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Managing Editors:

Karel Sladký
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AN ILP MODEL FOR A MONOTONE GRADED
CLASSIFICATION PROBLEM

Peter Vojtáš, Tomáš Horváth, Stanislav Krajči

and Rastislav Lencses

Motivation for this paper are classification problems in which data can not be clearly
divided into positive and negative examples, especially data in which there is a monotone
hierarchy (degree, preference) of more or less positive (negative) examples. We present a
new formulation of a fuzzy inductive logic programming task in the framework of fuzzy
logic in narrow sense. Our construction is based on a syntactical equivalence of fuzzy logic
programs FLP and a restricted class of generalised annotated programs. The induction is
achieved via multiple use of classical two valued induction on α-cuts of fuzzy examples with
monotonicity axioms in background knowledge, which is afterwards again glued together
to a single annotated hypothesis. Correctness of our method (translation) is based on the
correctness of FLP. The cover relation is based on fuzzy Datalog and fixpoint semantics for
FLP. We present and discuss results of ILP systems GOLEM and ALEPH on illustrative
examples. We comment on relations of our results to some statistical models and Bayesian
logic programs.

Keywords: graded classification, ILP, annotated programs

AMS Subject Classification: 68T37, 03B70, 03B50

1. INTRODUCTION AND MOTIVATION

In a standard logical framework, we are restricted to representing only facts that
are true absolutely. Thus, this framework is unable to represent and reason with
imperfect (uncertain, vague, noisy, . . . ) information. This is a significant gap in the
expressive power of the framework, and a major barrier to its use in many real-world
applications. Imperfection is unavoidable in the real world: our information (and
particularly our classification) is often inaccurate and always incomplete, and only
a few of the “rules” that we use for reasoning are true in all (or even most) of the
possible cases.

This limitation, which is critical in many domains (e. g., medical diagnosis), has
led over the last decade to the resurgence of probabilistic reasoning in artificial
intelligence. Probability theory models uncertainty by assigning a probability to
each of the states of the world that an agent considers possible (see [7]).
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Many valued logic. Besides probabilistic models there is an extensive study of
these phenomena in many valued logic. In this paper we concentrate especially on
fuzzy logic programs FLP and generalised annotated programs GAP.

The basic syntactic concept of FLP is A · x an atom graded by a real number
x ∈ [0, 1]. In GAP it is an atom with an annotation term A : t where t ∈ [0, 1] .

The semantics in both approaches are given by a mapping f : BL −→ [0, 1] where
BL is the Herbrand base. The semantical satisfaction of atoms in both FLP and
GAP is the same: f |= A · x (resp. A : t) iff f(A) ≥ x (resp. f(A) ≥ t).

FLP is a truth functional logic (i. e. we work in Hajek’s fuzzy logic in a narrow
sense, see [8])). The truth value of a formula is calculated using truth value functions
of many valued logical connectives. In contrast, GAP builds complex formulas from
annotated atoms using two valued logical connectives but the structure of annotation
terms is more complex.

We can say roughly, that what is hidden in many valued logical connectives of
FLP the same expressive power is hidden in the structure of the annotation terms
of GAP (see [17]). In [16] it is shown that FLP is more suitable for deductive data
models and the purpose of this paper is to show that GAP is more suitable for
induction.

Inductive logic programming. In a two valued logic the Inductive logic pro-
gramming (ILP) task is formulated as follows:

Given is a set of examples, i. e., tuples that belong to the target relation p (positive
examples) and tuples that do not belong to p (negative examples). Given are also
background relations (or background predicates) qi that constitute the background
knowledge and can be used in the learned definition of p. Finally, a hypothesis
language, specifying syntactic restrictions on the definitions of p is also given (either
explicitly or implicitly). The task is to find a definition of the target relation p that
is consistent and complete. Informally, it has to explain all the positive and none of
the negative tuples.

Fuzzy Inductive logic programming. In many valued logic (especially in fuzzy
logic) formulas (facts and rules) are assigned a truth value (typically) from the unit
interval of real numbers [0, 1]. This gives the logic a comparative notion of truth. The
explicit numerical value of truth assignement is often of small importance. Important
is, that a fact or rule has truth degree bigger than the other one.

Motivation for this paper are classification problems in which data can not be
clearly divided into positive and negative examples, especially data in which there is a
monotone hierarchy (degree, preference) of more or less positive (negative) examples.
This corresponds to fuzzy set of examples E : {p(c), c ∈ dom(p)} −→ [0, 1]. We
assume also on the side of background knowledge a monotone graded (comparative)
notion of fulfillment. This corresponds to fuzzy background knowledge in the form
of a definite logic program (without negation) in which rules are assigned a truth
value. We consider two illustrative examples of this sort.
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Example 1. Our first example is from the psychological praxis and considers the
problem of graded classification of pairs of men and women regarding the chance of
forming a good marriage (whatever this means and how it is measured, it is just a
subjective preference given by an expert).

The set of examples is a set of ground atoms divided into four classes indicating
the height (degree) of experts certainty in the success of their (eventual) marriage.
The lowest assigned with 0, the second with 0.33, higher with 0.66 and the best
chance with 1. E. g. experts confidence in the success of the marriage between
woman w1 and man m4 is gm(w1,m4) = 0.66 and hence higher than 0.33 for part-
nership of w1 with m1. So, our example set is a mapping E : ManWomenPairs −→
{0, 0.33, 0.66, 1}. Nevertheless we have to emphasize that it is not a classification
problem of four disjoint classes, it is about classification of a monotone descending
(by inclusion) chain of classes expressing success at least 0.33 (or bigger), at least
0.66 or 1.

Background knowledge contains a crisp part (i. e. two values yes-no statements)
and also a graded part. The crisp part consists of predicates age(Person, AgeInYears),
occupation(Person, Occupation) and hobby(Person, Hobby) (predicates will be ab-
breviated to highlighted part e. g. age(m1,33) to a(m1, 33)).

The fuzzy (graded) part of background knowledge is expressing (possibly another)
expert’s opinion of relevant degrees of similarity (compatibility) of compatibilityage
ca(Age1, Age2), compatibilityoccupation co(Occupation1, Occupation2) and com-
patibilityhobby ch(Hobby1, Hobby2).

There e. g. if one loves to read books and the second to play/watch football,
the degree of compatibility of their hobbies ch(books, football) = 0.1, that is much
smaller than 0.8 for the combination on book lover with a cinema fan and equal for
his/her combination with swimmer (remember that numerical values are just a way
of describing the order).

Further, the background knowledge table for compatibility of occupation assigns
co(driver,teacher) = 0.6, that is slightly more that 0.5 = co(director,teacher).

In our example, compatibility for age (in years) is calculated by a formula
ca(y1, y2) = max(0, 1− |y1− y2|/20)

We expect our graded ILP system will provide us with rules guaranteeing the
success of marriage at certain (or higher) level of the form, e. g.

IF h(P1,H1), h(P2,H2), o(P1,O1), o(P2,O2), a(P1,A1), a(P2,A2)
AND compatibility of occupation co(O1,O2) is at least 0.5
AND compatibility of ages ca(A1,A2) is at least 0.4
AND compatibility of hobby ch(H1,H2) is at least 0.6

THEN we can guarantee the success of an eventual marriage of person P1 with
person P2 in a degree at least 0.5 (or higher).

Notice that we assume a positive (monotonic, increasing) influence of background
factors on the degree of classification (this will correspond to definite logic program-
ming).

Example 2. Second example is from a high school system containing information
on grades of students in several topics (in Slovak and Czech Republic 1 denotes the
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best and 5 denotes the lowest achievement). Here the monotonicity comparative
notion of grades is present, who knows math in degree at least 2 (or better with 1)
he/she fulfills also requirements for evaluation 3, 4 and 5 (weaker).

We would like to induce rules describing dependencies between students achieve-
ments in different topics, say in a class or a bigger group. We expect our model to
be able to extract rules of the form

IF the grade from chemistry is at least 2
AND the grade from biology is at least 1 (the best)

THEN the grade from physics is at least 2 (or better 1).

Here, grades from all subjects form a fuzzy set, e. g. Physics : Students −→
{1, 2, 3, 4, 5}. In one ILP task the fuzzy set Physics plays the role of graded examples
and evaluations from all other subjects will form fuzzy background knowledge. In
an second task the role of graded classification to be explained is represented by the
fuzzy set of grades from e. g. biology and all other, including physics play the role
of the background knowledge.

2. DEFINITE FUZZY LOGIC PROGRAMMING

Fuzzy sets. Having a relational schema r(A1, . . . , An) with attribute domains D1,. . . ,
Dn a fuzzy extension of this schema has instances of the form R : D1×· · ·×Dn −→
[0, 1].

A standard equivalence relation over D is a transitive,reflexive and symmetric
binary relation over D. Here we do not go into discussion what does it mean e. g.
transitive in fuzzy case. For our purpose an arbitrary fuzzy binary relation given by
expert will play the role, and we call it fuzzy compatibility relation.

Fuzzy logic. Our language L has two types of syntactical objects: logical and
quantitative. The logical part consists of a many-sorted predicate language without
function symbols. The quantitative consists of some/all real numbers from the unit
interval [0,1].

As motivated in [28], our language has finitely many different connectives of each
sort, conjunctions, disjunctions, implications and aggregations. The truth function
of a connective is denoted by a dot(circle) in the upper right index. A truth function
for a conjunction ∧ is a conjunctor ∧• : [0, 1]2 → [0, 1] and for disjunction ∨ a
disjunctor ∨• : [0, 1]2 → [0, 1] which are assumed to extend the respective two
valued connectives and are order preserving in both coordinates.

Truth function for an j-ary aggregation @ is an aggregation operator @• : [0, 1]j →
[0, 1] which fulfills @•(0, . . . , 0) = 0 and @•(1, . . . , 1) = 1.

Truth function for an implication → is an implicator →•: [0, 1]2 → [0, 1], which
is non-increasing in the first (body) coordinate and non-decreasing in the second
(head) coordinate and extends the two valued implication.

Interpretations are based on fuzzy relations. Our logic is truth functional, mean-
ing that every interpretation of the language can be extended to all formulas calcu-
lating the truth value of formulas along their complexity from truth values of atoms
using truth functions of connectives.
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The main syntactical object of our language are graded formulas (ϕ, β), where ϕ
is a formula and β is a rational number from [0,1].

An interpretation f is a model of (ϕ, β) if f(ϕ) ≥ β.

The theory of fuzzy logic programming. We formulate properties of residuation.

Definition. Let C a conjunctor and I be an implicator. In what follows, b, h, r
are universaly quantified and range through [0, 1]. We define following properties of
C and I:

(a)(C, I) r ≤ I(b, h) iff C(b, r) ≤ h

Φ2(C, I) C(b, I(b, h)) ≤ h

Φ3(C, I) r ≤ I(b, C(b, r)).

Observation. (a)(C, I) iff (Φ2(C, I) and Φ3(C, I)).

Observation. Assume (a)(C, I) then I(b, h) = sup{r : C(b, r) ≤ h} (denote this
implicator by IC and call it the residual implicator to the conjunctor C) and C(b, r) =
inf{h : I(b, h) ≥ r} (denote this conjunctor by CI and call it the residual conjunctor
to the implicator I).

Observation. Given C, then there is an I such that (a)(C, I) iff C is left contin-
uous in the rule coordinate.

Observation. Given I, then there is a C such that (a)(C, I) iff I is right continuous
in the head coordinate.

Proofs of these observations are outside the scope of this paper.

In our computational model, we have conjunctors C1, . . . , Cn which are residual
to above implications. These need not be truth functions of any conjunctions in our
language. We assume conjunctors are left continuous.

Any formula built from atoms using conjunctions, disjunctions and aggregations
is called a body. Every composition of conjunctors, disjunctors and aggregation
operators is again an aggregation operator. Hence, without a loss of generality, we
can assume that each body is of the form B = @(B1, . . . , Bn). A rule of FLP is a
graded implication H ←− @(B1, . . . , Bn).r), where H is an atom, @(B1, . . . , Bn) is
a body and r ∈ [0, 1] is a number. A fact is a graded atom (A.a).

A definite (i. e. without negation) fuzzy logic program is a partial mapping P :
Formulas→ (0, 1] with the domain of P , dom(P ) consisting only of atoms and logical
parts of FLP rules. The quantitative part of the rule is r = P (H ← @(B1, . . . , Bn)).
Let BL be the Herbrand base. A mapping f : BL → [0, 1] is said to be a fuzzy
Herbrand interpretation. Satisfaction for rules means that

f(H ←− @(B1, . . . , Bn)) =←−• (f(H), @•(f(B1), . . . , f(Bn))) ≥ r.
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Recall the many-valued modus ponens (a correct rule in fuzzy logic) reads as

(B · b), (H ←i B · r)
(H.Ci(b, r))

.

We base our procedural semantics on the “backward usage of modus ponens” (no
refutation nor resolution is applied here). A computation looks like

?−H
Ci(@•(B1, . . . , Bn), r)
· · ·
Ci(@•(b1, . . . , bn), r).

Namely, a query H is (after a successful unification with the head of a rule)
replaced by a mixed expression Ci(@•(B1, . . . , Bn), r) – the initial segment of the
term calculating the truth value of the answer Ci(@•( ), y) with embedded atoms
from the body B1, . . . , Bn not computed so far. After all truth values b1, . . . , bn of
all atoms B1, . . . , Bn are calculated, we evaluate the whole expression.

We know by the residuality of Ci that this is a sound rule (see [8, 28]).
We define the corresponding production (datalog or cover) operator TP operator

(for f : BP → [0, 1]) by

Definition. Assume P is a fuzzy logic program. Then

TP (f)(A) = max{sup{Ci(f(B), r) : (A←i B · r)

is a ground instance of a rule in the program P, sup{a : (A · a) is a ground instance
of a fact in the program P}}.

We know that this operator is continuous (under our conditions, more on conti-
nuity see [28] and [17]) and it’s fixpoint is the minimal model of the definite program
P . Hence we can base the cover relation of our ILP system on this fixpoint semantics

Cover(P ) = Tω
P (0).

3. GENERALIZED ANNOTATED LOGIC PROGRAMMING

Kifer and Subrahmanian [14] introduced generalized annotated logic programs (GAP)
that unify and generalizes various results and treatments of multivalued logic pro-
gramming. The whole theory of GAP is developed in a general setting for lattices.
We restrict ourselves to the unit interval of real numbers [0, 1].

Definition. A function a : [0, 1]i → [0, 1] is an annotation function if it is left
continuous and order preserving in all variables.

The language of annotated programs consists of a usual language of predicate
logic as in FLP and of the quantitative part of the language. The quantitative part
of the language has annotation variables and a set of basic annotation terms of
different arity. Every annotation term ρ is a composition of annotation functions.
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Notice, that ρ• can be considered as the truth function of an aggregation operator.
If A is an atomic formula and α is an annotation term, then A : α is an annotated
atom.

Definition. If A : ρ is a possibly complex annotated atom and B1 : µ1, . . . , Bk : µk

are variable annotated atoms, then A : ρ←− B1 : µ1 ∧ . . .∧Bk : µk is an annotated
clause. We assume that variables occurring in the annotation of the head also appear
as annotations of the body literals and different literals in the body are annotated
with different variables.

Definition. Let BL be the Herbrand base. A mapping f : BL → [0, 1] is said to
be a Herbrand interpretation for annotated logic. Note that interpretation for fuzzy
logic and interpretations for annotated logic coincide.

The satisfaction is defined differently (all variables (object and annotation) are
implicitly universally quantified). Suppose f is an Herbrand interpretation. Then,

f satisfies a ground atom A : ρ iff ρ ≤ f(A)

f satisfies (F ∧G) iff f satisfies F and f satisfies G

f satisfies (F ∨G) iff f satisfies F or f satisfies G

f satisfies (F ← G) iff f satisfies F or f does not satisfy G.

Definition. (FLP and GAP transformations) Assume C = A : ρ ←− B1 :
µ1 ∧ . . . ∧ Bk : µk is an annotated clause. Then flp(C) is the fuzzy rule A ←−
ρ(B1, . . . , Bn) · 1, here ρ is understood as an n-ary aggregator operator.

Assume D = A←−i @(B1, . . . , Bn).r is a fuzzy logic program rule. Then gap(D)
is the annotated clause A : Ci(@•(x1, . . . , xn), r)←− B1 : x1, . . . , Bn : xn.

Theorem. (See [17].) Assume C is an annotated clause, D is a fuzzy logic program
rule and f is a fuzzy Herbrand interpretation. Then

f is a model of C iff f is a model of flp(C)

f is a model of D iff f is a model of gap(C).
This theorem is the main tool in our formal model of fuzzy ILP.

4. A FUZZY ILP MODEL

The classical ILP can be described more formally: given is a set of examples E =
E+ ∪ E−, where E+ contains positive and E− negative examples, and background
knowledge B. The task is to find a hypothesis H such that ∀e ∈ E+ : B∪H |= e (H
is complete) and ∀e ∈ E− : B ∪H 6|= e (H is consistent). This setting, introduced
by Muggleton [21], is also called learning from entailment. In an alternative setting
proposed by De Raedt and Džeroski [25], the requirement that B∪H |= e is replaced
by the requirement that H be true in the minimal Herbrand model of B ∪ {e}: this
setting is called learning from interpretations (see Džeroski, Lavrač [6]).
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Fuzzy logic has the logical part identical to that of classical (two valued logic).
A straight forward way how to fuzzify different models, is to consider the same
formulas as in the specification of the classical model just the truth values range
through a bigger set (e. g. the unit interval of real numbers [0, 1]), truth functions
of connectives should be specified more carefully, and we have a fuzzy model and we
can study it. It is possible to formulate the fuzzy ILP problem this way, consider
two fuzzy sets µE+ and µE− , translate the definition of their disjointness, and so on.
In our case, there is no E+ nor E−, there is only one fuzzy set E. We try to justify
our model of FILP by real world examples. At the end we will discuss and compare
it to other fuzzy ILP models and also probabilistic.

We transfer the problem of fuzzy ILP with fuzzy background knowledge and
fuzzy set of examples to several crisp ILP problems. First, assume B is a fuzzy
background knowledge consisting of fuzzy facts (so far we do not discuss the case
of fuzzy rules in B). Then c(B) is the crisp knowledge acquired from B by adding
an additional attribute for the truth value to each predicate (e. g. we transform
ch(football, theatre) = 0.3 to ch(football, theatre, 0.3). Second, for every α ∈ [0, 1]
in the range of our fuzzy set of examples, we put E+

α to be the upper (≥) and E−
α

to be the lower (<) α cut of the fuzzy set E. For each α consider the classical ILP
task with E+

α , E−
α and c(B) and returns a crisp set of hypothesis Hα . Our aim is to

have a formal model allowing us correctly to answer the fuzzy ILP problem (E, B)
with the fuzzy set of hypothesis H, such that for all α, the α cut of H is exactly Hα.

Classical (crisp) ILP systems in the two valued logic use the language of Horn
clauses. Notice, that in fuzzy logic the implication A→ B need not be always equiv-
alent with A∨¬B and in our model of FLP the rules are implications. Nevertheless,
working with α cuts the ILP cover turns to greater or equal value in fuzzy hypothesis
glued from single Hα together.

An ILP system GOLEM. In order to search the space of relational rules (program
clauses) systematically, it is useful to impose some structure upon it, e. g. an or-
dering. One such ordering is based on subsumption (clause C subsumes C ′ if there
exist a substitution θ, such that Cθ ⊆ C ′). The space of hypothesis ordered by a
subsumption is a lattice. The rules for computing the operations are outlined in
[6]. System GOLEM uses background knowledge B restricted to ground facts. To
search the space of hypothesis uses a derived notion of least general generalisation
relative to background knowledge B ([10]).

Using data from Example 1 the accuracy of GOLEM was below 100 % and due
to the fact that this systems allows only atoms in B, an interesting phenomenon
appeared. On the level α = 0.66 the system encountered (besides others) following
rules, e. g.:

gm(A,B)← h(A,C), h(B,D), ch(C, D, 0.70).
gm(A,B)← h(A,C), h(B,D), ch(C, D, 0.80).
gm(A,B)← h(A,C), h(B,D), ch(C, D, 0.90).

from which the last two rules are useless, because the many valued model of the later
rules is also a model of the first rule. Another problem is, that usual ILP systems
understand these numbers like a syntactic objects and they do not distinguish the
ordering between them.
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Practically, for different granulation of the interval [0, 1] we added to B the less
than relation
. . . leq10(0.4, 0.5) · leq10(0.5, 0.6) · leq10(0.6, 0.7) · leq10(0.7, 0.8). . .
. . .
. . . leq100(0.4, 0.45) · leq100(0.45, 0.5) · leq100(0.5, 0.55) · leq100(0.55, 0.6). . .
. . .
and monotonicity rules

co(A,B, C)← leq10(C, D), co(A,B,D).
ca(A, B,C)← leq100(C,D), ca(A,B, D).
ch(A,B, C)← leq10(C, D), ch(A, B,D).

For this purpose we have used the ILP system ALEPH [9], which is based on the
inverse entailment [21]. In this case, the background knowledge can contain rules.

The search of the lattice of hypothesis (depending on example) starts at an satura-
tion element influenced by our monotonicity rules in background knowledge reducing
the search, and hence also increasing accuracy.

Results of the ILP system ALEPH for good marriage example had 100 % accuracy
and following rules were produced (lower index is α, the upper is numbering)
R1

1.0 = gm(A,B)← a(A,C), a(B,D), ca(C,D, .9), h(A,E), h(B, F ), ch(E, F, .8).
R2

.66 = gm(A,B)← a(A,C), a(B,D), ca(C,D, .45), h(A,E), h(B, F ), ch(E, F, .6).
R3

.66 = gm(A,B)← o(A,C), o(B, D), co((C,D, .9).
R4

.66 = gm(A,B)← a(A,C), a(B,C).
R5

.66 = gm(A,B)← h(A,C), h(B, D), ch(C,D, .7).
R6

.66 = gm(A,B)← a(A,C), a(B,D), ca(C,D, .8), h(A,E), h(B, F ), ch(E, F, .3).
R7

.33 = gm(A,B)← h(A,C), h(B, D), ch(C,D, .1).
These hypotheses found by ALEPH are complete and consistent (correct), while

in the case of GOLEM they were not covering all positive examples (no negative
were covered by either of them). Adding the monotonicity rule into background
knowledge substantially reduced the search space of ALEPH and hence also the
accuracy of ALEPH was 100 % , often much higher than that of GOLEM.

Glueing hypothesis together.

Rules from the ALEPH contain in the body a block of two valued predicates
block = h(A,C) ∧ h(B, D) ∧ a(A,E) ∧ a(B,F ) ∧ o(A,G) ∧ o(B, H)
with bindings of attributes to persons A and B and are always true (this illustrates

the multirelational character of our application). Conditions on compatibility of at-
tributes of persons are hidden in crisp representation of fuzzy background knowledge
in form of

ch(C,D, x) ∧ ca(E,F, y) ∧ co(G,H, z) .
If some of these compatibility conditions is not present we can interpret it as

having value 0.
Moreover rule obtained on the level α guarantees the result in degree α, so it

corresponds to a fuzzy logic program rule with truth value α (because in body there
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are crisp predicates and the boundary condition of our conjunctors fulfill C(x, 1) = x.
The first rule R1

1.0 corresponds to fuzzy rule
gm(A, B)← block ∧ ch(C, D, 0.8) ∧ ca(E, F, 0.9) ∧ co(G,H, 0).1

The second rule R2
0.66 says

gm(A, B)← block ∧ ch(C, D, 0.6) ∧ ca(E, F, 0.45) ∧ co(G,H, 0).0.66
and so on.

Here we see limitations of fuzzy logic programming in the induction, we are not
able to glue them to one hypothesis.

On the other side, these rules define a single annotation term – a function of three
real variables – a(x, y, z) defined as follows:

If the system for selected α has induced a rule
gm(A, B)← block ∧ ch(C, D, x) ∧ ca(E, F, y) ∧ co(G,H, z).

then the function a(x, y, z) = α.
If there is no such rule then the function is the smallest monotone function ex-

tending those points, i. e. a(x, y, z) = max{a(x1, y1, z1) : x1 ≤ x, y1 ≤ y, z1 ≤ z}.
Another challenging problem is to learn the function a, methods of [29] could be

appropriate.

Result and formulation of the fuzzy/annotated ILP task for graded
examples.

Given the fuzzy set of examples E from Example 1 and fuzzy background knowl-
edge B containing positive literals. If f is a fuzzy Herbrand interpretation which
is a model of the fuzzy theory B and the single GAP rule forms a (one element)
hypothesis

H = gm(A,B) : a(x, y, z)← block ∧ ch(C, D) : x ∧ ca(E, F ) : y ∧ co(G, H) : z

then f is a model of the fuzzy theory E. Moreover for the minimal fuzzy model
fm of B ∪H we have for all e1 and e2 the following order preserving approximation
condition:

E(e1) < E(e2) if and only if fm(e1) < fm(e2)
and

E(e1) = E(e2) if and only if fm(e1) = fm(e2).
On more complex data this would be a too strong condition. The idea of our

formulation of fuzzy and/or annotated ILP task is to have a weak order preservation
of learned function – namely examples can be glued together, can be treated off but
should not be inverted – that is the learned hypothesis should not give a higher
preference to an example e1 than to e2 in the case when in input data e2 has higher
preference than e1.

A weak order preserving fuzzy/annotated ILP problem.
Given a fuzzy set of examples E and fuzzy background knowledge B containing

positive literals, we look for a fuzzy definite logic program and/or annotated program
of hypothesis H such that

B ∪H |= E
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and for the minimal model fm of B∪H we have for all e1 and e2 the following weak
order preserving approximation condition:

E(e1) ≤ E(e2) implies fm(e1) ≤ fm(e2)
and

E(e1) ≥ E(e2) implies fm(e1) ≥ fm(e2)
with a possibility that the granulation of range of fm is coarser than that of the
range of the fuzzy set of examples E.

Comparison with some probabilistic and statistical induction methods.

Although our example is multirelational, it can be propositionalized (paying a
big price on complexity) and after some preprocessing the function can be learned
also by statistical methods.

A multivariate polynomial regression MPR from [19] gives the following polynome
gm = +0.379169 ∗ ca + 0.208618 ∗ co + 0.53312 ∗ ch− 0.0892687.

In what follows, there are a decision and regression tree using DTREE from [4]
and consequently rules learned from it.

dtree(gm) =
{(ch|0.45)

<: {(ca|0.775)
<: {(ch|0.05)

<: {0 ∼ 0[2]},
>: {0.33 ∼ 0[18]}},

>: {(co|0.8)
<: {(ch|0.15)

<: {0.33 ∼ 0[4]},
>: {0.594 ∼ 0.132[5]}}, monotonicity violation, low accuracy

>: {0.66 ∼ 0[3]}}},
>: {(ca|0.875)

<: {(ch|0.65)
<: {(co|0.55)

<: {0.44 ∼ 0.155563[3]}, monotonicity violation, low accuracy
>: {0.66 ∼ 0[4]}},

>: {0.66 ∼ 0[17]}},
>: {(ch|0.75)

<: {0.66 ∼ 0[2]},
>: {1 ∼ 0[6]}}}}

we see the function learned by tree violates the principle of order preserving approx-
imation and the accuracy is lower than that of the GAP rule (having accuracy 100
% learned by ALEPH).

The DTREE rules on data from Example 1 look as follows:
gm = 0← ca < 0.775 ∧ ch < 0.05;
gm = 0.33← ca < 0.775 ∧ ch > 0.05 ∧ ch < 0.45;
gm = 0.33← co < 0.8 ∧ ca > 0.775 ∧ ch < 0.15;
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gm = 0.44← co < 0.55 ∧ ca < 0.875 ∧ ch > 0.45 ∧ ch < 0.65;
gm = 0.594← co < 0.8 ∧ ca > 0.775 ∧ ch > 0.15 ∧ ch < 0.45;
gm = 0.66← co > 0.8 ∧ ca > 0.775 ∧ ch < 0.45;
gm = 0.66← co > 0.55 ∧ ca < 0.875 ∧ ch > 0.45 ∧ ch < 0.65;
gm = 0.66← ca < 0.875 ∧ ch > 0.65;
gm = 0.66← ca > 0.875 ∧ ch > 0.45 ∧ ch < 0.75;
gm = 1← ca > 0.875 ∧ ch > 0.75.

Notice, that rules use also negative dependence on values, this is violating require-
ment of definite logic program, which is necessary for monotonicity of the production
operator and fixpoint existence, and this again for the cover relation (highlighted
values out of range). DTREE rule with gm = 0.44 is in conflict with the ALEPH
rule R6

0.66 and DTREE rule with gm = 0.594 is in conflict with the ALEPH rules
R2

0.66 and R7
0.33 and weak order preservation condition is violated.

Example 2 task gave similar results and (for different set of fuzzy examples) we
obtained rules as following for example:

biology(A) : 1← physics(A) : 2, chemistry(A) : 1, practice nursing(A) : 1
chemistry(A) : 1← history(A) : 2, math(A) : 2
physics(A) : 2← chemistry(A) : 2, biology(A) : 1
informatics(A) : 1← math(A) : 2, anatomy(A) : 4, nursing(A) : 2

we see here we have recursion in the set of hypothesis.

Bayesian logic programs.

Project APRIL [2] – Application of Probabilistic Inductive Logic Programming
addresses the problem of integrating probabilistic reasoning, first order logical rep-
resentations and machine learning. This integration is one of the key open questions
in artificial intelligence. An adequate answer to this open question is likely to result
in new technologies that are applicable across a wide range of applications.

As already quoted [7] in the introduction: probability theory models uncertainty
by assigning a probability to each of the states of the world that an agent considers
possible.

Joint probability distribution over all possible worlds leads to exponentially many
instantiations. Key insight, leading to Bayesian networks is the locality of influence.
A certain limitation of Bayesian networks is its propositional character which leads
often to exponential updating problem. Next step of development (behind the propo-
sitional horizon) are various object-attribute probabilistic models, especially that of
Bayesian Logic Programming of K. Kersting and L. deRaedt which we start from.

In [13] they present a BLP model motivated by conditional probability distribu-
tion of height of person depending on height of parents and possibly some genetic
information. An BILP learning based on maximum likelihood estimation and hill
climbing algorithm is presented.

In [12] Kersting and DeRaedt proved (besides other results) that the classical two
valued logic programming can be interpreted in the framework of BLP.

Note, that character of our application examples is totally different, in BLP there
is a conditional probability dependency of different attributes (blood group, height,



An ILP Model for a Monotone Graded Classification Problem 329

genetical information), in our examples it is about classification, preference given by
an expert, teacher, without any uncertainty in the model.

Using ideas of Kersting and De Raedt, it can be shown that annotated (and hence
also fuzzy) LP can be also interpreted in the framework of BLP. Surprisingly (or not
– see for different character of applications) the quantitative part of GAP (FLP) is
interpreted in attributes “truth value” understood qualitatively.

For instance, the annotation term a(ca, ch, co) = gm from Example 1 by rule
R2

0.66 takes value a(0.45, 0.6, 0) = 0.66, this induces the BLP rule with same logical
part and assigned cpd – conditional probability distribution being

P (gm=1|ca=0.45, ch=0.6, co=0) = 0
P (gm=0.66|ca=0.45, ch=0.6, co=0) = 1
P (gm=0.33|ca=0.45, ch=0.6, co=0) = 0
P (gm=0|ca=0.45, ch=0.6, co=0) = 0

that is that the probability is 1 only in the case of
P (gm=a(x, y, z)|ca=x, ch=y, co=z) = 1.

Again from R7
0.33 we get

P (gm=0.33|ca=0, ch=0.1, co=0) = 1, P (gm=0.66| . . . ) = 0, P (gm=1| . . . ) =
0
and

P (gm=0|ca = 0, ch=0.1, co=0) = 0
with combination rule of BLP being the maximum. Although in BLP there is no
concept of model, we can prove certain soundness properties.

What is different, BLP does not allow recursion in background knowledge, whereas
we have a fixpoint semantic based on a continuous operator in both FLP and GAP
programs guaranteeing good behaviour of programs with negation (so far this aspect
is not implemented in ILP).

5. RELATED RESEARCH

There are several papers on fuzzy ILP devoted to implementation of new search
strategies and/or to combination with other tools.

To create a more suitable set of rules using ILP in [5] developed an algorithm
called FS FOIL, that extends the original FOIL algorithm (described in [24]). While
FOIL was developed to find Horn clauses, they modified it to be able to handle
first order fuzzy predicates where cover compares confidence and support of fuzzy
predicates.

In [26] another fuzzy variant of the ILP method FOIL is used for a crisp clas-
sification of “good arch’ in civil engineering using vague linguistic hedges. Their
system FCI uses min-max logic with Lukasiewicz implication and creates only crisp
hypothesis.

Our system enables to describe more general dependencies (our function a(x, y, z)
from the annotation of gm is not expressible using min, max).

FCI search of hypothesis tries to cover positive examples with degree at least µ+

and avoid covering of negative examples with degree below µ− . We have tried to
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model this in our approach. Running classical ILP with E+ = {c : E(c) ≥ µ+} and
E− = {c : E(c) < µ−} we get following results:

For µ+ = 1 and µ− = 0.66 we got
gm(A, B)← h(A, C), h(B, D), ch(C, D, 0.8).

with accuracy on positive examples 6/6 and 0/27 on negative.
For µ+ = 1 and µ− = 0.33 we got
gm(A, B)← o(A,C), o(B,D), co((C, D, 0.6).

again with full accuracy, and similarly for µ+ = 0.66 and µ− = 0.33 we got
gm(A, B)← h(A, C), h(B, D), ch(C, D, 0.1).
The only problem is the interpretation of these results in the framework of fuzzy

logic in narrow sense. We cannot assign those rules truth value from the interval
[0,1]. A solution would be to extend the set of truth values to a lattice containing
the interval [0,1] as a chain and some subintervals. But this is out of the scope of
this paper.

Another sort of learning under uncertainty are Neuro-Fuzzy Systems. The basic
idea of combining fuzzy systems and neural networks is to design an architecture
that uses a fuzzy system to represent knowledge in an interpretable manner and the
learning ability of a neural network to optimize its parameters. The drawbacks of
both of the individual approaches – the black box behavior of neural networks, and
the problems of finding suitable membership values for fuzzy systems – could thus
be avoided. A combination can constitute an interpretable model that is capable
of learning and can use problem-specific prior knowledge. Therefore, neuro-fuzzy
methods are especially suited for applications, where user interaction in model design
or interpretation is desired (see [15], [18] and [22]).

A propositional fuzzy decision tree systems was presented also in [3]. Comparison
with statistical methods of learning functions and rules were provided (after some
preprocessing). Those do not act in a multirelational setting.

6. CONCLUSIONS

In this paper we have presented a new formulation of a fuzzy inductive logic program-
ming task in the framework of fuzzy logic in narrow sense with formal definition of
satisfaction and fixpoint semantics which gives a cover relation for theories (this em-
phasis on formal model is a feature which is distinguishing our approach from most
of other approaches). We used a syntactical equivalence of fuzzy logic programs and
a restricted class of generalised annotated programs. The induction is achieved via
syntactical translation of our learning problem to multiple use of classical two valued
induction, which is afterwards again glued together to a single annotated hypoth-
esis interpreted as an annotation rule. Correctness of our method (translation) is
based on the correctness of FLP in a sense, that negative part of the ILP task for
e ∈ E is B ∪H 6|= e) is replaced by a requirement that the minimal model of B ∪H
has some weak order preservation properties on examples (this is a feature which
is specific for our approach and is not present in other systems). This is important
for a learning of a graded monotone classification problem, where preservation of
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the comparative notion present in example and background knowledge is important
for it’s intended meaning in the real world. A comparison with statistical methods
showed they do not posses our weak order preservation property. Further study of
these interrelations and more effective search strategies for monotone graded clas-
sification problem are a challenge. We will further experiment with connections to
Bayesian networks and some applications in soft computing (see [1]) and the use of
abduction in protocol security (see [11]).
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[6] S. Džeroski and N. Lavrač: An introduction to inductive logic programming. In: Re-
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[17] S. Krajči, R. Lencses, and P. Vojtáš: A comparison of fuzzy and annotated logic
programming. Fuzzy Sets and Systems 144 (2004), 173–192.

[18] C.-T. Lin and C.-C. Lee: Neural Fuzzy Systems. A Neuro-Fuzzy Synergism to Intelli-
gent Systems. Prentice Hall, New York 1996.

[19] Multivariate polynomial regression system MPR: http://fuzzy.cs.uni-magdeburg.de/
∼borgelt/software.html#regress

[20] S. Muggleton: Inductive logic programming. New Gen. Comp. 8 (1991), 295–318.
[21] S. Muggleton: Inverse entailment and Progol. New Gen. Comp. 13 (1995), 245–286.
[22] D. Nauck, F. Klawonn, and R. Kruse: Foundations of Neuro-Fuzzy Systems. Wiley,

Chichester 1997.
[23] J. R. Quinlan: Learning logical definitions from relations. Mach. Learning 5 (1990),

239–266.
[24] J. R. Quinlan and R. M. Cameron-Jones: FOIL: A midterm report. In: Proc. 6th

European Conference on Machine Learning (P. Brazdil, ed., Lecture Notes in Artificial
Intelligence 667), Springer–Verlag, Berlin 1993, pp. 3–20.
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