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ON INVERTIBILITY OF A RANDOM COEFFICIENT
MOVING AVERAGE MODEL

Tomáš Marek

A linear moving average model with random coefficients (RCMA) is proposed as more
general alternative to usual linear MA models. The basic properties of this model are
obtained. Although some model properties are similar to linear case the RCMA model
class is too general to find general invertibility conditions. The invertibility of some special
examples of RCMA(1) model are investigated in this paper.

Keywords: non-linear time series, invertibility, random coefficient moving average

AMS Subject Classification: 62M10, 62M09, 60G10

1. INTRODUCTION

Let {εt}t∈Z be an i.i.d. sequence of random variables. We generalize the linear
moving average time series model. We replace the constant coefficient vector by
a random one. Assume that {At}t∈Z, At = (At,0, . . . , At,p)T is a time series of
vector of parameters. Further we assume that for each fixed k ∈ {0, 1, . . . , p} and
for each t ∈ Z the subsequences {At−i,k}∞i=0 and {εt−k+j}∞j=0 are independent. This
relationship between the series {εt}t∈Z and {At}t∈Z we call future independence
condition (FIC). Now we introduce a random coefficient moving average model of
order p, RCMA(p), of the general form

Xt = At,0εt + At,1εt−1 + · · ·+ At,pεt−p. (1)

The FIC gives the causality connection between the sequences {Xt} and {εt} and
additionally it dictates the inner structure of the model. For example in RCMA(1)
form of non-linear moving average model

Xt = εt + αεt−1 + βεtεt−1

is At = (1 + βεt−1, α)T . Putting A′
t = (1, α + βεt)T we get the same model but the

FIC does not hold.
Let us denote Bt, the σ-algebra generated by {Xs, s ≤ t}. In this general form,

model (1) covers many known models.

• Linear MA models: The At is a constant vector not depending on t.
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• Time dependent MA models: The At is not random, but it depends on t.

• Self exciting threshold moving average models: The At,k = b
(Jt)
k , k = 0, . . . , p,

where Jt is measurable with respect to Bt−1 and takes values in {1, 2, . . . , l}.
• Strongly subdiagonal bilinear models: There exist some q ∈ N such that each

At,k is linear function of variables Xt−k−1, Xt−k−2, . . . , Xt−k−q with time in-
variant constant coefficients.

• Some non-linear moving average models: The At is generally non-linear func-
tion of εt−1, εt−2, . . . , εt−q, admitting expression in the form (1), where FIC
condition holds and q ∈ N. For example the models that have a finite order
Volterra expansion (see e. g. Tong [8]) are included.

• ARCH models: The p = 0 and At,0 =
√

γ +
∑q

n=1 φiX2
t−i, where γ > 0, φi ≥ 0

for all i.

• Some doubly stochastic models: The At,0 = 1 a. s. for each t and the vector of
random coefficients At is measurable with respect to Bt−1 for each t. A more
general doubly stochastic model is introduced by Tjøstheim [7].

• Product autoregressive models: Here the p = 0, white noise εt is positive and
At,0 = Xα

t−1. For more details see McKenzie [4].

Some bibliographical notes about mentioned models can be found in Tong [8].

1.1. Stationarity

It is well known that linear MA(p) model is always stationary. The RCMA(p) model
may not be stationary as is shown in the Example 1.1.

Example 1.1. Consider p = 1, and εt ∼ N(0, 1). Let

At =

{
(1, εt−2)T if t > 4,

(1, εt−3)T if t ≤ 4.

Thus At is the i.i.d. sequence and FIC condition holds. Now Xt is not stationary,
because

X5 = ε5 + ε4ε3, X4 = ε4 + ε3ε1, X3 = ε3 + ε2ε0,

and E X2
3X2

4 = 6 6= E X2
4X2

5 = 8.

A sufficient condition that model (1) is stationary is that vector sequence {ηt},
where ηt = (At,0εt, At,1εt−1, . . . , At,pεt−p)T , is stationary. Example 1.2 given bel-
low shows that this condition is not necessary. It means that also non-stationary
sequence {ηt} can produce stationary process {Xt}. It is also useful to introduce the
following notation here. If we have column vectors Y 1, . . . , Y n we define Vec(Y 1, . . .
. . . ,Y n) = (Y T

1 , . . . , Y T
n )T .
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Example 1.2. Consider p = 1, and εt ∼ N(0, 1) as in Example 1.1. Let λ > 0,
t∗ ∈ Z,

dt =

{
2 if t ≥ t∗,

3 if t < t∗,

and
Xt = Zt(εt − εt−1), (2)

where Zt is a random sign given by previous white noise exceeding level λ. More
exactly

Zt =

{
+1 if εt−dt

≥ λ,

−1 if εt−dt
< λ.

It is seen that Zt’s form i.i.d. sequence and p = P(Zt = 1) = 1 − Φ(λ), where
Φ is distribution function of standard Gaussian N(0, 1) distribution. Thus At =
(Zt,−Zt)T is i.i.d. sequence and FIC condition clearly holds.

It is not a difficult task to prove that sequence Xt defined in (2) is stationary.
For each n ∈ N and t1 < t2 < · · · < tn we denote tn = (t1, . . . , tn)T and Xtn

=
(Xt1 , . . . , Xtn)T . First we assume that values Zt1 = zt1 , . . . , Ztn = ztn are known.
Conditional distribution of vector Xtn is n-variate normal with zero mean and
variance matrix

V tn =
(
vtn

i,j

)n

i,j=1
, (3)

where vtn
i,i = 2 and if i < j, vtn

i,j = −ztiztj δ(ti, tj − 1). Symbol δ(i, j) denotes well
known Kronecker function which is equal to one if and only if i = j and zero
otherwise.

We have
P (Zt1 = zt1 , . . . , Ztn = ztn) = pNtn (1− p)n−Ntn ,

where Ntn = Card{1 ≤ i ≤ n : zti = 1}. Since εt’s are i.i.d. the distribution of
variable Ntn is independent of the time shift of fixed vector tn. Consequently the
distribution of random vector (Zt1 , . . . , Ztn)T is independent of the time shift of tn.
Employing (3) it follows that unconditional distribution of Xtn is also time shift
independent and thus the sequence {Xt} is stationary.

Now let us deal with the sequence {ηt}. In this example we have

ηt =

{
(εt,−εt−1)T if εt−dt ≥ λ,

(−εt, εt−1)T if εt−dt < λ.

Let us investigate the distribution of vector

Et =Vec(ηt,ηt−1,ηt−2)=(Ztεt,−Ztεt−1, Zt−1εt−1,−Zt−1εt−2, Zt−2εt−2,−Zt−2εt−3)T.

If t ≥ t∗+ 2, then Zt−2, Zt−1 and Zt depend on εt−4, εt−3 and εt−2, respectively. It
follows that

P (|Zt−2εt−2| < λ, |Zt−2εt−3| < λ,−Ztεt−1 > 0, Zt−1εt−1 > 0) = 0.
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If t < t∗ + 2, then Zt−2, Zt−1 and Zt depend on εt−5, εt−4 and εt−3, respectively.
In this case it follows that

P (|Zt−2εt−2| < λ, |Zt−2εt−3| < λ,−Ztεt−1 > 0, Zt−1εt−1 > 0) =
1
2
p(1− 2p)2,

and it means that sequence {ηt} is nonstationary.

Examples given above show that it is very difficult to look for some general
condition of stationarity of RCMA time series models. Because of many different
kinds of known models that are included it is more practical to investigate special
cases which are needed for some situations. For example the RCMA(p) process {Xt}
given by equation (1) is stationary if it is a finite time shift invariant transformation
of white noise, i. e. if At = fA(εt−1, . . . , εt−q), q < ∞, and fA commutes with
time shift operator. More exactly for j ∈ Z we denote the prj projection to the
jth coordinate, prj ({εt}) = εj and for k ∈ Z we denote τk the k-step forward
translation. It means that prj (τk({εt})) = εj−k, for each j, k. Now the following
lemma holds.

Lemma 1.3. Let {εt} be i.i.d. sequence of random variables and τk the k-step
forward translation. Consider transformation T : RN → RN such that {Xt} =
T ({εt}) . If T commute with the time shift operator, it means T ◦ τk = τk ◦ T for
each k ∈ Z, then the sequence {Xt} is stationary.

P r o o f . The proof is based on facts that i.i.d. sequence is stationary and it has
time shift invariant distribution. Employing the commutativity with the transfor-
mation T we get assertion of the lemma. Complete proof can be found e. g. in
Štěpán [6]. ¤

We meet a more complicated situation if we consider bilinear RCMA(p) model.
It is recommended to consult the monograph Granger and Andersen [1] for the sta-
tionarity conditions. Similarly if we deal with the product autoregressive RCMA(p)
models we refer to McKenzie [4].

1.2. Moments

Consider stationary RCMA(p) time series with stationary parameter sequence {At}.
Assuming existence of the moments bellow we denote

µ′k = E εk
t , a = E At, V (k) =

(
vi,j(k)

)p

i,j=0
= Cov (At, At−k) .

Additionally we assume µ′1 = 0 and µ′2 = σ2
ε , where 0 < σ2

ε < ∞. Now we can
describe the second order moments of the process {Xt} using the second moments of
sequences {εt} and {At}. Clearly E Xt = 0 and it is easy to verify that autocovariance
function R(k) = E XtXt−k has the truncation property, R(k) = 0, if |k| > p. For
|k| ≤ p we have

R(k) = E XtXt−k = σ2
ε

p∑

i=k

E At,iAt−k,i−k = σ2
ε

p∑

i=k

(
vi,i−k(k) + aiai−k

)
.
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Especially,
R(0) = Var Xt = σ2

ε Tr
(
V (0)

)
+ aT a.

It is useful to note that assumption µ′1 = 0 is important for the truncation covariance
property. Counter-example is given in following Example 1.4.

Example 1.4. Consider stationary RCMA(1) model given by formula

Xt = εt−2εt + εt−2εt−1,

where E εt = µ 6= 0. It is easy to calculate that

R(2) = Cov(Xt, Xt−2) = 2µ2σ2
ε 6= 0.

In accordance with our expectations if the higher order moments exist they are
more complicated and strongly depend on the sequence {At} and its relationship
with the white noise sequence {εt}. Higher order moments thus can be exploited for
identification and estimation of RCMA models.

2. INVERTIBILITY

The invertibility is usually defined as measurability of each variable εt with respect to
σ-algebra Bt generated by {Xs : s ≤ t}. The invertibility conditions are well known in
linear MA(p) case. The situation in the RCMA case is more complicated, because in
a non-linear model the dependence of εt on Xt, Xt−1, . . . is more complicated. Thus
in this section we deal with RCMA(1) model only instead more general RCMA(p).

Consider RCMA(1) model given by formula

Xt = At,0εt + At,1εt−1. (4)

Similarly as in the linear MA(1) case we express

εt =
1

At,0
Xt − At,1

At,0
εt−1. (5)

Iterating equation (5) we get

εt =
n−1∑

j=0

(−1)j

At,0

(
j∏

k=1

At−k+1,1

At−k,0

)
Xt−j + (−1)n

(
n−1∏

k=0

At−k,1

At−k,0

)
εt−n. (6)

Denote
B

(0)
t =

1
At,0

, B
(k)
t = −At−k+1,1

At−k,0
B

(k−1)
t for k > 0, (7)

and
C

(0)
t = 1, C

(k)
t = −At−k+1,1

At−k+1,0
C

(k−1)
t for k > 0. (8)
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Now equation (6) has the form

εt =
n−1∑

j=0

B
(j)
t Xt−j + C

(n)
t εt−n.

If all variables B
(j)
t are measurable w.r.t. Bt then it is natural to define a sequence

{ε(n)
t }∞n=1 as

ε
(n)
t =

n−1∑

j=0

B
(j)
t Xt−j . (9)

Our next step is to look for conditions ensuring the convergence ε
(n)
t → εt as n →∞

for each t ∈ Z. The next lemma contains some sufficient conditions.

Lemma 2.1. Let {Xt} be an RCMA(1) process defined by equation (4). Let B
(n)
t ,

C
(n)
t , and ε

(n)
t be defined by equations (7), (8) and (9), respectively. Let variable

B
(n)
t be measurable with respect to Bt for each t ∈ Z and n ∈ N. Assume that at

least one of the next conditions holds for each t ∈ Z :

(i) ∣∣∣C(n)
t

∣∣∣ |εt−n| P−−−−→
n→∞

0;

(ii) there exists p > 0 such that

E
[∣∣∣C(n)

t

∣∣∣
p

|εt−n|p
]
−−−−→
n→∞

0;

(iii) P(|ε1| < ∞) = 1 and there exists a positive sequence Kn ↗∞ such that

KnC
(n)
t

P−−−−→
n→∞

0;

(iv) there exists δ > 0 such that

P

(
lim inf
k∈N0

{
ω : |At−k,1(ω)| ≤ (1− δ)|At−k,0(ω)|

})
= 1;

(v) P (|At,1| ≤ |At,0|) = 1 and there exists δ > 0 such that

P

(
lim sup

k∈N0

{
ω : |At−k,1(ω)| ≤ (1− δ)|At−k,0(ω)|

})
= 1;

(vi) {At} is stationary and ergodic process with

E log |At,1| < E log |At,0|;
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(vii) {At} is stationary and ergodic process and there exists a real constant R > 1
such that

P
(
|At,1| ≤ R|At,0|

)
= 1 and P

(
R|At,1| ≤ |At,0|

)
>

1
2
.

Then the process {Xt} is invertible.

P r o o f . First assume that condition (i) holds. Since
∣∣∣εt − ε

(n)
t

∣∣∣ =
∣∣∣C(n)

t

∣∣∣ |εt−n| P−−−−→
n→∞

0,

we have ε
(n)
t

P−−−−→
n→∞

εt. It follows that there exists subsequence {ε(nj)
t }j which con-

verges to εt almost surely. Considering the Bt-measurability of all variables B
(j)
t

and following Bt-measurability of ε
(n)
t we have proved the fact that εt is a. s. limit

of Bt-measurable variables ε
(n)
t and thus also Bt-measurable.

Now we show that condition (ii) implies condition (i). For a given δ > 0 it holds

0 ≤ P
(∣∣∣C(n)

t

∣∣∣ |εt−n| ≥ δ
)
≤ δ−p E

[∣∣∣C(n)
t

∣∣∣
p

|εt−n|p
]
−−−−→
n→∞

0.

Further we show that also condition (iii) implies condition (i). For a given 0 <
δ < 1 denote δn = δ/Kn. Condition (iii) gives

P
(
Kn

∣∣∣C(n)
t

∣∣∣ ≥ δ
)
−−−−→
n→∞

0

and also
P (|εt−n| ≥ Kn) −−−−→

n→∞
0.

Thus for m ∈ N there exists n1(m) such that for each n > n1(m)

P
(
Kn

∣∣∣C(n)
t

∣∣∣ ≥ δ
)
≤ δm.

Analogically there exists n2(m) such that for each n > n2(m)

P (|εt−n| ≥ Kn) ≤ δm.

It holds

P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ
)

= P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ, Kn

∣∣∣C(n)
t

∣∣∣ ≥ δ
)

+ P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ, Kn

∣∣∣C(n)
t

∣∣∣ < δ
)

.

For n > n1(m) we obtain

P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ, Kn

∣∣∣C(n)
t

∣∣∣ ≥ δ
)
≤ P

(
Kn

∣∣∣C(n)
t

∣∣∣ ≥ δ
)
≤ δm.
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Additionally

P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ, Kn

∣∣∣C(n)
t

∣∣∣ < δ
)

= P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ, Kn

∣∣∣C(n)
t

∣∣∣ < δ, |εt−n| ≥ Kn

)

+ P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ, Kn

∣∣∣C(n)
t

∣∣∣ < δ, |εt−n| < Kn

)
.

It is clear that

P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ, Kn

∣∣∣C(n)
t

∣∣∣ < δ, |εt−n| < Kn

)
= 0

and for n > n2(m) we have

P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ, Kn

∣∣∣C(n)
t

∣∣∣ < δ, |εt−n| ≥ Kn

)
≤ P (|εt−n| ≥ Kn) ≤ δm.

Thus for n > max {n1(m), n2(m)} we obtain

P
(
|εt−n|

∣∣∣C(n)
t

∣∣∣ ≥ δ
)
≤ 2δm −−−−→

m→∞
0.

The conditions (iv) and (v) ensure a. s. convergence of C
(n)
t to zero and so we

have ε
(n)
t

P−→ εt. Assuming that condition (vi) holds we obtain

1
n

log
∣∣∣εt − ε

(n)
t

∣∣∣ =
1
n

log
∣∣∣C(n)

t

∣∣∣ +
1
n

log |εt−n|

=
1
n

n∑

k=1

log |At−k+1,1| − 1
n

n∑

k=1

log |At−k+1,0|+ 1
n

log |εt−n|
a. s.−−−−→

n→∞
E log |At,1| − E log |At,0| < 0.

Thus
∣∣∣εt − ε

(n)
t

∣∣∣ a. s.−−−−→
n→∞

0.

In the last step of the proof we show that condition (vii) implies condition (vi).
Denote p = P

(
R|At,1| ≤ |At,0|

)
. A direct calculation gives

E log |At,1| − E log |At,0| = E log
∣∣∣∣
At,1

At,0

∣∣∣∣ ≤ −p log R + (1− p) log R < 0. ¤

In the RCMA(1) case it is difficult to find some general necessary and sufficient
condition for invertibility. In the next section we give some special examples of
invertible RCMA(1) processes.
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2.1. Examples

Simple bilinear RCMA(1) model

Consider a simple bilinear model

Xt = εt + (a + θXt−2)εt−1, (10)

where εt’s have zero mean and variance σ2
ε and a, θ are real valued parameters. It is

well known (e. g. Granger and Andersen [1]) that the model is stationary iff θ2σ2
ε < 1.

Using formula (6) we obtain

εt =
n−1∑

j=0

(−1)jXt−j

j∏

k=1

(a + θXt−1−k) + (−1)nεt−n

n∏

k=0

(a + θXt−1−k).

It follows that

C
(n)
t = (−1)n

n∏

k=0

(a + θXt−1−k).

Assuming {Xt} is stationary and ergodic sequence the Lemma 2.1 (vi) gives a suffi-
cient condition for the model invertibility as E log |a+θXt| < 0. It is very difficult to
verify this condition as the distribution of Xt is not known. Using Jensen’s inequality

E log |a + θXt|2 ≤ log E |a + θXt|2

we obtain weaker sufficient invertibility condition E(a+θXt)2 < 1. Calculating expec-
tation in equation (10) we have E Xt = 0. Squaring (10) and calculating expectation
we obtain

EX2
t =

σ2
ε(1 + a2)
1− θ2σ2

ε

.

Thus

θ2 <
1− a2

2σ2
ε

is a sufficient condition for invertibility.

The RCMA(1) model with uniformly distributed parameter

Consider the RCMA(1) model given by formula

Xt = εt + (a + θYt−2)εt−1, (11)

where a, and θ > 0 are real valued parameters, {Yt} is stationary and ergodic
sequence and each variable Yt is Bt-measurable with the uniform distribution on the
interval (−1, 1).

Using notation introduced above we have At,0 = 1 and At,1 = a+θYt−2. To verify
condition (vi) of Lemma 2.1 we calculate E log |At,1|. Using the fact that At,1 has
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the uniform distribution on the interval (a− θ, a + θ) we obtain

E log |At,1| = 1
2θ

∫ a+θ

a−θ

log |x|dx

=
1
2θ

[
(a + θ) log |a + θ| − (a− θ) log |a− θ| − 2θ

]
. (12)

It follows from Lemma 2.1 that model (11) is invertible if E log |At,1| < 0. We can also
compare this result with the result which follows from condition (vii) of Lemma 2.1.
The constant R must be greater or equal to |a|+ θ. If R = |a|+ θ, then

[
P(|At,1| ≤ R−1) >

1
2

]
⇔

{
R−1 > |a| if θ > 2min{|a− θ|, |a + θ|},
2R−1 > θ if θ ≤ 2min{|a− θ|, |a + θ|}. (13)

a

θ

−2 −1 0 1 2

3

2

1

0

Fig. 1. Parameter regions ensuring invertibility of model (11). The bright-gray region is

based on formula (12) and represents pairs (a, θ) that give negative value of E log |At,1|.
The dark-gray region represents pairs (a, θ) that satisfy condition (13).

Especially if a = 0 substituting to equation (12) we get

E log |At,1| = log θ − 1,

and thus the model is invertible if θ < e . Substituting a = 0 to formula (13) we see
that the constant R must be greater or equal to θ and R−1 must be greater than
θ/2. It follows that

2
θ

> θ,

and thus the model is invertible if θ <
√

2. The regions of invertibility of the
model (11) are illustrated in Figure 1.
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The RCMA(1) model with Gaussian distribution of parameter

Consider RCMA(1) model given by formula (11) where Yt ∼ N(0, 1). In this case we
have At,1 ∼ N(a, θ2) and

E log |At,1| =
∫ ∞

−∞

1√
2πθ2

exp
{
− (x− a)2

2θ2

}
log |x| dx.

Using substitution x = θy + a we obtain

E log |At,1| =
∫ ∞

−∞

1√
2π

exp
{
−y2

2

}
log |θy + a| dy

= log θ +
∫ ∞

−∞

1√
2π

exp
{
−y2

2

}
log

∣∣∣y +
a

θ

∣∣∣ dy. (14)

The region of invertibility of the model (11) with Yt ∼ N(0, 1) is illustrated in
Figure 2.

θ

a
−1.5 −1 −0.5 0 0.5 1 1.5

3

2.5

2

1.5

1

0.5

0

Fig. 2. Parameter region ensuring invertibility of model (11) with Yt ∼ N(0, 1). The gray

region is based on formula (14) and represents pairs (a, θ) that give negative value of

E log |At,1|.

Simple non-linear moving average RCMA(1) model

Consider non-linear moving average model

Xt = (a + θεt−1)εt + αεt−1, (15)
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where a 6= 0, α 6= 0, and θ > 0 are real valued parameters. This model has
been mentioned by Tong [8] and Robinson [5]. The invertibility of model (15) is
investigated in Marek [3]. Additionally we assume that the |εt| < 1 almost surely.
Using (15) we get formula

εt =
Xt − αεt−1

a + θεt−1
. (16)

Thus for each t we construct sequence {ε(n)
t }∞n=0, such that ε

(0)
t = 0, and for n ≥ 1

ε
(n)
t =

Xt − αε
(n−1)
t−1

a + θε
(n−1)
t−1

.

Each variable ε
(n)
t is measurable w.r.t. Bt. Thus provided ε

(n)
t

P−−−−→
n→∞

εt the model (15)

is invertible. Denote d
(n)
t =

∣∣∣ε(n)
t − εt

∣∣∣ . Using formula (16) we obtain

d
(n)
t =

|aα + θXt|d(n−1)
t−1

|a + θεt−1|
∣∣∣a + θε

(n−1)
t−1

∣∣∣
.

Using formula (15) we express

d
(n)
t =

|α + θεt|d(n−1)
t−1∣∣∣a + θε

(n−1)
t−1

∣∣∣
. (17)

Iterating (17) we obtain

d
(n)
t = |εt−n|

n−1∏

k=0

|α + θεt−k|∣∣∣a + θε
(n−k−1)
t−k−1

∣∣∣
.

If inequality |α+ θεt−k| <
∣∣∣a + θε

(n−k−1)
t−k−1

∣∣∣ holds then the {d(n)
t } sequence decreases.

We get ∣∣∣a + θε
(n−1)
t−1

∣∣∣ ≥ |a| − θ
∣∣∣ε(n−1)

t−1 − εt−1 + εt−1

∣∣∣ ≥ |a| − 2θ

and
|α + θεt| ≤ |α|+ θ|εt| ≤ |α|+ θ.

Thus using more restrictive inequality

|a| − 2θ > |α|+ θ

we obtain a sufficient invertibility condition in the form

|α| < |a| and θ <
|a| − |α|

3
. (18)
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Note that condition (18) also ensures that the singular point of transformation (16)
is outside of the interval (−1, 1).

Granger and Andersen [2] give the example of similar fashioned non-linear moving
average model given by equation

Xt = εt + θεt−2εt−1.

The authors suggest that this model is never invertible with respect to value of
parameter θ 6= 0.

3. CONCLUSIONS

We proposed the RCMA model as a special non-linear generalization of linear moving
average process with similar autocovariance structure. This class of models includes
many well known time series models as well as models which have not been investi-
gated yet. In linear moving average case the invertibility condition is used to select
one of many alternative models which have the same autocovariances. The invert-
ibility condition can play the similar role also in RCMA models case. However, the
importance of the invertibility is also that a non-invertible models cannot be used
to forecast because of it is often necessary to estimate white noise terms using the
finite number of observations Xt and some initial constants only. Generally, to find
an invertibility condition of RCMA(1) model is very difficult. While some RCMA
models (e. g. ARCH) are always invertible or always non-invertible (e. g. see Granger
and Andersen [2]) and while there had been found sufficient invertibility condition in
some special cases like bilinear models, many unexplored time series models remain.
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