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A CONVERGENCE OF FUZZY RANDOM VARIABLES

Dug Hun Hong

In this paper, a general convergence theorem of fuzzy random variables is considered.
Using this result, we can easily prove the recent result of Joo et al, which gives generalization
of a strong law of large numbers for sums of stationary and ergodic processes to the case
of fuzzy random variables. We also generalize the recent result of Kim, which is a strong
law of large numbers for sums of levelwise independent and levelwise identically distributed
fuzzy random variables.
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1. INTRODUCTION

In recent years, strong laws of large numbers for sums of fuzzy random variables
have received much attention by several people. A SLLN for sums of indepen-
dent and identically distributed fuzzy random variables was obtained by Kruse
[10], and a SLLN for sums of independent fuzzy random variables was obtained
by Miyakoshi and Shimbo [11], Klement, Puri and Ralescu [15]. Also, Inoue [5]
obtained a SLLN for sums of independent tight fuzzy random sets, and Hong
and Kim [4] proved Marcinkiewicz-type law of large numbers. Many other papers
[1, 3, 7, 12, 13, 14, 15, 16, 17, 18] are related to this topic. Recently, Joo, Lee and Yoo
[6] generalized a strong law of large numbers for sums of stationary and ergodic
processes to the case of fuzzy random variables and Kim [8] obtained a strong law of
large numbers for sums of levelwise independent and levelwise identically distributed
fuzzy random variables.

In this paper, we consider a general convergence theorem of fuzzy random vari-
ables, Using this result, we can easily prove the result of Joo et al [6] and generalize
the result of Kim[8]. Section 2 is devoted to describe some basic concepts of fuzzy
random variables. Main results are given in Section 3.

2. PRELIMINARIES

Let R denote the real line. A fuzzy number is a fuzzy set ũ : R −→ [0, 1] with the
following properties;
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(1) ũ is normal, i. e., there exists x ∈ R such that ũ(x) = 1.

(2) ũ is upper semicontinuous.

(3) supp ũ = cl{x ∈ R|ũ(x) > 0} is compact.

(4) ũ is a convex fuzzy set, i. e., ũ(λx + (1 − λ)y) ≥ min(ũ(x), ũ(y)) for x, y ∈ R
and λ ∈ [0, 1].

Let F (R) be the family of all fuzzy numbers. For a fuzzy set ũ, if we define

Lαũ =




{x|ũ(x) ≥ α}, 0 < α ≤ 1,

supp ũ, α = 0,

then, ũ is a fuzzy number if and only if L1ũ 6= φ and Lαũ is a closed bounded
interval for each α ∈ [0, 1]. If we use this characteristic of fuzzy number, a fuzzy
number ũ is completely determined by the endpoints of the intervals Lαũ = [u1

α, u2
α].

The following theorem(see Goetschel and Voxman [2]) implies that we can identify
a fuzzy number ũ with the parameterized representation

{(u1
α, u2

α) | 0 ≤ α ≤ 1}.

Theorem 2.1. For ũ ∈ F (R), denote u1(α) = u1
α and u2(α) = u2

α as functions of
α ∈ [0, 1]. Then

(1) u1 is a bounded increasing function on [0,1].

(2) u2 is a bounded decreasing function on [0,1].

(3) u1(1) ≤ u2(1).

(4) u1 and u2 are left continuous on [0,1] and right continuous at 0.

(5) If v1and v2 satisfy above (1) – (4), then there exists a unique ṽ ∈ F (R) such
that v1

α = v1(α), v2
α = v2(α).

The addition and scalar multiplication on F (R) are defined as usual;

(ũ + ṽ)(z) = sup
x+y=z

min(ũ(x), ṽ(y)),

(λũ)(z) =





ũ(z/λ), λ 6= 0,

0̃, λ = 0,

for ũ, ṽ ∈ F (R) and λ ∈ R, where 0̃ = I{0} is the characteristic function of {0}. It
follows that if ũ = {(u1

α, u2
α) | 0 ≤ α ≤ 1} and ṽ = {(v1

α, v2
α) | ≤ α ≤ 1}, then

ũ + ṽ = {(u1
α + v1

α, u2
α + v2

α) | 0 ≤ α ≤ 1}
λũ = {(λu1

α, λu2
α) | 0 ≤ α ≤ 1} for λ ≥ 0.
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Now, we define the metric d∞ on F (R) by

d∞(ũ, ṽ) = sup
0≤α≤1

h(Lαũ, Lαṽ),

where h is Hausdorff metric defined as

h(Lαũ, Lαṽ) = max(|u1
α − v1

α|, |u2
α − v2

α|).

The norm of ũ ∈ F (R) is defined by

‖ũ‖ = d∞(ũ, 0̃) = max(|u1
0|, |u2

0|).

Then it is well-known that F (R) is complete but nonseparable with respect to the
metric d∞. Joo and Kim [7] introduced a metric ds in F (R) which makes it a
separable metric space as follows.

Definition 2.1. Let T denote the class of strictly increasing, continuous mappings
of [0, 1] onto itself. For ũ, ṽ ∈ F (R), we define

ds(ũ, ṽ) = inf
{

ε : there exists a t in T such that

sup
0≤α≤1

|t(α)− α| ≤ ε and d∞(ũ, t ◦ ṽ) ≤ ε
}

,

where t ◦ ṽ denotes the composition of ṽ and t.

3. MAIN RESULTS

Throughout this section, we assume that the space F (R) is considered as the metric
space endowed with the metric ds, unless otherwise stated. Also, we denote by Bs

the Borel σ-field of F (R) generated by the metric ds.
Let (Ω,A, P ) be a probability space. A fuzzy number valued function X̃ : Ω →

F (R) is called a fuzzy random variable if it is measurable, i. e.,

X̃−1(B) = {ω : X̃(ω) ∈ B} ∈ A for every B ∈ Bs.

If we denote X̃(ω) = {(X1
α(ω), X2

α(ω))|0 ≤ α ≤ 1}, then it is known that X̃ is a
fuzzy random variable if and only if for each α ∈ [0, 1], X1

α and X2
α are random

variables in the usual sense. A fuzzy random variable X̃ = {(X1
α, X2

α)|0 ≤ α ≤ 1}
is called integrable if for each α ∈ [0, 1], X1

α and X2
α are integrable, equivalently,∫ ‖X̃‖dP < ∞. In this case, the expectation of X̃ is the fuzzy number EX̃ defined

by

EX̃ = {(EX1
α, EX2

α) | 0 ≤ α ≤ 1}
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Theorem 3.1. Let {X̃n} = {(X1
nα, X2

nα) | 0 ≤ α ≤ 1} be a sequence of fuzzy
random variables and ũ = {(u1

α, u2
α) | 0 ≤ α ≤ 1} be a fuzzy number with ‖ũ‖ < ∞.

Suppose that

(1) X1
nα → u1

α a. s. and X2
nα → u2

α a. s. for any α ∈ [0, 1]

(2) X1
nα+ → u1

α+ a. s. and X2
nα− → u2

α− a. s. for every discontinuity point of uα
1

and uα
2 , respectively.

Then we have
lim

n→∞
d∞(X̃n, ũ) = 0 a. s.

We need the following lemma given in [6].

Lemma 3.1. Let u = {(u1
α, u2

α) | 0 ≤ α ≤ 1} with ‖u‖ < ∞ and ε > 0 be given.

(1) Then there exists a partition 0 = α0 < α1 < . . . < αr = 1 of [0, 1] such that
u1

αi
− u1

α+
i−1

≤ ε for all i = 1, 2, . . . , r.

(2) Similar statements hold for u2
α.

P r o o f o f T h e o r e m 3.1. Let ε > 0 be arbitrary fixed. By Lemma 3.1, there
exists a partition 0 = α0 < α1 < . . . < αr = 1 of [0, 1] such that u1

αi
− u1

α+
i−1

≤ ε for

all i = 1, 2, . . . , r. Let Ak = {X1
nαk

−→ u1
αk

and X1
nα+ −→ u1

α+ for all discontinuity
points of u1

α} and Aε = ∩r
k=1Ak, then by the assumption P (Ak) = 1, k = 1, 2, . . . , r,

and hence P (Aε) = 1. Then for any given w ∈ Aε, there exists N(w) such that for
n ≥ N(w)

sup
k=1,2,...,r

{|X1
nαk

(w)− u1
αk
|, |X1

nαk
+(w)− u1

αk
+ |} ≤ ε.

Now, let α ∈ (αk−1, αk], then for n ≥ N(w),

X1
nα(w)− u1

α ≤ X1
nαk

(w)− u1
α+

k−1
≤ u1

αk
+ ε− u1

α+
k−1

≤ 2ε

and
u1

α −X1
nα(w) ≤ u1

αk
−X1

nα+
k−1

(w) ≤ u1
αk
− (u1

α+
k−1

− ε) ≤ 2ε.

Hence
sup

α∈(αk−1,αk]

|X1
nα(w)− u1

α| ≤ 2ε.

Since k is arbitrary, we have

sup
α∈[0,1]

|X1
nα(w)− u1

α| ≤ 2ε.

Let A =
⋂∞

n=1 A 1
n
, then P (A) = 1 and for any w ∈ A

lim
n→∞

sup
0≤α≤1

|X1
nα(w)− u1

α| = 0.
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Similarly, it can be proved that

lim
n→∞

sup
0≤α≤1

|X2
nα − u2

α| = 0, a. s.

which completes the proof. 2

Recently, Kim [8] proved a SLLN for sums of levelwise independent and identically
distributed fuzzy random variables. But his result is a special case of Theorem 1.
If X̃n is a sequence of levelwise independent and levelwise identically distributed
random variables with E‖X̃1‖ < ∞, then, it is easy to check that both {X1

nα+} and
{X2

nα−} for α ∈ [0, 1] are independent and identically distributed random variables,
respectively, with E|X̃1

nα+| < ∞ and E|X̃2
nα−| < ∞. And it is also easy to check

that for any α ∈ [0, 1]
1
n

n∑

i=1

X1
iα+ −→ EX1

α+ a. s.

and
1
n

n∑

i=1

X2
iα− −→ EX2

α− a. s.

by Kolmogorov’s strong law of large numbers and Monotone Convergence Theorem.
It is also noted that the set of discontinuity point of EX1

α and EX2
α is at most

countable. Now, using Theorem 1 we have the following generalized result of Kim
[8] as a corollary.

Corollary 3.1. Let {X̃n} be a sequence of levelwise independent and levelwise
identically distributed fuzzy random variables, with E‖X̃1‖ < ∞. Then we have

d∞

(
1
n

n∑

i=1

X̃i, EX̃1

)
−→ 0 a. s.

Remark. The condition that EX1
1α and EX2

1α are continuous as functions of α
in Kim’s result is not needed.

Recently Joo et al [6] proved a SLLN for sums of stationary and ergodic fuzzy
random variables. With similar arguments as above, noting that for each α ∈ [0, 1],
{X1

nα}, {X1
nα+}, {X2

nα} and {X2
nα−} are sequences of stationary and ergodic random

variables under the assumption that {X̃n} is a sequence of stationary and ergodic
fuzzy random variables, we also have Joo’s result as a corollary by Theorem 1.

Corollary 3.2. Let Xn be a sequence of stationary fuzzy random variables. If
{X̃n} is ergodic and E‖X̃1‖ < ∞, then

d∞

(
1
n

n∑

i=1

X̃i, EX̃1

)
−→ 0 a. s.
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