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LINEAR COMBINATION,
PRODUCT AND RATIO OF NORMAL
AND LOGISTIC RANDOM VARIABLES

SARALEES NADARAJAH

The distributions of linear combinations, products and ratios of random variables arise in
many areas of engineering. In this note, the exact distributions of aX+8Y, | XY | and | X/Y|
are derived when X and Y are independent normal and logistic random variables. The
normal and logistic distributions have been two of the most popular models for measurement
errors in engineering.

Keywords: linear combination of random variables, logistic distribution, normal distribu-
tion, products of random variables, ratios of random variables
AMS Subject Classification: 62E15

1. INTRODUCTION

The distributions of linear combinations, products and ratios of random variables
arise in many areas of engineering. In this note, we study the exact distributions
of aX + 8Y, |XY| and |X/Y| when X and Y are independent random variables
having the normal and logistic distributions with pdfs

felo) = et} 1)

s = dw () ()

respectively, for —oco < & < 00, —00 < Yy < 00, —00 < p < 00, —00 < A < 00, 0 > 0
and ¢ > 0. We assume without loss of generality that a > 0. Note that the normal
and logistic distributions are two of the most popular models for measurement errors
in engineering.

The calculations of this note involve several special functions, including the com-
plementary error function defined by

erfe(x) = 57?/00 exp (—t%) dt

and
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and the hypergeometric function defined by

G(ajb,e,d;x) = ng,

k=0

where (e), = e(e+1)---(e + k — 1) denotes the ascending factorial. We also need
the following important lemmas.

Lemma 1. (Equation (2.8.9.1), Prudnikov et al. [2, Vol.2].) For p > 0,

/ 2™ exp(—px)erfc(cx + b) dzx
0

B L 0" (1 1 p? + 4pbe P
= (-1 o {perfe(b) - ];exp () erfc (b + %) .

4c?
Lemma 2. (Equation (2.8.5.14), Prudnikov et al. [2, Vol.2]) For p > 0,

/ 2 Lexp (—p/x) erfc(cx) dx
0

2cptt @
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Further properties of the complementary error function can be found in Prudnikov
et al. [2] and Gradshteyn and Ryzhik [1].

2. LINEAR COMBINATION

Theorem 1 derives an explicit expression for the cdf of aX + BY in terms of the
complementary error function.

Theorem 1. Suppose X and Y are distributed according to (1) and (2), respec-
tively. Then, the cdf of Z = aX + BY can be expressed as

F(z) = ;gkil(‘,ﬁ) {pate (PLO2) o) -}, @)

where

(k+1)2  28(k+1)(B\+ ap—2)
$2 + o202
B +apu—2  (k+1)ao
erfe < Vaao | v/2Be >

Gr(z) = eXP{
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and
Hy(z) = exp { (k :;21)2 _26(k+ l)ofzﬁUAQ;r o — Z)}
erfc BAtap—z (k+1)ao
! ( V2ao V26 ) : (5)

Proof. The cdf F(z) = Pr(aX + 8Y < z) can be expressed as
o) = 5 e (-0 {tren (<50 ¢(—ﬁy—aﬂ) dy
10} ao
-2
exp< >{1+exp<w>} @(Zﬂwﬂ)\a'u)dw (6)
) ao

where <I>() denotes the cdf of the standard normal distribution. Using the series
expansion

o0

1tw)? = 3 (‘lf)w’z

k=0

(6) can be expanded as

o 4[5 oo (-5)) " (22
L (2 e (B} e (2
(R S (e
AL E G (5
() [t (=)
S el }¢<z-ﬂw;ﬁ-w>dw
T
S (2 o] i)

Using the relationship

O(-z) = ;erfc<j§>,
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(7) can be further rewritten as

Fz) = 2;;(,{2) Amexp{—W}erfc<ﬂw+%ZaauZ)dw

() Lo -5

_ A _
erfc ( fuw t b+ ap Z) dw. (8)
V2ao
The two integrals in (8) can be calculated by direct application of Lemma 1. The
result follows. O

The following corollaries provide the cdfs for the sum and the difference of the
normal and logistic random variables.

Corollary 1. Suppose X and Y are distributed according to (1) and (2), respec-
tively. Then, the cdf of Z = X 4+ Y can be expressed as

F(z) = ;:o";l@f) {Qerfc (“fgg'Z) — Gi(z) — Hk(z)}, (9)

where
- exp{(k ;1)2 L2k 1){5§¢+u— z)}eﬁC (A J:/,%U— n (k:/};)a>
and
H(:) = eXp{(k ;21)2 C2(k+ 1)(5;\(;#— Z)}erfc (A +\/ga— z (k\g(lb)a)
Proof.Set o =1 and 8 =1 into (3). -

Corollary 2. Suppose X and Y are distributed according to (1) and (2), respec-
tively. Then, the cdf of Z = X — Y can be expressed as

Fz) = ;21;1(;2) {2erfc (W) — Gu(2) —Hk(z)}, (10)

where

2 _ ., B . i
Gr(z) = exp{(k;l) —2(k+1)(02;‘5+'“ )}erfc< )\\—;ip; _(k\-/g;) >
and
Hy(z) = eXp{(k;UZ+2(k+1)(0_225+”_z)}erf0(—/\\—;E/jj—z_|_(k\—/g;)a>.
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Fig. 1. Plots of the pdf of (3) for u/o =0.1,1,2,3, \/¢ =0, ¢/oc =1, ¢ = 1, and (a):
a=land 8=1;(b): a=1and = -1; (¢): a=1and f=2; and, (d): =1 and
B = —2. The curves from the left to the right correspond to increasing values of u/o.

Proof. Set « =1 and § = —1 into (3). O

Note that the parameters in (3),(9) and (10) are functions of u/o (coefficient of
variation for the normal model), A/¢ (coefficient of variation for the logistic model),
¢/o (ratio of scale parameters), and ¢. Figures 1 to 3 illustrate possible shapes of
the pdf of aX + Y for a range of values of «, 8, u/o, \/¢ and ¢/o. Note that
/o and A/¢, respectively, control the location and the modality of the distribution,
while ¢/c largely dictates the scale. The fact that multi-modal shapes are possible
is by itself interesting.

3. PRODUCT

Theorem 2 derives an explicit expression for the cdf of | XY'| in terms of the hyper-
geometric function.
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Fig. 2. Plots of the pdf of (3) for \/¢ =0.2,1,2,3, /o =0, ¢p/oc =1, ¢ =1, and (a):

a=land 8=1;(b): a=1and = —1; (¢): a=1and f=2; and, (d): =1 and

B = —2. The curves with the lowest to the highest modality correspond to increasing
values of \/¢.

Theorem 2. Suppose X and Y are distributed according to (1) and (2), respec-
tively. Then, the cdf of Z = | XY| can be expressed as

3 Ak +1)%22
a2§—(802)) ) (11)

where C' denotes Euler’s constant.
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Fig. 3. Plots of the pdf of (3) for A\/¢p =0, u/o =0, ¢/ =0.2,0.5,1,3, ¢ = 1, and (a):
a=land 8=1;(b): a=1and = -1; (¢): a=1and f=2; and, (d): =1 and
(8 = —2. The curves from the bottom to the top correspond to increasing values of ¢/o.

Proof. The cdf F(z) = Pr(|XY| < z) can be expressed as

A/_o; {q) (olzy|> -° <_0|Zy|>} {1 fﬁi&fi)y)}zdy

= To 2 exp(=Ay) B
- ”/_of’(am){1+eXp<_Ay>}2dy L (12)

where ®(-) denotes the cdf of the standard normal distribution. Using the series
expansion

Grw)? = 3 ()

k=0
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(6) can be expanded as

o o0 z exp(—Ay)
F(z) = 2)‘/0 (I) o|y|> {1+ exp(—Ay)}?
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(7) can be rewritten as

2A§0 <_]€2> /Ooo erfe (—\éﬂ/) exp {—(k+ 1Ay} dy —1

2/\§: (;) /OOO w—2erfc < ;;’U) exp {—(k + 1)AJw} dw — 1. (14)

k=0

F(z)

Direct application of Lemma 2 shows that the integral in (14) can be calculated as

T f(—’“”) —(k+ DA w}d
/0 w™“erfc NG exp {—( A w}dw
1 3Cz (13 1 X(k+1)%
272777 82
2 2 2,2
+)\(k+1)z G<1;2’27;;_)\ (k+1)%z )

1

The result of the theorem follows by using the identity that

i 1 (-2) 1 .
1\ k 2
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Note that the parameters in (11) are functions of A\/o (ratio of scale parameters).
Figure 4 illustrates possible shapes of the pdf of | XY| for a range of values of \/o.
Note that the shapes are unimodal and that the value of A/o largely dictates the
behavior of the pdf near z = 0.

2.0

15

PDF

1.0

0.5
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Fig. 4. Plots of the pdf of (11) for A\/o =0.1,1,2,20 and o = 1.

4. RATIO

Theorem 3 derives an explicit expression for the pdf and the cdf of | X/Y| in terms
of the complementary error function.

Theorem 3. Suppose X and Y are distributed according to (1) and (2), respec-
tively. Then, the cdf of Z = |X/Y| can be expressed as

— 1 [-2
o = () e e, (15)

where

)\z(k+1)202+2)\(k+1),uz>erfc< no /\(k+1)a>. (16)

Gi(z) = exp < 5.2 N N

The corresponding pdf is

— 1 /(-2
0 = Y()) @@ rac. (17



796 S. NADARAJAH

where gy, is the derivative of Gy, given by

A N (k+1)%0% + 2\ (k + 1)uz
exp
N4 222

[ﬂazexp {— (\/%z + )\(k\/gzl)gf}
A+ D)oerfe < uz LA +Zl)a>

—+v/muzerfe (\/’%Z + )‘(k\/;;)a> )

gr(2) =

S
S

(18)

Proof. The cdf F(z) = Pr(|X/Y]| < z) can be expressed as

Flo) = A/_o:o {q) (W) -0 <M _aZ|y|)} { fxp;_(Ai)y)} 4, (19)

where ®(-) denotes the cdf of the standard normal distribution. Using the s
expansion

(1+u)? = i ()

(19) can be expanded a
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Using the relationship

(20) can be rewritten as
Ali <_13> /OOO {erfc <“\_/;U|y|> _ erfo <“\+/;U|y|> } exp {—(k + 1Ay} dy
)\]i (‘;) [/OOO erfc (“\/_ijy> exp{—(k+ 1)y} dy

- /OOO erfc (’“‘\%jy) exp {—(k + 1)y} dy] : (21)

The two integrals in (21) can be calculated by direct application of Lemma 1. The
result follows. 0

Note that the parameters in both (16) and (18) are functions of u/o (coefficient
of variation) and Ao (ratio of scale parameters). The following corollary shows that
(16) and (18) reduce to simpler forms when the coefficient of variation approaches
zZ€ero.

Corollary 3. Suppose X and Y are distributed according to (1) and (2), respec-
tively. If u/o — 0 then the cdf of Z = |X/Y| takes the form (15), where

A2(k2+221)202) orfe (A(k\/;j)a) ‘

The corresponding pdf takes the form (17), where g is the derivative of G}, given
by

Gr(z) = exp(

VT3 272
—/7(k + 1)cerfc (Mk + 1)0> }

gr(z) = Atk + Do exp <)\2(k2+221)202> {\@Zexp (W)
V2

Proof. The proof follows by limiting /o — 0 in (16). O

Figures 5 and 6 illustrate possible shapes of the pdf of | X/Y| for a range of values
of u/o and Ao. Note that the shape of the distribution is largely controlled by the
value of u/o.
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Fig. 5. Plots of the pdf (17) for u/oc =0.1,1,3,10, c =1 and XA = 1.
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Fig. 6. Plots of the pdf (17) for Ao = 0.2,0.5,1,2, 0 = 1 and p = 1.
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