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Pod Vodárenskou věž́ı 4, 182 08 Praha 8

Kybernetika is a bi-monthly international journal dedicated for rapid publication of
high-quality, peer-reviewed research articles in fields covered by its title.

Kybernetika traditionally publishes research results in the fields of Control Sciences,
Information Sciences, System Sciences, Statistical Decision Making, Applied Probability
Theory, Random Processes, Fuzziness and Uncertainty Theories, Operations Research and
Theoretical Computer Science, as well as in the topics closely related to the above fields.

The Journal has been monitored in the Science Citation Index since 1977 and it is
abstracted/indexed in databases of Mathematical Reviews, Current Mathematical Publi-
cations, Current Contents ISI Engineering and Computing Technology.

Ky b e r n e t i k a . Volume 39 (2003) ISSN 0023-5954, MK ČR E4902.
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REVERSIBLE JUMP MCMC FOR TWO–STATE
MULTIVARIATE POISSON MIXTURES1

Jani Lahtinen and Jouko Lampinen

The problem of identifying the source from observations from a Poisson process can be
encountered in fault diagnostics systems based on event counters. The identification of the
inner state of the system must be made based on observations of counters which entail
only information on the total sum of some events from a dual process which has made a
transition from an intact to a broken state at some unknown time. Here we demonstrate
the general identifiability of this problem in presence of multiple counters.

Keywords: Bayesian inference, fault diagnostics, Poisson processes, reversible-jump MCMC

AMS Subject Classification: 62P30, 62F15, 62M05

1. INTRODUCTION

Our framework is a set of counters each of which is Poisson distributed and we
observe the final value of the counters at the end of some period of time. During
this time the process has changed from the initial state to the final state at unknown
time. For both the initial and final periods there are unknown number of possible
substates (i.e. event occurrence rates).

This type of situation arises, e.g. in fault diagnosis, when occurrences of some
event during the operation of the device are monitored, and only the total number
of the events is stored. From these counter values the goal is to decide, for example,
whether the device is operating in normal states (intact device), or whether some
fault has occurred during the operation and the device is malfunctioning. The esti-
mation task is complicated due to the fact, that we have no prior knowledge on the
event rate for either intact of faulty devices, hence we need to estimate the event
rates for the states and the state transitions simultaneously. Collecting the data
during actual operation from a large number of devices causes additional complica-
tion in the model as the devices may not be exactly similar. In a paper machine,
for example, both the sensors and production line hardware are continuously up-
dated. Similarly, in mass production devices, like a portable computers, the same
model may contain various different hardware configurations and operating system

1Presented at the Workshop “Perspectives in Modern Statistical Inference II” held in Brno on
August 14–17, 2002.
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versions, possibly affecting the rates of the monitored events. To account for this
variation we model all states as mixtures of Poisson processes, with unknown num-
ber of substates. We assume that the substates are constant during the operation,
so that each device has zero or one unknown state transitions to be estimated.

In this paper we show that the two states of the process can be recognized by
the final values of the counters when the dimension (the number of counters) is
large. The one dimensional case is not invertible as the observed phenomena can be
explained by varying the distribution of the transition point of which we have no
direct information.

We apply the Metropolis–Hastings–Green method [3, 6] to estimate the Bayesian
posterior of the parameters. This is then used to classify test cases based on multiple
counters generated by the Poisson process. Previously similar approach for mixture
distributions has been studied by Viallefont et al in [7] for Poisson mixtures and by
Marrs in [4] for Gaussian mixtures. Our work has the feature of two state history,
which to the authors’ knowledge has had little attention so far.

An important application, for which the presented method was designed, is in
fault diagnostic systems where the fault type of a device can be assessed based
on the number of some counted events recorded during the age of the device. A
non–faulty device would then have been in the same state through the whole time,
whereas a broken would have shifted from the initial intact state to a broken state
of some sort. The class of intact devices can also constitute of many inner states
issuing from differences in the devices or the usage environment of the particular
devices.

2. THE COUNTER GENERATION MODEL

We assume that the process can be sampled in two ways, so that some of the obser-
vations have only gone through a single state (an intact device), and some had two
states (an initially intact device which then broke down). Also there may be several
inner states in which the device may be broken or intact.

We will mark the values of n counters by x ∈ Zn. The latent, unobservable,
variables determining the states of the process are denoted by z1 ∈ {1, . . . , k1} for
the initial state and z2 ∈ {k1 + 1, . . . , k} for the broken state, with k1 and k2 the
number of initial and broken states, respectively. The (unobserved) value of the
counter i during the initial state of length τ is denoted by yi, and the final observed
value during time t is denoted by xi.

The matrix of Poisson rates for k = k1 +k2 states is Λ ∈ Rk×n. The probabilities
of the k1 initial states are denoted by ω ∈ Rk1 and the matrix of the transition
probabilities from the initial to broken states by T ∈ Rk1×k2 .

Let us assume that there are n counters, the device is initially in one of k1 intact
states, z1, with probability ωz1 . At time τ the counter i will have the value yi drawn
from Poisson distribution with mean Λz1,i, see the example in Section 5. Then at
time τ it makes a transition to a broken state z2, of which there are k2 possibilities,
with a probability Tz1,z2 . In this state the counter i is again generated at a different
rate Λz2,i. The total values of the counter i is then xi.
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3. BAYESIAN ESTIMATION

We use the Bayes formula

p(θ|D,M) =
p(D|θ, M)p(θ|M)

p(D|M)
(1)

to obtain the posterior distribution of the parameters Λ and τ , given the model M ,
which then can be used by a maximum probability classifier.

The prior distributions of the variables were

k1 ∼ Uniform{1, . . . , kmax} k2 ∼ Uniform{1, . . . , kmax}
ω ∼ Dirichlet(1, . . . , 1︸ ︷︷ ︸

k1 times

) Ti,: ∼ Dirichlet(1, . . . , 1︸ ︷︷ ︸
k2 times

)

Λi,j ∼ Gamma(α, β) τ ∼ Uniform[0, t]

z1 ∼ Bernoulli(ω) z2 ∼ Bernoulli(Tz1,:)

yi ∼ Poisson(τΛz1,i)

(2)

where Tz1,: marks the z1th row of the transition probability matrix T . The Bernoulli
distribution here is a discrete distribution where each of the k values have the cor-
responding probabilities in the parameter vector.

The likelihood of n observed counter values x when the latent variables and
parameters are given is then:

p(x|t, τ, Λ, z) =
n∏

i=1

Poisson(xi|Λz1,iτ + Λz2,i(t− τ)). (3)

The Poisson rates of the initial states are estimated first using the common Pois-
son mixture Gibbs sampling [2] with Reversible Jump [3]. These are then kept fixed
for the estimation of the second state rates. The number of latent states was chosen
in both cases according to the most likely values based on the MCMC sampling.
Note that in full Bayesian analysis no fixed values for any intermediate variables
are estimated, but instead the posterior distribution of the variables is propagated
throughout the analysis. The sequential estimation of the parameters was done for
practical reasons, to simplify the analysis and to make the sampling faster.

The parameters are sampled by a Metropolis–Hastings–Green sampling with
Split–Merge type reversible jump moves with the following procedure (here we use
the upper index to enumerate through the data samples):

1. Draw each Λ′i,j , k1 < i ≤ k, from Γ(α+
∑

l:{zl
2=i}(x

l
i−yl

i), β+
∑

l:{zl
2=i}(t

l−τ l).

2. Draw each Ti,: from Dirichlet(A), where A ∈ Rk2 , Aj = 1+
∑

l I{zl
1 = i∧ zl

2 =
j}, where I{·} is the characteristic function of the set {·}.

3. Draw each zi
1 from Bernoulli(B), where B ∈ Rk1 , Bj = ωj

∏
l Poisson(yi

l |τ iΛzi
1,l).

4. Draw each zi
2 from Bernoulli(C), where C ∈ Rk2 , Cj = ωzi

1
Tzi

1,j

∏
l Poisson(xi

l−
yi

l |(ti − τ i)Λzi
2,l).
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5. Draw each τ i and yi from their posterior by Metropolis–Hastings procedure.

6. In the Reversible Jump step either decide to try a split or merge a random
kernel (the Poisson rate parameters of some latent state) with probability 1/2.

7. Use the split (merge) map (see below) to a kernel κ chosen at random.

8. Reallocate the latent states zi
2 = κ, (or while merging zi

2 = κ ∨ zi
2 = κ + 1) by

drawing from Bernoulli(D), where D ∈ Rk2 ,

Dj = ωzi
1
Tzi

1,j

∏
l Poisson(xi

l − yi
l |τ iΛzi

2,l).

9. Accept the split proposal with probability

min
{

1,
p(D|θ′)
p(D|θ)

|J |
Palloc

}
, (4)

where Palloc is the reallocation probability of the latent z and |J | is the Jacobian
determinant of the split map (see below). In case of merge the acceptance
probability is

min
{

1,
p(D|θ′)
p(D|θ)

Palloc

|J |
}

, (5)

in here Palloc is the reallocation probability of the the latent z if splitting from
the new state back to the original with the map whose Jacobian is |J |.

4. THE REVERSIBLE JUMP STEP

We use a Split–Merge procedure to simulate the jump between dimensions. This is
done by randomly choosing either split or merge with equal probability. In splitting
a kernel the center of mass of the two new kernels is preserved:

ω′1λ
′
1 + ω′2λ

′
2 = ωλ. (6)

The other parameter values are copied from the original. In order the merge–step
(inverse map of split) to be reversible the other parameters are copied from one
of the two components chosen at random. The new values for ω1, ω2, λ1 and λ2

are then mapped such that all possible positive values of λs satisfying equation (6)
are equally probable. This is the following map, (λi, ωi, u, v) 7→ (λ′i, λ

′
i+1, ω

′
i, ω

′
i+1),

in which the latent state i is split, where u, v ∈ [0, 1] are drawn from the uniform
distribution:

ω′i = uωi

ω′i+1 = (1− u)ωi

λ′i = vλi

λ′i+1 = ωiλi−ω′iλ
′
i

ω′i+1
.

(7)

The Jacobian determinant is then

J =
ωiλi

u− 1
. (8)
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5. EXAMPLES

5.1. A 2–dimensional model

Take for an example the following: the initial (intact) states are labeled as {1, 2}
and the final (broken) states are {3, 4, 5, 6}, where we divide the broken states to
two groups, this would present that the device has two different categories of mal-
functions, with the {3, 4, 5} as one category (class 1) and the state {6} alone (class
2), see Figure 1. The initial states were equally probable with Poisson parameters
(event rates):

Λ =




1 2
2 4
2 8
7 7
9 3
15 15




, T =
(

0 1/2 1/4 1/4
1/2 1/4 1/4 0

)
. (9)

1 2

63 4 5

BROKEN 1 BROKEN 2

INTACT

Fig. 1. The state diagram of the example system.

The simulated data had 25 samples from the initial model, representing intact
devices and 100 samples from the two state model, representing broken devices (see
Figure 2). The transition time was uniformly distributed.

The parameters of the intact devices were simulated for 1000 rounds and the
parameters of broken devices were simulated for 3000 rounds, with priors α = 2
and β = 1/8 in equation (2). The simulation of the functions in Matlab with
Compaq AlphaStation XP1000 processor lasted for 10 min. The convergence of the
simulation was tested using the Kolmogorov–Smirnov test [6] after we selected a
proper subset of the datasamples based on the autocorrelation time to avoid the
dependence of consecutive samples [5]. The estimated probabilities, taken as the
mean of the simulated samples, with the most likely number of kernels of the initial
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Fig. 2. Samples of Example 1, intact devices marked with circles,

broken class 1 with crosses and broken class 2 with boxes.

latent states were:

Λ̂ =




1.2 2.0
2.0 4.1
2.0 8.6
7.3 7.2
9.1 3.1
15.6 15.4




. (10)

The transition probabilities to the first broken class were:

T̂ =
(

0.25 0.47 0.28
0.29 0.49 0.22

)
. (11)

The estimated distribution of the initial states was:

ω̂ =
(

0.55
0.45

)
. (12)

The estimated parameters were tested in a simulated classification task and the
confusion matrix C (for 100 samples from initial process, representing intact device,
and 500 samples from the two-state process, representing broken devices) compared
to the 3-Nearest Neighbor classifier is:

C =




0.92 0.080 0
0.22 0.72 0.064
0.13 0.14 0.75


 , C3-NN =




0.57 0.43 0
0.13 0.85 0.011
0.085 0.64 0.27


 . (13)

From these we can see that neither method mistakes an intact device with broke
in class 2 (the first row), but that the Bayesian classifier confuses much less an intact
with the broken class 1.
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The estimation of the τ parameters as the median of the samples for each data
sample is plotted in Figure 3. The lines are the 90 % Highest Probability Density
intervals (90 % HPD intervals) [1]. The uncertainty of the estimates comes from
the facts, that the data does not contain direct information of the transition point,
and there is only one observation related to estimation of each transition point, and
thus the estimates tend to come from the uniform prior. In classification estimation
we marginalized out the τ dependence by summing over the estimated τ values of
the dataset.

0 0.2 0.4 0.6 0.8 1
0
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Fig. 3. The true relative values of τ for the 2–D example compared

against the median estimates with the 90 % HPD intervals.

0 200 400 600 800 1000
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sim

k

Fig. 4. The true relative values of τ for the 2–D example compared

against the median estimates with the 90 % HPD intervals.

The classification based on maximal probability borders compared with the 3–
Nearest Neighbor classifier can be seen in Figure 5.
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Fig. 5. On the left is the maximal probability classification borders for the
2-dimensional example, the value counters in unit time, and on the right the
3–Nearest Neighbor classifier for the same data. The black is the area of

intact devices (class 0) and the gray broken class 1 and white broken class 2.

5.2. A 5–dimensional model

This is otherwise similar to the model above but with 5 counters, with 2 classes:
intact and broken. The estimation with a similar dataset, 25 intact devices, 100
broken, with simulation length of 3000 results to:

Λ =




1 2 2 1 5
1 3 1 4 1
2 8 7 5 1
7 7 1 2 1
9 1 2 1 6
5 5 4 8 8




, Λ̂ =




0.92 2.0 2.2 0.91 4.5
1.2 3.2 1.1 3.7 0.91
2.2 7.6 6.7 4.9 0.82
7.1 6.6 1.0 2.0 1.1
9.2 0.68 1.9 1.0 6.1
5.8 5.4 3.5 8.9 8.5




. (14)

The confusion matrix C in this case compared to the 3-NN classifier is:

C =




0.92 0.070 0.010
0.13 0.86 0.016
0.016 0.063 0.92


 , C3-NN =




0.75 0.23 0.020
0.078 0.91 0.016
0.047 0.36 0.59


 . (15)

6. CONCLUSIONS

We have demonstrated that it is possible to estimate the parameters and states of
Poisson mixture processes containing transition between states at unknown time,
using Reversible Jump MCMC method. The estimation becomes always more diffi-
cult when the transition time τ is accumulated more towards the end of total time,
in which case the counters only exhibit behavior of the initial states. In this esti-
mation the availability of data for purely intact devices, and presence of more than
one counter to record events, is critical.
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