−2z−1g̃(ln(z/z0)1/σ) (22)

where g̃ = h̃′ is the “prototype” weight on (R,BR).

4. GNOSTICAL THEORY

A nonstandard theory of data processing was presented by Kovanic [10] – [13]. The
aim of his “gnostical” theory is the same as that of statistics: to make inferences
from data observed under the influence of uncertainty. The theory was proposed by
the author as non-probabilistic.

Kovanic introduced a mathematical model of an individual uncertainty which is
contained in a single positive data item z in the form

z = z0e
sΩ (23)

where z0 ∈ R+ is an “ideal value” of z and Ω ∈ R the uncertainty, scaled (in [13]) by
a parameter s ∈ R+. Since (23) seems to be a general parametric model of positive
data items and any real measured data are in fact positive, Kovanic considered that
(23) is a universal mathematical model of data “suffering from uncertainty”. Based
on this model, he derived two individual “gnostical” data characteristics that depend
on the uncertainty. They are “fidelity”, given by the expression

f(z|z0, s) = cosh−1(2Ω) = 2/
[
(z/z0)2/s + (z/z0)−2/s

]
, (24)

and “irrelevance”, given by

he(z|z0, s) = −tgh(2Ω) = − (z/z0)2/s − (z/z0)−2/s

(z/z0)2/s + (z/z0)−2/s
. (25)

These are the two basic gnostical characteristics of one data item when the model
(23) is known, mutually related by

h2
e(z|z0, s) = 1− f2(z|z0, s).

Having a sample Zn = (z1, . . . , zn) of data from one source (23), each data item
zi can be characterized, after Kovanic, by its fidelity and irrelevance. They are
in a latent form because of the unknown parameters z0, s which can, however, be
estimated from the data sample Zn. The simplest gnostical estimate of the ideal
value z0 is obtained by Kovanic’s requirement of zero average irrelevance of the
sample Zn. This gives the estimation equation

n−1
n∑

i=1

he(zi|ẑ0, ŝa) = 0, (26)
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where ŝa is a prior estimate of the scale parameter s. The function he is bounded,
|he(z|z0)), s)| ≤ 1. A consequence of this fact is the insensitivity of estimates (26)
to outlying values in data, without introducing any of the robustifying functions
of robust statistics. The fact that the gnostical estimator (26) can be useful, was
demonstrated by its comparison with a large set of robust statistical estimators.
They were all applied to the well-known collection of Stiegler’s data [18]. The gnos-
tical estimator, giving quite realistic estimates, was found in [14] to achieve the
smallest mean square error.

Other gnostical data characteristics and estimation procedures take various forms,
some of them being restatements of well-known statistical principles with one basic
difference: instead of raw data, the irrelevances are substituted into formulas. As
an example, the “gnostical correlation coefficient” is

Ce(k) =
1

n− k

n−k∑

i=1

he(zi|z0, s) he(zi+k|z0, s).

In some of procedures Kovanic uses the square of fidelity as the weight of data.
The more advanced gnostical estimation procedures, which we do not discuss in
the present paper, are based on the “data composition law” of the gnostical theory,
which states that the “composite event” zc of a data sample Zn is given by

he(zc|z0, s) =
n∑

i=1

he(zi|z0, s)/we, (27)

where

we =




[
n∑

i=1

f(zj |z0, s)

]2

+

[
n∑

i=1

he(zj |z0, s)

]2



1/2

,

i.e. that the irrelevance of the composite event is the weighted sum of individual
irrelevances.

Kovanic argues that the “gnostical data processing” principally differs from the
data processing folllowing the principles of mathematical statistics ([13], p. 657). He
asserts that it can be used even in situations when a probabilistic model of the data
is unknown and cannot be guessed (“Let data speak for themselves”, [13], p. 658).

The first statistical light was thrown on this assertions in [3]. The author of the
present paper noticed that the square of fidelity (24) is similar to the density of a
certain probability distribution, later identified as log-logistic. He also showed that
gnostical estimators are identical to the maximum-likelihood estimator or to the α-
estimators introduced by Vajda [19], for the log-logistic family. Based on this result,
Vajda [20], [21] and Novovičová [15] were able to establish asymptotic statistical
properties of gnostical estimators. They proved that the gnostical estimators are
the usual statistical M -estimators, strongly consistent and asymptotically normal,
and they derived the corresponding asymptotic variances.

The success of the estimator (26) applied to the Stiegler data sets can be explained
as follows. The influence function of the robust estimator (26) is, contrary to the
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usual robust estimators, non-symmetrical. This fits well the clear non-symmetry of
the Stiegler’s data.

Nevertheless, some questions concerning gnostical theory remain unanswered.
What does it the “fidelity” and “irrelevance” of one data item really mean? Why
the gnostical estimator (26) belongs to the class of statistical M -estimators, although
the maximum likelihood principle is not postulated in gnostical theory? In the next
section we try to answer these questions.

5. STATISTICAL MEANING OF THE GNOSTICAL IRRELEVANCE
AND FIDELITY

In the previous section we mentioned only one of the Kovanic’s irrelevances. In
fact, there are two. By means of “estimating irrelevance”, given by (3), there are
constructed robust gnostical estimates. The second type is the “quantifying irrele-
vance”, given by

hq(z|z0, s) = sinh(2Ω) =
1
2

[
(z/z0)2/s − (z/z0)−2/s

]
. (28)

The requirement of zero average of quantifying irrelevances of a data sample provides
sensitive gnostical estimates [13].

Theorem 1. Probability densities corresponding to two types of Kovanic’s irrele-
vances (25), (28) are

p1(z|z0, s) =
√

2π

zsΓ2(1/4)
1

[(z/z0)2/s + (z/z0)−2/s]1/2
(29)

p2(z|z0, s) =
1

zsK0(1/2)
e−

1
4 [(z/z0)

2/s+(z/z0)
−2/s], (30)

respectively.

P r o o f . Let
hR1(u) = tgh(2u), hR2(u) = sinh(2u) (31)

be the score functions of distributions on (R,BR) (they are modifications of score
functions of distributions in last two rows in Table 1). The corresponding densities
are, according to (1),

pR1(x) = c−1
1 e−

R
tgh(2x) dx = c−1

1 cosh−1/2(2x) (32)

pR2(u) = c−1
2 e−

R
sinh(2x) dx = c−1

2 e−
1
2 cosh(2x). (33)

Norming constants are given by integrals (see e. g., [17])

∫ ∞

−∞
cosh−νax dx =

2νΓ2(ν/2)
aΓ(ν)

,

∫ ∞

−∞
e−ν cosh axdx = 2a−1K0(ν)
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where Γ is the gamma function. According to (12), the IFDs of the exponentially
related distributions on R+ are given by the substitution

u = ln(z/z0)1/s (34)

into (31). We obtain

h1(z|z0, s) = s−1tgh(ln(z/z0)2/s) = −s−1he(z|z0, s) (35)

h2(z|z0, s) = s−1sinh(ln(z/z0)2/s) = s−1hq(z|z0, s), (36)

where −he and hq are gnostical irrelevances (25) and (28). The opposite sign of the
estimating irrelevance with respect to IFD, as well as the constant factor, plays no
role in practical applications of gnostical algorithms (e. g. equation (26)). By (11),
one obtains the densities corresponding to IFDs (35) and (36) from the prototype
densities (32) and (33) after the substitution (34) and division by z, which gives (29)
and (30). 2

Theorem 2. Square of the gnostical fidelity is, apart from the constant, the weight
function of the family (29).

P r o o f . Weight functions of distributions with densities (32), (33) are, using (19)
and (31),

g1(u) = 2cosh−2(2u), g2(u) = 2cosh(2u). (37)

After substitution (34) and by the use of (21),

g1(z|z0, s) = 2s−2z−1cosh−2(ln(z/z0)2/s) = 2s−2z−1f2(z|z0, s) (38)

g2(z|z0, s) = 2s−2z−1cosh(ln(z/z0)2/s) = 2s−2z−1f−1(z|z0, s),

where f is the fidelity (24). Apart from the factor 2s−2, f2(z|z0, s) is the weight func-
tion (21) of the distribution (29) (and, similarly, f−1(z|z0, s) is the weight function
of the distribution (30)). 2

6. CONCLUSIONS

Given a model of a statistical experiment in the form of a parametric set PT , the
observed values u1, . . . , un, the realizations of i.i.d. random variables U1, . . . Un

with distribution Pθ0 ∈ PT are no longer merely an observed collection of data
items. We propose a model which prescribes for each data item ui some a priori
data characteristics: the value of the IFD, hT (ui|θ0), and the value of the WFD,
wT (ui|θ0). They are, similarly as the likelihood, in a “latent form” because of the
unknown true parameter value θ0. However, they can be approximately specified by
using an appropriate estimate θ̂ of θ0.

With the help of this model, theorems in the previous section give a possible
statistical explanation of gnostic characteristics of data. The “ideal value” z0 can be
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understood as the transformed location parameter, the “scale” s as the usual scale
parameter and the “irrelevance” and “fidelity” as the IFD and the square root of
the WFD of distributions (29) and (30). We thus give an explanation of Kovanic’s
“non-statistical” notions of irrelevance and fidelity of individual data in a rather
unexpected way by including their general equivalents into the probability theory.

The Kovanic’s heuristic estimate given by (26) appears to be the first IFD-moment
estimate in the special model (29). By iii) of Section 2, (16) yields the maximum
likelihood estimate of the location parameter without the need to apply directly
the maximum likelihood principle (e. g. without the need of differentiation with
respect to the location parameter). Good performances of the gnostical estimator of
the location parameter can be attributed to this fact, and to the boundedness of the
influence function of distribution (29)). The difficulties with the gnostical estimation
of scale parameter (which are not mentioned in this paper) could be circumvented
by the use of the second IFD-moment estimation equation (17).

It should be noted that we did not explain Kovanic’s estimation procedures based
on his “data composition law”. We suppose that, in the probabilistic terms, the
composition law (27) can be considered as a “finite equivalent” of a limit theorem
concerning sums of i.i.d. random variables, weighted in a special way. “Qualita-
tively”, (27) asserts that the weighted sum of i.i.d. random variables is distributed
according to the original probability law. But this problem remains to be open.
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