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ASYMPTOTIC BEHAVIOUR OF AN ESTIMATOR
BASED ON RAO’S DIVERGENCE1

Maŕıa Carmen Pardo

In this work the procedure of minimum divergence estimation based on Burbea and
Rao [2] divergence is analyzed. Asymptotic behaviour for these estimators is given. A
comparative study of Rao’s estimator with other classical estimators is carried out by
computer simulation.

1. INTRODUCTION

In this paper we consider a wide class of estimators which can be used when the
data are discrete, either the underlying distribution is discrete or it is continuous
but the observations are classificated into groups. The latter situation can occur
either by experimental reasons or because the estimation problem without grouped
data is not easy to resolve, see Fryer and Robertson [4]. For example, the maximum
likelihood estimator for the five parameters of a mixture of two normal distributions
based on non grouped data does not exist, cf. Kiefer and Wolfowitz [5]. An easy
way to resolve this problem is to group the data and use a multinomial model.

Consider the probability densities fθ(x) with respect to a σ-finite measure µ on
the statistical space (X ,BX , Pθ)θ∈Θ⊆RM0 and the decomposition {A1, . . . , AM} of X .
Then the formula Pθ(Ai) = qi(θ), i = 1, . . . , M defines a discrete statistical model.
Let X1, . . . , Xn be a random sample drawn from the previous population and let p̂i =
ni

n be the relative frequency of Ai, i = 1, . . . , M . If we are interested in estimating θ,
the most natural point estimator is the maximum likelihood estimator (MLE). The
statistic (N1 = n1, . . . , NM = nM ) is obviously sufficient for the statistical model
under consideration and multinomial, i. e.

Pθ(N1 = n1, . . . , NM = nM ) =
n!

n1! · · ·nM !
q1(θ)n1 · · · qM (θ)nM

so that

log Pθ(N1 = n1, . . . , NM = nM ) = −n DKULLBACK(P̂ , Q(θ)) + o(n),
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where P̂ = (p̂1, . . . , p̂M )t, Q(θ) = (q1(θ), . . . , qM (θ))t and DKULLBACK is the Kull-
back divergence (Kullback and Leibler [6]). Therefore, to estimate θ by the discrete
model maximum likelihood estimator is equivalent to minimize on θ ∈ Θ ⊆ RM0 the
Kullback divergence.

Since the Kullback divergence is not the unique divergence measure we can choose
as an estimator the value θ̃ which satisfies the condition

D(P̂ , Q(θ̃)) = inf
θ∈Θ⊆RM0

D(P̂ , Q(θ)),

where D is an arbitrary divergence measure. For example, Morales et al [7] consid-
ered the Csiszár divergence.

2. THE MINIMUM Rφ–DIVERGENCE ESTIMATOR

Throughout this paper we consider the divergence of Burbea and Rao [2], i. e. we
consider a continuous concave function φ(t) : (0,∞) → R, and we put

φ(0) = lim
t↓0

φ(t) ∈ (−∞,∞].

The concavity of φ implies that the function δφ : [0, 1]2 → (−∞,∞] defined by

δφ(u, v) =





φ

(
u + v

2

)
− φ(u) + φ(v)

2
if (u, v) 6= (0, 0)

0 if (u, v) = (0, 0)

is nonnegative. The corresponding distance

Rφ(P, Q) =
M∑

i=1

δφ(pi, qi)

is the divergence of Burbea and Rao [2]. Some of the properties of this distance were
studied by Pardo and Vajda [8].

Let X1, . . . , Xn be a random sample belonging to a population with an un-
known parameter θ ∈ Θ ⊆ RM0 , M0 < M − 1, and let there exist a function
Q(θ) = (q1(θ), . . . , qM (θ))t that maps each θ = (θ1, . . . , θM0)

t into a point in ∆M =
{P = (p1, . . . , pM )t|∑M

i=1 pi = 1, pi ≥ 0, i = 1, . . . ,M
}

. As θ ranges over the values
of Θ, Q(θ) ranges over a subset T of ∆M . When we assume that a given model
is ‘correct’, we just assume that there exists a value θ0 of θ such that Q(θ0) = π,
where π is the true value of the multinomial probability, i. e., π ∈ T .

Definition 1. Let us suppose that n observations are drawn at random and with
replacement from a population with the statistical space (X ,BX , Pθ)θ∈Θ⊆RM0 . Then
the minimum Rφ-divergence estimator of θ is θ̂φ ∈ Θ satisfying the condition

Rφ(P̂ , Q(θ̂φ)) = inf
θ∈Θ

Rφ(P̂ , Q(θ)),
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where P̂ is the relative frequency vector.

In other words, the minimum Rφ-divergence estimator satisfies the condition
θ̂φ = arg infθ∈Θ Rφ(P̂ , Q(θ)).

Example 1. Suppose that n independent and identically distributed Poisson vari-
ables with mean θ are observed, and let the observations be truncated at x = 2.
Let N1, N2 and N3 be the numbers of observations taking on the values 0, 1 and
2 or more, respectively. Then X = (N1, N2, N3) has the trinomial distribution
(n; q1(θ), q2(θ), q3(θ)), where

q1(θ) = Pθ(X = 0) = e−θ

q2(θ) = Pθ(X = 1) = θ e−θ

q3(θ) = Pθ(X ≥ 2) = 1− (1 + θ) e−θ.

If we consider the Rφ-divergence for φ(x) = −x ln x then the evaluation of θ̂1 based
on this divergence is equivalent to finding θ that minimizes the function

R(P̂ , Q(θ)) =
p̂1 ln p̂1 + e−θ ln e−θ

2
+

p̂2 ln p̂2 + θ e−θ ln θ e−θ

2

+
p̂3 ln p̂3 + (1− (1 + θ) e−θ) ln(1− (1 + θ) e−θ)

2

−
(

p̂1 + e−θ

2
ln

p̂1 + e−θ

2
+

p̂2 + θ e−θ

2
ln

p̂2 + θ e−θ

2

+
p̂3 + (1− (1 + θ) e−θ)

2
ln

p̂3 + (1− (1 + θ) e−θ)
2

)
.

For the observed frequency vector P̂ = (0.2, 0.3, 0.5)t we obtain θ̂1 = 1.661. In
this case

q1(θ̂1) = 0.19, q2(θ̂1) = 0.31, q3(θ̂1) = 0.5

and
R(P̂ , Q(θ̂1)) = 0.1734.

Geometrically, ∆3 is the triangle side ABC depicted in Figure 1, that we represent
in the plane through the triangle of Figure 2.
As θ varies over R+ = [0,∞), Q(θ) =

(
e−θ, θ e−θ, 1− (1 + θ) e−θ

)t, traces out an
one-dimensional curve in ∆3. This curve is the subset T . When θ → 0, Q(θ) →
(1, 0, 0)t, and when θ →∞, Q(θ) → (0, 0, 1)t. Thus the boundary points of θ in this
example correspond to the boundary points of ∆3. Figure 2 shows the relationships
between ∆3, T, π and P̂ in this example. If the Poisson model is incorrect, then
the true value of π does not generally lie on the curve, although in principle it can.
Because of the discreteness of the multinomial distribution, it often happens that P̂
does not lie on T (as is the case in the figure). The estimation method based on
the minimum distance leads to a point in T closest to P̂ in the sense of the chosen
distance.
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Fig. 1.

Fig. 2.

3. PROPERTIES OF THE MINIMUM Rφ–DIVERGENCE ESTIMATOR

Throughout the paper, we assume that the model is correct, so that π = Q(θ0),
and M0 < M − 1. Furthermore, we restrict ourselves to unknown parameters θ0

satisfying the regularity conditions 1 – 6 introduced by Birch [1]:

1. θ0 is an interior point of Θ.

2. πi = qi(θ0) > 0 for i = 1, . . . ,M . Thus π = (π1, . . . , πM )t is an interior point
of T .

3. The mapping Q : Θ → ∆M is totally differentiable at θ0 so that the partial
derivatives of qi with respect to each θj exist at θ0 and Q(θ) has a linear
approximation at θ0 given by

qi(θ) = qi(θ0) +
M∑

j=1

(θj − θ0
j )

∂qi(θ0)
∂θj

+ o
(‖θ − θ0‖)

as θ → θ0.



Asymptotic Behaviour of an Estimator Based on Rao’s Divergence 493

4. The Jacobian matrix
(

∂Q(θ)
∂θ

)

θ=θ0

=
(

∂qi(θ0)
∂θj

)
i=1,...,M

j=1,...,M0

is of full rank (i. e. of rank M0).

5. The inverse mapping Q−1 : T → Θ is continuous at Q(θ0) = π.

6. The mapping Q : Θ → ∆M is continuous at every point θ ∈ Θ.

Definition 2. An estimator, Ŝ, of Q(θ0) = (q1(θ0), . . . , qM (θ0))t is cn-consistent
if

cn

∥∥∥Ŝ −Q(θ0)
∥∥∥ ≤ Op(1).

For a sequence {Yn}n∈N of random variables the relation

Yn ≤ Op(1)

means that
lim

c→∞
lim inf
n→∞

P (|Yn| < c) = 1,

i. e., either Yn is bounded in probability or Yn converges in probability to zero.
If cn ↑ ∞, then the cn-consistency of an estimator is stronger than the consistency,

i. e. every cn-consistent estimator is consistent. It is also clear that if an estimator
Ŝ1 is c1

n-consistent and an estimator Ŝ2 is c2
n-consistent then both Ŝ1 and Ŝ2 are

cn-consistent for cn = min{c1
n, c2

n}.
Let us introduce additional notations. We consider the linear differential operator

d
dθ

=
(

∂

∂θ1
, . . . ,

∂

∂θM0

)
,

and M ×M0 Jacobian matrix J(θ) = (Jjr(θ)) where

Jjr(θ) =
∂qj(θ)
∂θr

.

Further, we define

q′j =
dqj(θ)

dθ
= (Jj1(θ), . . . , JjM0(θ))

and
A(θ) = diag

(√
−φ′′(q1(θ)), . . . ,

√
−φ′′(qM (θ))

)
J(θ).

To prove Theorem 1 we use the Implicit Function Theorem given below:
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“Let F = (F1, . . . , FM0) : RM+M0 → RM0 be continuously differentiable in an
open set U ⊂ RM+M0 , containing the point

(
x∗ = (x∗1, . . . , x

∗
M )t; x0 = (x0

1, . . . , x
0
M0

)t
)

for which F (x∗t, xt
0) = 0. Further, suppose that the matrix

(
∂Fi

∂xj

)
i=1,...,M0

j=M+1,...,M+M0

is nonsingular at (x∗, x0). Then there exists a M -dimensional neighborhood U0 of
x∗ in RM and a unique, continuously differentiable function g : U0 → RM0 such that
g(x∗) = x0 and F (xt, g(x)t) = 0 ∀x ∈ U0.”

Theorem 1. Let φ : (0,∞) → R be a twice continuously differentiable concave
function. Under the Birch regularity conditions and assuming that the function
Q : Θ → ∆M has continuous second partial derivatives in a neighbourhood of θ0, it
holds

θ̂φ = θ0 +
(
A(θ0)t (A(θ0)

)−1
A(θ0)tdiag

(√
−φ′′(Q(θ0))

)
(P̂ −Q(θ0))

+o
(
‖P̂ −Q(θ0)‖

)

where θ̂φ is unique in a neighbourhood of θ0.

P r o o f . Let 1M be the interior of the unit M -dimensional cube. Let U be a neigh-
bourhood of θ0 on which Q : Θ → ∆M has continuous second partial derivatives.
Let

F = (F1, . . . , FM0) : 1M × U → RM
0

be defined by

Fj (p1, . . . , pM ; θ1, . . . , θM0) =
∂Rφ(P, Q(θ))

∂θj
j = 1, . . . , M0.

It holds
Fj

(
π1, . . . , πM ; θ0

1, . . . , θ
0
M0

)
= 0, j = 1, . . . , M0,

due to

∂Rφ(P, Q(θ))
∂θj

=
1
2

M∑

i=1

{
φ′

(
pi + qi(θ)

2

)
− φ′(qi(θ))

}
∂qi(θ)
∂θj

, j = 1, . . . ,M0.

Since

∂

∂θr

(
∂Rφ(P, Q(θ))

∂θj

)

=
1
2

M∑

i=1

{
∂qi(θ)
∂θr

(
1
2
φ′′

(
pi + qi(θ)

2

)
− φ′′(qi(θ))

)
∂qi(θ)
∂θj

+
(

φ′
(

pi + qi(θ)
2

)
− φ′(qi(θ))

)
∂2qi(θ)
∂θj∂θr

}
,
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we have
(

∂F

∂θ0

)
=

(
∂

∂θr

(
∂Rφ(π, Q(θ0))

∂θj

))
i=1,...,M0
r=1,...,M0

=
1
2

M∑

i=1

{
∂qi(θ0)

∂θr

∂qi(θ0)
∂θj

(
−1

2

)
φ′′(qi(θ0))

}

=
1
4

A(θ0)t A(θ0).

Taking into account that if B is a p × q matrix and C is a nonsingular matrix,
then rank(BC) = rank(B), and putting

B =
(

∂qi(θ0)
∂θr

)t

i=1,...,M
r=1,...,M0

and C = diag
(√

−φ′′(Q(θ0))
)

M×M
,

it follows that At(θ0) and A(θ0) have rank M0. Also,

rank(At(θ0) A(θ0)) = rank(A(θ0)At(θ0)) = rank(A(θ0)) = M0.

Therefore, the matrix (
∂Fj

∂θr

)
j=1,...,M0
r=1,...,M0

is nonsingular at θ0.

Applying the Implicit Function Theorem there exists an M -dimensional neigh-
bourhood U0 of π = (π1, . . . , πM )t in RM and a unique, continuously differentiable
function θ̃ : U0 → RM0 such that

F (P t, θ̃(P )t) = 0 ∀P ∈ U0

and
θ̃(π) = θ0.

By the chain rule,

∂F (P t, θ̃(P t))
∂P

+
∂F (P t, θ̃(P t))

∂θ(P )
∂θ(P )
∂P

= 0

and, for P = π,
∂F

∂π
+

∂F

∂θ0

∂θ0

∂π
= 0.

Further, we know that
∂F

∂θ0
=

1
4

A(θ0)t A(θ0)

and
∂F

∂π
=

1
4

J(θ0)t diag(φ′′(π)) = −1
4

A(θ0)t diag
(√

−φ′′(Q(θ0))
)
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so that
∂θ0

∂π
=

(
A(θ0)t A(θ0)

)−1
A(θ0)t diag

(√
−φ′′(Q(θ0))

)
.

The Taylor expansion of θ̃(P ) around π yields

θ̃(P ) = θ̃(π) +

(
∂θ̃

∂P

)

P=π

(P − π) + o (‖P − π‖) .

For θ̃(π) = θ0 we obtain from here

θ̃(P ) = θ0 +
(
A(θ0)t A(θ0)

)−1
A(θ0)t diag

(√
−φ′′(Q(θ0))

)
(P − π) + o (‖P − π‖) .

Therefore P̂ a. s.−→n→∞ π, so that P̂ ∈ U0 and, consequently, θ̃(P̂ ) is the unique solution
of equations

∂Rφ(P̂ , θ̃(P̂ ))
∂θj

= 0, j = 1, . . . , M0,

in the neighbourhood of π. Thus θ̃(P̂ ) is the minimum Rφ-divergence estimator, θ̂φ,
satisfying the relation

θ̂φ(P̂ ) = θ0 +
(
A(θ0)t A(θ0)

)−1
A(θ0)t diag

(√
−φ′′(Q(θ0))

)
(P̂ −Q(θ0))

+o
(
‖P̂ −Q(θ0)‖

)
. 2

Theorem 2. Under the assumptions of Theorem 1 it holds:

a)
√

n(θ̂φ − θ0) ≈ N(0,Σ), where

Σ = B(θ0)
(
diag(Q(θ0))−Q(θ0)Q(θ0)t

)
B(θ0)t

and
B(θ) =

(
A(θ)t A(θ)

)−1
A(θ)t diag

(√
−φ′′(Q(θ))

)
.

b) Q(θ̂φ) is a
√

n-consistent estimator of Q(θ0).

P r o o f .
a) Applying the Central Limit Theorem, we get

√
n(P̂ −Q(θ0)) L−→n→∞ N

(
0, ΣQ(θ0)

)
,

where
ΣQ(θ0) = diag

(
Q(θ0)

)−Q(θ0)Q(θ0)t.
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Consequently,
√

nA(θ0)t diag
(√

−φ′′(Q(θ))
)

(P̂ −Q(θ0)) L−→n→∞ N(0,Σ1)

where

Σ1 = A(θ0)t diag
(√

−φ′′(Q(θ0))
) (

diag(Q(θ0))−Q(θ0)Q(θ0)t
)

·diag
(√

−φ′′(Q(θ0))
)

A(θ0).

Hence the result follows from Theorem 1.

b) Consider the Taylor expansion of qj(θ̂φ) around θ0

qj(θ̂φ) = qj(θ0) +
M0∑
s=1

∂qj(θ∗)
∂θs

(θ̂s − θ0
s), j = 1, . . . , M,

or, equivalently,

Q(θ̂φ)−Q(θ0) =
(

∂qj(θ)
∂θs

)
j=1,...,M

s=1,...,M0

(θ̂φ − θ0).

Since √
n

(
Q(θ̂φ)−Q(θ0)

)
L−→n→∞ N(0, ΣQ)

for
ΣQ = J(θ0)Σ J(θ0)t

it holds √
n

∥∥∥Q(θ̂φ)−Q(θ0)
∥∥∥ ≤ Op(1). 2

4. MINIMUM Rφ–DIVERGENCE FUNCTIONAL ROBUSTNESS

In this section we consider deviation of the discrete model, Q(θ) = (q1(θ), . . . , qM (θ))t,
given by the mixture

Qε(θ) = (1− ε) Q(θ) + εP

for ε > 0, θ ∈ Θ and P ∈ ∆M .
Let θε

φ(P ) be the vector that minimizes the function

gε(P, θ) =
M∑

i=1

φ

(
pi + qi(θ, ε)

2

)
− 1

2

{
M∑

i=1

φ(pi) +
M∑

i=1

φ(qi(θ, ε))

}

where Qε(θ) = (q1(θ, ε), . . . , qM (θ, ε)). To guarantee the robustness of θφ(P ), we
have to verify that slight deviations of Q(θ) lead to slight deviations of θε

φ(P ) or,
analytically, that

lim
ε→∞

θε
φ(P ) = θφ(P ).

The following theorem gives conditions that guarantee the functional robustness.
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Theorem 3. Let the assumption of Theorem 1 be fulfilled. Then

lim
ε→∞

θε
φ(P ) = θφ(P ).

P r o o f . Let {εn} be an arbitrary sequence of positive numbers verifying εn −→
n→∞ 0.

Since is φ continuous and qi(θ, εn) −→
εn→0

qi(θ), i = 1, . . . , M , we get that

gεn
(P, θ) −→

εn→0
g(P, θ) ∀ θ ∈ Θ.

Since Θ is compact the pointwise convergence implies the uniform convergence.
Consequently,

lim
εn→0

sup
θ∈Θ

|gεn(P, θ)− g(P, θ)| = 0

which implies that

lim
εn→0

∣∣∣∣ inf
θ∈Θ

gεn(P, θ)− inf
θ∈Θ

g(P, θ)
∣∣∣∣ = 0

or, equivalently,

lim
εn→0

∣∣∣gεn

(
P, θεn

φ (P )
)
− g(P, θφ(P ))

∣∣∣ = 0.

So, we proved that

lim
εn→0

gεn

(
P, θεn

φ (P )
)

= g(P, θφ(P )). (1)

If lim
εn→0

θεn

φ 6= θφ(P ) the compactness of Θ guarantees the existence of a subsequence

{
θδn

φ (P )
}
⊂

{
θεn

φ (P )
}

such that
lim

δn→0
θδn

φ (P ) = θ∗ 6= θφ(P ).

But, by (1), g(P, θ∗) = g(P, θφ(P )) for θ∗ 6= θφ(P ) which contradicts the assumed
uniqueness of θφ(P ). The statement of theorem follows from here since the sequence
{εn} can be chosen arbitrarily. 2

A more general way of studying the robustness is to assume that the true distri-
bution π ∈ ∆M satisfied the condition

‖π −Q(θ)‖ < ε for some θ ∈ Θ

and to prove that if ε is small, the value θφ(π) is near to θφ(Q(θ)) = θ.
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Theorem 4. Let the assumptions of Theorem 1 hold and let π ∈ ∆M . Then

lim
‖π−Q(θ)‖→0

θφ(π) = θφ(Q(θ)) = θ.

P r o o f . The proof follows immediately since θφ is a continuous function. 2

5. NUMERICAL RESULTS

An important family of Rφ-divergences introduced by Burbea and Rao [2] can be
obtained by considering

φα(x) =
1

1− α
(xα − x), α > 0, α 6= 1

with φ1(x) = limα→1 φα(x) = −x ln x.
It follows from Theorem 1 that the minimum Rφ-divergence estimator, θ̂φ, satis-

fies the asymptotic relation

θ̂φ = θ0 +
(
A(θ0)t A(θ0)

)−1
A(θ0)t diag

(
(Q(θ0))

α
2−1

)
(P̂ −Q(θ0))

+o
(
‖P̂ −Q(θ0)‖

)
,

where
A(θ) = diag

(
((Q(θ0))

α
2−1

)
J(θ).

Note that for φ = φ1 we get

θ̂φ1 = θ0 +
(
A(θ0)t A(θ0)

)−1
A(θ0)t diag

(
(Q(θ0))−

1
2

)
(P̂ −Q(θ0))

+o
(
‖P̂ −Q(θ0)‖

)
,

where
A(θ) = diag

(
((Q(θ))−

1
2

)
J(θ)

and √
n

(
θ̂φ1 − θ0

)t
L−→n→∞ N

(
0, I(θ0)−1

)
,

where I(θ) is the Fisher information matrix.

As well known, the asymptotic efficiency of an estimator {θ̂n} satisfying the con-

dition
√

n(θ̂n−θ0) L−→n→∞ N(0, σ2
θ) is defined by the ratio {I(θ)}−1/σ2

θ . Furthermore,

if σ2
θ = {I(θ)}−1 the corresponding estimator θ̂n is asymptotically efficient. Such

estimators are usually called BAN (Best Asymptotically Normal). So the estimator
θ̂φ1 is BAN.
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In this section we consider the following two problems:

(1) To calculate the α value, αmin, that minimizes the mean quadratic error which
is obtained when the two parameters of a Weibull population are estimated
using the Rφα -divergence.

(2) To calculate the minimum Rφα -divergence estimators of the Weibull param-
eters for different α. Moreover, to compare the obtained results with the
maximum likelihood and the minimum Kolmogorov distance estimators.

Definition 3. The minimum Dn estimator (minimum Kolmogorov distance esti-
mator) for a distribution family {Fθ(x), θ ∈ Θ} is defined as the value θ̂ ∈ Θ such
that

Dn(θ̂) = min {Dn(θ), θ ∈ Θ}
for

Dn(θ) = sup
x∈R

{|F ∗n(x)− Fθ(x)|} = max
{
D+

n (θ), D−
n (θ)

}

where F ∗n(x) is the empirical distribution function of the sample x1, . . . , xn, so that

D+
n (θ) = sup

x∈R
{F ∗n(x)− Fθ(x)} = max

{
0, max

i=1,...,n

{
i

n
− Fθ(x(i))

}}

D−
n (θ) = sup

x∈R
{Fθ(x)− F ∗n(x)} = max

{
0, max

i=1,...,n

{
Fθ(x(i))−

i− 1
n

}}

for the order statistics x(1) ≤ x(2) ≤ · · · ≤ x(n).

Definition 4. We say that a random variable X has a Weibull distribution We(b, c)
with parameters (b, c), b > 0, c > 0, if the observation distribution function is

Fθ(x) = 1− exp
{
−

(x

b

)c}
, x ≥ 0,

for θ = (b, c). Here b is a scale parameter and c is a shape parameter.

An algorithmic procedure for finding the optimum α in the sense of (1) is the
following:

Step 1: We fix

(a) sample size (n),

(b) number of classes in the partition (M),

(c) number of simulated samples (N).
The values a0, . . . , aM are obtained by

∫ ai

ai−1

fθ(x) dx = 1/M, i = 1, . . . ,M

for a partition Ai = (ai−1, ai], i = 1, . . . ,M of X .
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Step 2: The following function is minimized

mqe(α) =
∑N

i=1(θ̂
i
1α − b)2

2N
+

∑N
i=1(θ̂

i
2α − c)2

2N

where θ̂i
1α is the minimum Rφ-divergence estimator of b and θ̂i

2α of c for the
sample i. These values are calculated in the Step 3.

Step 3: Given α fixed, do for i = 1 until N

a) Generate a random sample of size n.

b) Calculate the classes relative frequency of the previous step.

c) Minimize on θ the function Rφ(P̂ , Q(θ)).

Go to Step 2.

Table 1 shows the α value, αmin, that minimizes the mean quadratic error com-
mitted when the parameters of We(1, 1) and We(1, 2) are estimated by the minimum
Rφα-divergence for several sample sizes.

Table 1.

We(1,1) We(1,2)
n = 20 1.76875 1.197607
n = 40 1.1 0.613597
n = 60 1.10158 1.205

Each αmin has been evaluated from different initial points to check if the results are
sensitive to them. The α with the least mean quadratic error has been chosen.

The general scheme for calculating the minimum Rφ-divergence estimator is as
follows:

Step 1: We fix

(a) sample size (n),

(b) number of classes in the partition (M),

(c) number of simulated samples (N).

The a0, . . . , aM values are obtained by
∫ ai

ai−1

fθ(x) dx = 1/M, i = 1, . . . , M

such that Ai = (ai−1, ai], i = 1, . . . ,M , is a partition of X .



502 M.C. PARDO

Step 2: Given α fixed, do for i = 1 until N

(a) Generate a random sample size n.

(b) Calculate the classes relative frequency of the previous step.

(c) Minimize on θ the function Rφ(P̂ , Q(θ)).

Step 3: Let θ̂φ be the mean of the values obtained minimizing the function Rφ

in step 2 (c) for all the samples and mqe(α) the same mean quadratic error of
the estimated parameters as above.

Tables 2 and 3 show the maximum likelihood (MLE), the minimum Dn (DnE)
and the minimum Rφ-divergence (RφE) estimators for Weibull population with pa-
rameters b = 1, c = 1 and b = 1, c = 2, respectively. These values have been
calculated by computer simulation for 1 000 samples, classes number = 6 and sample
sizes n = 20, 40 and 60. We move the shape parameter and fix the scale parameter
because the estimates of c are worse in general than the estimates of b. Therefore,
it seems to be more interesting to observe the behaviour of estimates ĉ. In fact
the estimates in Table 3 are worse than those in Table 2. The sums of the mean
quadratic errors of the two parameters also appear in both tables.

Table 2.

We(1,1) n = 20 n = 40 n = 60
b̂ 0.998783 0.994317 0.994150

MLE ĉ 1.06396 1.029655 1.019258
mqe 0.055893 0.025969 0.014047

b̂ 0.984651 1.006958 0.978376
DnE ĉ 1.565195 1.137134 1.185521

mqe 1.023289 1.121828 0.108134
b̂ 1.008978 1.015399 0.983971

Rφ1E ĉ 1.386812 1.068477 1.117729
mqe 0.745879 0.112524 0.091662

b̂ 1.002849 1.006966 0.979121
Rφ2E ĉ 1.414069 1.077251 1.133801

mqe 0.742312 0.098914 0.096844
b̂ 1.009632 1.006264 0.978674

RφminE ĉ 1.396201 1.051318 1.105390
mqe 0.734901 0.093519 0.083306

The mean quadratic error (mqe) generated by MLE based on the original Weibull
values is smaller than the Rφ-divergences for n = 40 and 60 and greater than that for
n = 20. On the other hand, the mqe Dn is greater than that for the Rφ-divergences
in all cases although the minimum Dn estimator is based on the original values and
the Rφ-divergence estimators classify the original values into classes.
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So we can conclude from the obtained results that when the observations are
classified into classes the Rφ-divergences estimators are good.

The programs which calculate the minimum Rφ-divergence and the minimum Dn

estimators need an initial estimates. These estimates have been calculated by the
Dannenbring [3] method, i. e.:

b̂ = x([0.6321n]+1)

and

ĉ =
ln(log 2)

ln(xM/b̂)

where xM is the sample median.

Table 3.

We(1,2) n = 20 n = 40 n = 60
b̂ 0.992503 0.993879 0.994862

MLE ĉ 2.127185 2.059309 2.038516
mqe 0.093951 0.039142 0.023382

b̂ 0.985581 0.997818 0.991716
DnE ĉ 3.030805 2.214321 2.229546

mqe 3.926376 0.385762 0.280197
b̂ 0.992771 0.999766 0.991852

Rφ1E ĉ 2.699849 2.066902 2.135167
mqe 2.675244 0.271025 0.208801

b̂ 0.993954 0.997541 0.989239
Rφ2E ĉ 2.783239 2.145965 2.215762

mqe 2.700610 0.326649 0.278683
b̂ 0.993631 0.997473 0.988435

RφminE ĉ 2.651145 2.019232 2.129087
mqe 2.560270 0.231978 0.187459
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