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Pod Vodárenskou věž́ı 4, 182 08 Praha 8

Kybernetika is a bi-monthly international journal dedicated for rapid publication of
high-quality, peer-reviewed research articles in fields covered by its title.

Kybernetika traditionally publishes research results in the fields of Control Sciences,
Information Sciences, System Sciences, Statistical Decision Making, Applied Probability
Theory, Random Processes, Fuzziness and Uncertainty Theories, Operations Research and
Theoretical Computer Science, as well as in the topics closely related to the above fields.

The Journal has been monitored in the Science Citation Index since 1977 and it is
abstracted/indexed in databases of Mathematical Reviews, Current Mathematical Publi-
cations, Current Contents ISI Engineering and Computing Technology.

Ky b e r n e t i k a . Volume 41 (2005) ISSN 0023-5954, MK ČR E4902.
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ESTIMATES FOR PERTURBATIONS OF AVERAGE
MARKOV DECISION PROCESSES WITH A MINIMAL
STATE AND UPPER BOUNDED BY STOCHASTICALLY
ORDERED MARKOV CHAINS

Raúl Montes-de-Oca and Francisco Salem-Silva∗

This paper deals with Markov decision processes (MDPs) with real state space for which
its minimum is attained, and that are upper bounded by (uncontrolled) stochastically
ordered (SO) Markov chains. We consider MDPs with (possibly) unbounded costs, and
to evaluate the quality of each policy, we use the objective function known as the average
cost. For this objective function we consider two Markov control models P and P1. P and
P1 have the same components except for the transition laws. The transition q of P is taken
as unknown, and the transition q1 of P1, as a known approximation of q. Under certain
irreducibility, recurrence and ergodic conditions imposed on the bounding SO Markov chain
(these conditions give the rate of convergence of the transition probability in t-steps, t =
1, 2, . . . to the invariant measure), the difference between the optimal cost to drive P and
the cost obtained to drive P using the optimal policy of P1 is estimated. That difference
is defined as the index of perturbations, and in this work upper bounds of it are provided.
An example to illustrate the theory developed here is added.

Keywords: stochastically ordered Markov chains, Lyapunov condition, invariant probabil-
ity, average Markov decision processes

AMS Subject Classification: 90C40, 93E20

1. INTRODUCTION

This paper concerns with Markov Decision Processes (MDPs) with real state space
for which its minimum is attained, and that are upper bounded by (uncontrolled)
stochastically ordered Markov Chains. The MDPs, considered (possibly) have an
unbounded one-step cost function. The quality of each policy will be evaluated by
the objective function (or the performance index) known as the average cost. Denote
it by J(Π, x), where Π is the policy that drives the system, and x is the initial state.
Now consider the following:

There are two Markov control models (see [7] and [8]): P and P1, and we suppose
that they have the same state and action spaces, and the same one-step cost function,

∗Francisco Salem-Silva supported by grant VIEP-BUAP II 33.
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but different transition probability laws. They are denoted by q and q1, respectively.
It is supposed that q1 is known but near, in the sense of the total variation metric,
to the “unknown” transition probability law q. Since q is unknown, q1 will be used
as an approximation of q to find an optimal control for P1 and then it will be used
to control P. Hence, assuming the existence of stationary optimal policies f∗ and
f∗1 for P and P1, respectively, the additional cost can be evaluated when using f∗1 to
control P, instead of f∗, by means of the so-called Index of Perturbations (see, for
instance, [1, 2, 3, 5, 6] and [14]). For the average case, this Index is defined as:

∆̂(x) := J(f∗1 , x)− J(f∗, x), (1.1)

where x is the initial state.
The main goal of the present paper is to find a measure for the perturbation of

the MDP generated for P. That means an inequality with the following structure is
wanted to be found for an upper bound for Index (1.1):

∆̂(x) ≤ MΓx(‖q − q1‖) (1.2)

where M is a constant, and Γx(·) is a function such that Γx(y) → 0 if y → 0, and x
is the initial state.

For the discounted case, i. e. when the objective function is the total discounted
expected cost V (Π, x), where Π is the policy that drives the system, and x is the
initial state; upper bounds have been obtained as in (1.2), for the corresponding
Index of Perturbations i. e.,

∆1(x) := V (f∗1 , x)− V (f∗, x), (1.3)

where f∗ and f∗1 are optimal policies for P and P1, respectively (see, e. g. [2, 3, 5]
and [6]). (Also look at [1] for the case of total cost with finite horizon.)

In this paper, for MDPs with real state space for which its minimum is attained;
the Zolotarev’s Method will be used (see [17]) to reduce the problem to one of
the perturbation of uncontrolled processes. Here, the rate of convergence provided
by Stochastically Ordered (SO) Markov chains that satisfy certain irreducibility,
recurrence and ergodic conditions will be applied (see [12]). With this new rate
of convergence, it will be discovered that the term Γx(‖q − q1‖) can be calculated
explicitly in a simple way and more precise bounds are expected.

In order to use the rate of convergence of the SO it will be supposed that the
MDPs are upper bounded for SO Markov chains.

The paper is organized as follows. Firstly, in Section 2 we present the basics on
stochastically ordered Markov chains including the main assumption (Assumption
2.1) that assures the rate of convergence. Secondly, in Section 3 we give the pre-
liminaries about average MDPs. Section 4 provides the main result of the paper
(Theorem 4.1). Sections 5 and 6 complete the proof of Theorem 4.1. Finally, in the
last section an example is presented.
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2. STOCHASTICALLY ORDERED MARKOV CHAINS

Notation and terminology

Let Y = {yt} be a homogeneous Markov chain with values in the state space X with
discrete time t = 0, 1, 2 . . ., and with transition kernel p(B|x), B ∈ B(X), x ∈ X
where B(X) denotes the sigma-algebra of Borel of X.

Let Px and Ex be respectively the probability law and the expectation of the
chain under the initial condition y0 = x ∈ X.

The transition probabilities in t-steps of the chain are denoted by pt(B|x), x ∈ X
B ∈ B(X), i. e. pt(B|x) = Px[yt ∈ B], t = 0, 1, 2, . . .

For x ∈ X, B, D ∈ B(X), and, t = 0, 1, 2, . . ., it is written:

Bpt(D|x) := Px[yt ∈ D and yj /∈ B for 1 ≤ j ≤ t− 1]. (2.1)

Let M := {µ|µ be a probability on B(X)}, and let BM := {g : X → R : g is
measurable and bounded}.

Denote by ‖·‖ the total variation metric defined on M, i. e. for µ1, µ2 ∈M,

‖µ1 − µ2‖ := 2 sup
D∈B(X)

{|µ1(D)− µ2(D)|}, (2.2)

or equivalently,

‖µ1 − µ2‖ := sup
{∣∣∣∣

∫
gdµ1 −

∫
gdµ2

∣∣∣∣ : g ∈ BM and |g| ≤ 1
}

. (2.3)

Remark 2.1. For random elements χ and κ taking values in X, we write

‖χ− κ‖ ≡ ‖µχ − µκ‖ ,

where µχ and µκ are the distributions of χ and κ, respectively.
µ ∈ M is supposed to be invariant (with respect to the Markov chain Y ={yt})

if it has the property that

µ(D) =
∫

D

p(dy|x)µ(dy), (2.4)

where D ∈ B(X), x ∈ X.

The Markov chain Y = {yt} is said to be Harris-recurrent if there exists a non-
trivial σ-finite measure γ such that

Px[yt ∈ B for some t] = 1, (2.5)

for all x ∈ X whenever B ∈ B(X), satisfies γ(B) > 0.

It is said that a Harris-recurrent Markov chain Y = {yt} is positive if it has an
invariant probability measure mY , i. e. mY is a probability measure and satisfies
(2.4).
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Stochastically ordered Markov chains

This paper specifically deals with a Markov chain Y = {yt} having state space X of
the form: [d,∞), d ∈ R, or more concretely of the form X = [0,∞), for simplicity.

Remark 2.2. The important clue is that the state space has a minimal element
(see, [12]). Due to this fact let us obtain explicit bounds on the rate of convergence
to the invariant measure.

Let x, y ∈ X. Consider the canonical probability spaces (Ω, F, Px) and (Ω, F, Py)
induced by the kernel p and the initial distributions δx and δy (here δx and δy denote
the probabilities concentrated in x, and y, respectively), in which it is possible to
define two copies of the chain Y1 = {y1

t }, Y2 = {y2
t }, respectively, whenever y1

0 = x
and y2

0 = y. Hence, taking the product space (Ω×Ω, F ×F, Px×Py) = (Ω∗, F ∗, P ∗)
the chains Y 1 and Y 2 can be described jointly (see [10]).

Let W and Z be nonnegative random variables defined on the probability space
(Ω′, F ′, P ′). W is considered to be stochastically larger than Z if P ′[W ≤ x] ≤
P ′[Z ≤ x] for all x ∈ R.

The chain Y = {yt} is stochastically ordered (or stochastically ordered in its
initial state) if for two copies of the chain Y 1 = {y1

t }, Y 2 = {y2
t }, whenever y1

0 = x
and y2

0 = y and y < x, then y1
t is stochastically larger than y2

t for all t ≥ 1, i. e.
P ∗[y1

t ≤ z] ≤ P ∗[y2
t ≤ z] for all z ∈ R and t ≥ 1, where P ∗ := Px× Py.

Besides it is supposed that the chain Y = {yt} is pathwise ordered if for two
copies of the chain Y 1 = {y1

t }, Y 2 = {y2
t }, whenever y1

0 = x and y2
0 = y and y < x,

then y2
t (ω) ≤ y1

t (ω) for all ω ∈ Ω∗ = Ω× Ω.

Remark 2.3. As it was mentioned in [12] (see also, [10]), if the chain is stochasti-
cally ordered but not pathwise ordered, then it is possible to change the underlying
probability space and construct a new chain that is pathwise ordered and distribu-
tionally equivalent to original chain. Hence, it is possible to assume that a ordered
chain is pathwise ordered.

Assumption 2.1. Let Y = {yt} be a Markov chain. Suppose that

(a) For each x∈X, there exists a positive integer t∗ such that {0}pt∗([x,∞)|0)>0;

(b) Y is stochastically ordered;

(c) Let τ0 = inf{t > 0 : yt = 0}. For each x ∈ X we assume that Ex(τ0) < ∞;

(d) There exists L : [0,∞) → [1,∞) with L(0) = 1 and constants λ and b with
0 < λ < 1, 0 ≤ b < ∞, such that,

∫
L(y)p(dy|x) ≤ λL(x) + bI{0}(x), (2.6)

where x ∈ X and I{0} denotes the indicator function of the set {0}.
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Remark 2.4. The conditions in Assumption 2.1 are the same that appear in [12],
except for Assumption 2.1(c). In [12] is assumed the existence of the invariant
measure. Notice that latter is implied by Assumption 2.1(c).

Now, the result that provides the rate of convergence of the transition probabil-
ities pt(·|x), x ∈ X to the invariant measure mY (when there are) in the sense of
the total variation metric (see Assumption 2.1(c)), is presented without proof. This
proof can be found in Lund and Tweedie [12].

Lemma 2.1. Let Y = {yt} be a Markov chain. Suppose that Assumption 2.1
holds. Then, for each t = 0, 1, 2 . . .,

‖pt(·|x)−mY (·)‖ ≤ r−thx(r), (2.7)

for all r < λ−1 and x ∈ X, where hx(r) = Eνrτ0 , ν = max{Z, x}, and Z is a random
variable with distribution mY , and

hx(r) ≤ Ex[rτ0 ] + b/(1− λ) < ∞, (2.8)

τ0 = inf{t > 0 : yt = 0}, and b and λ are the constants in Assumption 2.1.

Remark 2.5. a) In Section 7 an example that satisfies the assumptions of Lemma
2.1, is presented.

b) Notice that from (2.7) and (2.8), for each x ∈ X,
∥∥pt(·|x)−mY (·)

∥∥ → 0, t →∞.

3. AVERAGE MARKOV DECISION PROCESSES

In this section a special kind of MDPs, is shown; i. e. MDPs satisfying the condition
that both the state of space and the action space are subsets of R, are dealt with.

Specifically, let P = (X, A, {A(x) : x ∈ X}, q, c) be a standard Markov control
model (see, [7]) which consists of the state space X, the action space A. Both X and
A are assumed to be measurable subsets of R endowed with the usual metric, and
in fact, it is supposed that X = [0,∞) (see Remark 2.1). The sets A(x), x ∈ X are
nonempty measurable subsets of A, and represent the constrained action sets. Let
K = {(x, a) : x ∈ X, a ∈ A(x)}, which is considered to be measurable in the product
X × A. The transition law q is a stochastic kernel of X given K (i. e. q(·|x, a) is a
probability measure on X, for each (x, a) ∈ K, and q(B|·) is a measurable function
on K, for each measurable set B ⊂ X), and the one-step cost c : K → R is a
measurable function.

A policy is defined as a sequence Π = {πt} satisfying that, for each t = 0, 1, 2, . . .,
πt is a stochastic kernel of A given Ht, where Ht denotes the set of all admissible
histories ht = (x0, a0, x1, a1, . . . , xt−1, at−1, xt), with (xi, ai) ∈ K, i = 0, 1, . . . , t− 1,
x ∈ X, and πt concentrated on A(xt).
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Let ∆ be the set of all policies, and let F denote the set of all measurable functions
f : X → A such that f(x) ∈ A(x), for all x ∈ X.

A policy Π = {πt} is called stationary if there exists f ∈ F such that for each
t = 0, 1, . . . , πt is concentrated on f(x) if xt = x. In this case, we identify Π with f ,
and the set of all stationary policies with F.

Remark 3.1. It is well-known (see, [7] and [8]) that a MDP in which a stationary
policy g ∈ F is used to drive the system gives that the sequence of states {xt} is
a homogeneous Markov chain with stationary transition kernel given by p(·|x) :=
q(·|x, g(x)) , x ∈ X. This is the connection with the previous section. On the other
hand, taking in account a stationary policy g ∈ F, the corresponding state process
is denoted by {xg

t }.

Given a policy Π ∈ ∆ and x ∈ X, PΠ
x stays for the probability measure induced

in canonical way by the model P (see, [9] for the construction of PΠ
x ), and EΠ

x stays
for the expectation corresponding to PΠ

x .
Let P = (X,A, {A(x) : x ∈ X}, q, c) be a Markov control model.
The long-run expected average cost (AC) while using a policy Π, given the initial

state x0 = x, is defined as:

J(Π, x) := lim sup
n→∞

Ex

[∑n−1
t=0 c(xt, at)

]

n
. (3.1)

A policy Π∗ ∈ ∆ is AC-optimal if,

J(Π∗, x) = inf
Π∈∆

J(Π, x), x ∈ X, (3.2)

and the optimal AC-function is designated as:

J∗(x) := inf
Π∈∆

J(Π, x), x ∈ X. (3.3)

The following Assumption is supposed to be valid throughout the paper:

Assumption 3.1.

(a) The existence of a stationary policy f̂ which is AC-optimal is assumed.

(b) It is also supposed that for every stationary policy f ∈ F, the average cost
J(f, ·) is a constant J(f) given by

J(f, x) = J(f) =
∫

c(y, f(y))mf (dy), (3.4)

where mf is invariant probability corresponding to the stochastic kernel induced by
f and x ∈ X.
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Remark 3.2.

(a) For sufficient conditions for Assumption 3.1(a), see Assumptions 2.1, 2.2 and
2.3 in [4].

(b) Sufficient conditions for Assumption 3.1(b) are the following: for bounded cost,
see Section (3.3) in [7], and for unbounded cost, see Assumptions 2.1, 2.2 and
2.3 in [4].

4. BOUNDS FOR THE INDEX OF PERTURBATIONS

Let P = (X, A, {A(x) : x ∈ X}, q, c) and P1 = (X, A, {A(x) : x ∈ X}, q1, c) be
two average Markov control models. Both of them satisfy the definitions and the
Assumption 3.1 of the previous section.

Remark 4.1.

(i) Notice that P and P1 defer only in the transition probability, but q is supposed
to be unknown and q1 is an approximation known of q.

(ii) Let F and F1 be the corresponding sets of stationary policies for the models P
and P1, respectively. Observe that F = F1, since P and P1 have the same state
and action spaces.

(iii) Given an initial state x and stationary policies f and g , there exist canonical
spaces (Ω′, F ′, P f

x ) and (Ω′, F ′, P g
x ) to describe, in particular, the processes

{xf
t } and {xg

t }, respectively (see Section 3). Notice that they have the same
measurable space (Ω′, F ′) (see [9]).

Assumption 4.1. There is a stationary policy g for which the following points
hold, considering the Markov chain {xg} (see, Remark 3.1):

(a) The Assumption 2.1, for some constants λ and b with 0 < λ < 1, 0 ≤ b < ∞,
and function L : [0,∞) → [1,∞), it is also supposed that the function L is
increasing;

(b) Let x ∈ X. If xf
0 = xg

0 = x, then xf
t (ω) ≤ xg

t (ω), for all f ∈ F, ω ∈ Ω′ and
t = 1, 2, . . .. (Here Ω′ is the set defined in the canonical space – see Remark
4.1(iii).)

Moreover, we assume:

(c) There exists a constant s ≥ 1 such that

sup
a∈A(x)

|c(x, a)| ≤ [L(x)]
1
s , x ∈ X. (4.1)

Assumption 4.2. For the model P1 there exists a stationary policy g1 such that
Assumption 4.1 holds for the transition kernel q1 with the same λ, b, s and L.
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Remark 4.2.

(a) Notice that as L is increasing, then for both models P and P1 it can be applied
that ∫

L(y)q(dy|x, f(x)) ≤ λL(x) + bI{0}(x), (4.2)

and ∫
L(y)q1(dy|x, f1(x)) ≤ λL(x) + bI{0}(x), (4.3)

where λ, b are the constants in Assumptions 4.1 and 4.2, f, f1 ∈ F, and x ∈ X.

(b) Under Assumption 3.1(a) there exist f∗ and f∗1 stationary average optimal
policies for P and P1, respectively.

Remember that the Index of Perturbations has already been defined as:

∆̂(x) := J(f∗1 , x)− J(f∗, x), x ∈ X. (4.4)

Notice that ∆̂(x) ≥ 0, for all x ∈ X.

Theorem 4.1. Consider the models P and P1. Suppose that Assumption 3.1 holds
for both of these models, and let f∗, f∗1 ∈ F be average optimal policies for P and
P1, respectively. Also, suppose that Assumption 4.1 and 4.2 hold. Then

∆̂(x) ≤ 2
(

2b

1− λ
+ 2rhx(r) + 1

)
δ

s−1
s max

{
1, logρ δ

}
, (4.5)

where δ = supx∈X supa∈A(x) ‖q1 (·|x, a)− q (·|x, a)‖ and ρ = 1
r .

Remark 4.3. If the models P and P1 are obtained by the recurrent equations

xt+1 = F (xt, at, ξt), (4.6)

and
x̃t+1 = F (x̃t, at, ξ̃t), (4.7)

t = 0, 1, 2, . . ., respectively, it can be proved (see [6]) that

δ
s−1

s max
{
1, logρ δ

} ≤
∥∥∥µξ − µeξ

∥∥∥
s−1

s

, (4.8)

provided that ‖µξ − µeξ‖ ≤ e
−s

s−1 , where µξ and µeξ are the distributions of ξ and ξ̃,
respectively.
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5. TECHNICAL PRELIMINARIES

Lemma 5.1. Under Assumption 4.1, for each f ∈ F, there exists an invariant
(actually the limit, in the sense of the total variation metric – see Remark 2.4)
probability mf corresponding to the kernel q.

P r o o f . Fix f ∈ F and let g be the distinguished policy in Assumption 4.1.
Denote by τf and τg the time of the first return of {xf

t } and {xg
t } to x0 = 0, given

xf
0 = xg

0 = 0, respectively. By Assumption 4.1b), for t = 1, 2, . . ., we get

E[τf ] ≤ E[τg] < ∞.

Therefore, by Corollary 5.3 of [15], {xf
t } is positive Harris-recurrent. The exis-

tence of mf follows. Now from Theorem 4.1 in [12], it is clear that mf is the limit
of {xf

t }, in the sense of the total variation metric. 2

Let ϑ > 0 be a fixed number. Define cϑ(x, a) = c(x, a) if c(x, a) ≤ ϑ and
cϑ(x, a) = 0 if c(x, a) > ϑ.

Lemma 5.2. Under Assumptions 3.1 and 4.1, for every stationary policy f ∈ F,
∣∣∣∣
∫

c(y, f(y))mf (dy)−
∫

cϑ(y, f(y))mf (dy)
∣∣∣∣ ≤

[∫
L(y)mf (dy)

]
ϑ1−s, (5.1)

where mf is the invariant probability corresponding to the stochastic kernel induced
by f ; b and s are the constants in Assumption 4.1, and ϑ > 0.

P r o o f . First, the definition of cϑ, (4.1), and {c(y, f(y) > ϑ } ⊆ {L(y) > ϑs}
yield:

∣∣∣∣
∫

c(y, f(y))mf (dy)−
∫

cϑ(y, f(y))mf (dy)
∣∣∣∣

≤
∫

c(y, f(y))I{c(y,f(y))>ϑ}(y)mf (dy)

≤
∫

[L(y)]
1
s I{L(y)>ϑs}(y)mf (dy). (5.2)

Now, using the Hölder and Chebyshev inequalities, where 1/`= 1−1/s, it follows
that:

∫
[L(y)]

1
s I{L(y)>ϑs}(y)mf (dy) ≤

[∫
[L(y)mf (dy)

] 1
s

[P (L(y) > ϑs)]
1
`

≤
[∫

[L(y)mf (dy)
] 1

s
[∫

[L(y)mf (dy)]
1
` ϑ

−s
`

]

=
∫

[L(y)mf (dy)] ϑ1−s

hence (5.1) is obtained from (5.2). 2
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Remark 5.1. Notice that Lemmas 5.1 and 5.2 also hold under Assumption 4.2 for
P1.

Lemma 5.3. Suppose that Assumptions 3.1, 4.1 and 4.2 hold. Consider for f ∈ F,
the processes {xf

t } and {x̃f
t } which correspond to the models P and P1, respectively.

Then, for each t = 0, 1, . . ., x ∈ X, we get
∥∥∥x̃f

t+1 − xf
t+1

∥∥∥ ≤
∥∥∥x̃f

t − xf
t

∥∥∥ + sup
x∈X

sup
a∈A(x)

‖q1(·|x, a)− q(·|x, a)‖ . (5.3)

P r o o f . Let H = {h ∈ BM : |h| ≤ 1} and applying the Chapman–Kolmogorov
equation we get for x ∈ X:

It+1
.=

∥∥∥x̃f
t+1 − xf

t+1

∥∥∥ = sup
h∈H

∣∣∣∣
∫

h(y)
{
qt+1
1 (dy|x, f(x))− qt+1(dy|x, f(x))

}∣∣∣∣

= sup
h∈H

∣∣∣∣
∫

h(y)
∫

qt
1 (dz|x, f(x)) q1(dy|z, f(z)) (5.4)

−
∫

h(y)
∫

qt(dz|x, f(x)) q(dy|z, f(z))
∣∣∣∣ .

Now, applying Fubini

It+1 = sup
h∈H

∣∣∣∣
∫

qt
1 (dz|x, f(x))

∫
h(y)q1 (dy|z, f(z))

−
∫

qt(dz|x, f(x))
∫

h(y)q (dy|z, f(z))
∣∣∣∣

≤ sup
h∈H

∣∣∣∣
∫

qt
1 (dz|x, f(x))

∫
h(y)q1 (dy|z, f(z))

−
∫

qt(dz|x, f(x))
∫

h(y)q (dy|z, f(z))

+
∫

qt
1 (dz|x, f(x))

∫
h(y)q (dy|z, f(z))

−
∫

qt
1(dz|x, f(x))

∫
h(y)q (dy|z, f(z))

∣∣∣∣

≤ sup
h∈H

∣∣∣∣
∫

qt
1 (dz|x, f(x))

∫
h(y)q1 (dy|z, f(z))

−
∫

qt
1(dz|x, f(x))

∫
h(y)q (dy|z, f(z))

∣∣∣∣

+ sup
h∈H

∣∣∣∣
∫

qt (dz|x, f(x))
∫

h(y)q (dy|z, f(z))

−
∫

qt
1(dz|x, f(x))

∫
h(y)q (dy|z, f(z))

∣∣∣∣
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≤ sup
h∈H

sup
z∈X

∣∣∣∣
∫

h(y)q1 (dy|z, f(z))−
∫

h(y)q (dy|z, f(z))
∣∣∣∣ (5.5)

+ sup
h∈H

∣∣∣∣
∫

qt (dz|x, f(x)) h̃(z)−
∫

qt
1 (dz|x, f(x)) h̃(z)

∣∣∣∣

where h̃(z) =
∫

h(y)q (dz|x, f(z)) ∈ H since,

∣∣∣h̃(z)
∣∣∣ ≤

∫
|h(y)| q (dz|x, f(z)) ≤

∫
q (dy|z, f(x)) = 1.

Then we can observe that the last member on the right side of (5.5) is less than

sup
h̃∈H

∣∣∣∣
∫

qt (dz|x, f(x)) h̃(z)−
∫

qt
1 (dz|x, f(x)) h̃(z)

∣∣∣∣ =
∥∥∥x̃f

t − xf
t

∥∥∥ .

Also interchanging sups in the first right of (5.5) we obtain

sup
h∈H

sup
z∈X

∣∣∣∣
∫

h(y)q1 (dy|z, f(z))−
∫

h(y)q (dy|z, f(z))
∣∣∣∣

= sup
z∈X

‖q1 (·|z, f(z))− q (·|z, f(z))‖

≤ sup
z∈X

sup
a∈A(z)

‖q1 (·|z, a)− q (·|z, a)‖ (5.6)

since f(z) ∈ A(z) for each f ∈ F. Hence combining (5.5) and (5.6) we get (5.3). 2

Lemma 5.4. Let Y = {yt} be a Markov chain with state space [0,∞). Let τ0 =
inf{t > 0 : yt = 0} and denote by Nx(r) = Ex (rτ0), r ∈ R. Assume that Y
is pathwise ordered and that N0(r) < ∞ for some r > 1. Then the function L
defined by L(0) = 1 and L(x) = Nx(r) for x > 0, and the constants λ = r−1 and
b = r−1 (L0 − 1) satisfy (2.6) the equality.

P r o o f . This is Theorem 5.1 in [12]. 2

6. PROOF OF THE THEOREM 1

Let x ∈ X and consider ϑ > 0.
Then

∆̂(x) = |J(f∗1 , x)− J(f∗, x)|
≤ |J(f∗1 , x)− J1(f∗1 , x)|+

∣∣∣∣ inf
f∈F

J1(f)− inf
f∈F

J(f)
∣∣∣∣

≤ 2 sup
f∈F

|J(f)− J1(f)| , (6.1)
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where J1(·) is the average cost for the model P1. Let D = |J(f)− J1(f)|, so

D =
∣∣∣∣
∫

c(y, f(y))m̃f (dy)−
∫

c(y, f(y))mf (dy)
∣∣∣∣

≤ D1 + D2 + D3, (6.2)

where

D1 =
∣∣∣∣
∫

c(y, f(y))m̃f (dy)−
∫

cϑ(y, f(y))m̃f (dy)
∣∣∣∣

D2 =
∣∣∣∣
∫

c(y, f(y))mf (dy)−
∫

cϑ(y, f(y))mf (dy)
∣∣∣∣ ,

and

D3 =
∣∣∣∣
∫

cϑ(y, f(y))m̃f (dy)−
∫

cϑ(y, f(y))mf (dy)
∣∣∣∣ ,

and, mf and m̃f are the invariant measures for {xf
t } and {x̃f

t } respectively.
Observe that from inequality (5.1) it is obtained, for i = 1, 2

Di ≤
[∫

L(y)m̃f (dy)
]

ϑ1−s (6.3)

where s appears in Assumption 4.1c).
In [12] (see also [13]) it has been proved that

∫
L(y)m̃f (dy) ≤ b

1− λ
, (6.4)

where b and λ are the same as in assumption (2.1).
Hence, from (6.3) and (6.4), it is concluded

D1 + D2 ≤ 2
b

1− λ
ϑ1−s. (6.5)

On the other hand, provided that |cϑ(·, ·)| ≤ ϑ and the definition of the total
variation metric, it is obtained that

D3 ≤ ϑ ‖m̃f −mf‖ . (6.6)

Now, an estimation of the right side of (6.6) is going to be giving:
Let xf

∞ and x̃f
∞ be random variables with distribution mf and m̃f , respectively.

Then, for each positive integer n, we have:

‖m̃f −mf‖ =
∥∥x̃f
∞ − xf

∞
∥∥

≤
∥∥x̃f
∞ − x̃f

n

∥∥ +
∥∥x̃f

n − xf
n

∥∥ +
∥∥x̃f
∞ − xf

n

∥∥ . (6.7)
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The first and the last terms in (6.7) are less than r−nhx(r) for each r ≥ λ−1 and
each x ∈ X (see (2.7) in Lemma 2.1). Then we have:

∥∥x̃f
∞ − xf

∞
∥∥ ≤ 2r−nhx(r) + max

0≤t≤n

∥∥∥x̃f
t − xf

t

∥∥∥ . (6.8)

Applying inductively Lemma 5.3, it can be shown that

max
0≤t≤n

∥∥x̃f
∞ − xf

∞
∥∥ ≤ n sup

x∈X
sup

a∈A(x)

‖p1 (·|x, a)− p (·|x, a)‖ . (6.9)

Hence, if δ = supx∈X supa∈A(x) ‖p1 (·|x, a)− p (·|x, a)‖ results in (6.8):
∥∥x̃f
∞ − xf

∞
∥∥ ≤ 2r−nhx(r) + nδ. (6.10)

Taking n = max
{
1,

[
logρ δ

]}
, where [z] means the greatest integer ≤ z, ρ = 1

r

and ϑ = δ
−1
s in (6.10) we get

D3 ≤ δ−
1
s (2ρhx(r)δ) + max

{
1, logρ δ

}
δ

≤ (
2ρ−1hx(r) + 1

)
δ

s−1
s max

{
1, logρ δ

}
. (6.11)

Notice that the right side of (6.11) is independent of f ∈ F.
Now combining (6.1), (6.2), (6.5) and (6.11) it is gotten:

∆̂(x) ≤ 2
(

2
b

1− λ
+ 2rhx(r) + 1

)
δ

s−1
s max

{
1, logρ δ

}
.

7. AN EXAMPLE

The following example has been studied in [4] in order to show the existence of
AC-optimal policies and the convergence of the value iteration method. Here as-
sumptions on the example which allow to illustrate the main results in this paper
are provided, and conclusions about the average criterion are obtained.

Let X = [0,∞) and A(x) = A, for all x ∈ X, where A is a compact subset of the
interval (0, Θ] (with Θ ∈ A). Define the models:

xt+1 = (xt + atηt − εt)
+

, (7.1)

and
x̃t+1 = (x̃t + atη̃t − ε̃t)

+
, (7.2)

where t = 0, 1, 2, . . ., x0 = x̃0 ∈ X is given, z+ = max{0, z}, and {ηt} , {η̃t} , {εt}
and {ε̃t} are sequences of independent and identically distributed random variables
that satisfy the following assumptions:

Let η, η̃, ε and ε̃ be generic random variables distributed as η0, η̃0, ε0 and ε̃0,
respectively.

Let g and g1 ∈ F be defined as:

g(x) = Θ, for all x ∈ X, (7.3a)

and
g1(x) = Θ, for all x ∈ X. (7.3b)
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Assumption 7.1.

a) Let η, η̃, ε and ε̃ have continuous and bounded densities, concentrated on
[0,∞);

b) For each t = 0, 1, 2, . . . ηt is independent of εt and η̃t is independent of ε̃t;

Let ξ := Θη − ε and ξ̃ := Θη̃ − ε̃. Also, let φ(r) := E(rξ) and φ̃(r) := E(reξ) ,
r ∈ R.

c) E (ξ) < 0 and E
(
ξ̃
)

< 0;

d) It is supposed that there exist r0 > 1 and r̃0 > 1 such that:

φ(r0) < ∞, φ̃(r0) < ∞ and φ′(r0) = φ̃′(r0) = 0.

e) The function c satisfies Assumption 4.1c) with

L(x) = max
{

Ex (rτ0) , Ex

(
reτ0

)}
, x > 0, and (7.4)

L(x) = 1, x = 0, (7.5)

where τ0 = min {t > 0 : xg
t = 0}, τ̃0 = min {t > 0 : x̃g1

t = 0} and r will be defined
later (see (7.8) below).

It will be seen that this example satisfies the hypotheses of Theorem 4.1. First,
in [4] it has been proved that Assumptions 7.1a), 7.1b) and 7.1c) imply that the
processes (7.1) and (7.2) satisfy the Assumption 3.1.

It is known that the random walks that are obtained when substituting the poli-
cies defined in (7.3a) and (7.3b) in the models in (7.1) and (7.2) i. e.

xt+1 = (xt + Θηt − ξt)
+

, (7.6)

and
x̃t+1 =

(
x̃t + Θη̃t − ξ̃t

)+

, (7.7)

are ordered Markov chains (see [12]).
Also, for every policy f ∈ F it can be gotten that:

xt+1 = (xt + f(xt)ηt − ξt)
+ ≤ (xt + Θηt − ξt)

+
,

and
x̃t+1 =

(
x̃t + f(xt)η̃t − ξ̃t

)+

≤
(
x̃t + Θη̃t − ξ̃t

)+

.

hence Assumption 4.1b) and 4.2 hold.
Taking in consideration Assumptions 7.1a), 7.1b) and 7.c), it can be concluded

that (7.6) and (7.7) are irreducible and recurrent (see [15]) so Assumptions 2.1a),
2.1b) and 2.1 c) hold for (7.6) and (7.7).

Now using Assumption 7.1d) it is obtained that

E0 (rτ0) < ∞ for 1 < r < φ−1(r0)
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and
E0

(
reτ0

)
< ∞ for 1 < r < φ−1(r̃0),

(see [11]).
Then taking M̃ = min

{
φ−1 (r0) , φ−1(r̃0)

}
, we have that E0 (rτ0) < ∞ and

E0

(
reτ0

)
< ∞ for some r such that

1 < r < M̃. (7.8)

Then (7.6) and (7.7) satisfy Assumption 2.1d) with

v (x) = E0 (rτ0) , x > 0 and
v (x) = 1, x = 0,

and λ = r−1, b1 = r−1 [E0 (rτ0)− 1] for (7.6), and

ṽ (x) = E0

(
reτ0

)
, x > 0 and

ṽ (x) = 1, x = 0,

and λ = r−1, b = r−1
[
E0

(
reτ0

)− 1
]
, for (7.7) (see Lemma 5.4). Then the function

L defined in Assumption 7.1e) with r defined in (7.8) satisfies Assumption 4.1a) and
4.2a).

Assumptions 4.1c) and 4.2c) are part of Assumption 7.1e). Then the Theorem
4.1 and the Remark 4.3 can be applied to obtain the following bound for the Index
of Perturbations for x ∈ X:

∆̂(x) ≤ 2
(

2
b

1− λ
+ 2rhx(r) + 1

) ∥∥∥µξ − µeξ

∥∥∥
s−1

s

,

provided that
∥∥∥µξ − µeξ

∥∥∥ ≤ e
−s

s−1 .

Remember that λ = r−1, b = max{r−1[E0(rτ0)− 1], r−1[E0(reτ0)− 1]}, and hx(r) ≤
Ex (rτ0) + b

1−λ . Observe that even hx can be estimated for some distribution of ξ.

(Received April 22, 2004.)
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