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AN ASYMPTOTIC STATE OBSERVER
FOR A CLASS OF NONLINEAR DELAY SYSTEMS

Alfredo Germani, Costanzo Manes and Pierdomenico Pepe

The problem of state reconstruction from input and output measurements for nonlinear
time delay systems is studied in this paper and a state observer is proposed that is easy
to implement and, under suitable assumptions on the system and on the input function,
gives exponential observation error decay. The proposed observer is itself a delay system
and can be classified as an identity observer, in that it is such that if at a given time
instant the system and observer states coincide, on a suitable Hilbert space, the observation
error remains zero in all following time instants. The computation of the observer gain is
straightforward. Computer simulations are reported that show the good performance of
the observer.

1. INTRODUCTION

As well-known the state space of time delay systems has infinite dimension. This
fact leads to difficulties not only in the system analysis and in the synthesis of
controllers and/or observers, but also on their physical implementation. In the case
of linear delay systems the control problem and the state observation problem, both
in deterministic and stochastic settings, have been extensively studied in the past
[1, 2, 6, 7, 15, 16, 18, 21, 22, 23, 24, 25, 26] and are still under investigation. In the
case of nonlinear delay systems in recent years some papers on the approximation
of dynamics and on control problems have appeared [8, 13, 19, 20, 23]. Difficulties
arise in dealing with such systems due to the fact that the state space has infinite
dimension and moreover the differential description is nonlinear.

In [8] a formalism has been introduced to overcome these difficulties for an in-
teresting class of nonlinear delay systems. A feedback law for output control has
been proposed there, that requires the knowledge of all system variables. Prelimi-
nary results on the problem of state reconstruction for nonlinear delay systems has
been presented in [10, 11]. In [14] the problem of state reconstruction for nonlinear
output-delay systems is considered.

In this paper a state observer for nonlinear delay systems is proposed and condi-
tions for exponential observation error decay are given. As in [8], some concepts of
standard nonlinear analysis [17] are extended to the case of delay systems and used
to work out the observer equations and to prove convergence, following the same ap-
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proach used in [3, 4, 12, 14]. The observer-gain computation is very straightforward
and the implementation is easy. Although only single-input single-output systems
are considered here, for simplicity, the same construction can be used to develop
observers for multi-input multi-output systems.

The paper is organized as follows. Section 2 reports the necessary notations,
definitions and preliminary results. In Section 3 the state observation problem is
formulated, an observer is proposed and theoretical results are shown. An exam-
ple of application is worked out and simulation results are reported in Section 4.
Conclusions follow.

2. PRELIMINARIES

In this section some notations and definitions necessary for the analysis of the state
observation problem and for the synthesis of the observer are presented in short.
The formalism used has been introduced in [8].

The system under investigation is described by the following equation

ẋ(t) = f(x(t), x(t−∆)) + g(x(t), x(t−∆))u(t), (1)
y(t) = h(x(t)), t ≥ 0, (2)

where ∆ ≥ 0, x(t) ∈ IRn, u(t) ∈ IR and y(t) ∈ IR, the vector functions f and g
are C∞ with respect to both arguments, and h is a C∞ scalar function. The model
description is completed by the initial state in the space of C1 functions in [−∆, 0]:

x(τ) = ϑ(τ), τ ∈ [−∆, 0], ϑ ∈ C1
(
[−∆, 0], IRn

)
. (3)

Throughout the paper, for a given function q(t) ∈ IRm, the symbol qi∆(t), with
i nonnegative integer, will denote its translation by −i∆, i. e. qi∆(t) = q(t − i∆).
Some care must be put on the interval on which the translated function is defined.
For instance, being x(t) defined for t ≥ −∆, the delayed function xi∆(t) is defined
for t ≥ (i− 1)∆, while ui∆(t) is defined for t ≥ i∆, being u(t) defined for t ≥ 0.

Also the following notation is needed in the paper: consider vectors χi ∈ IRn and
scalars vi, with i integer. The symbols Xi,j and Vi,j , with i ≤ j, will denote the
composed vectors

Xi,j =




χi

χi+1

...
χj


 ∈ IR

(j−i+1)n, Vi,j =




vi

vi+1

...
vj


 ∈ IR

j−i+1. (4)

Here follows the definition of observation delay relative degree for nonlinear delay
systems, a weaker version of the concept of delay relative degree introduced in [8].

Definition 2.1. System (1), (2) is said to have observation delay relative degree
r in an open set Ωr ∈ IRn(r+1) if the following conditions are verified

∀X0,r ∈ Ωr, LGL
k
FH(X0,r) = 0, k = 0, 1, . . . , r − 2,

∃X0,r ∈ Ωr : LGL
r−1
F H(X0,r) 6= 0,

(5)
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where

F (X0,r) =




f
(
χ0, χ1

)
f
(
χ1, χ2

)
...

f
(
χr−1, χr

)


 , G(X0,r) = diagr−1

i=0

{
g
(
χi, χi+1

)}
,

H(X0,r) = h(χ0),

(6)

L0
FH(X0,r) = H(X0,r),

Lk
FH(X0,r) =

(
d

dX0,r−1
Lk−1

F H
)
F (X0,r), k ≤ r

LGL
k
FH(X0,r) =

(
d

dX0,r−1
Lk

FH
)
G(X0,r), k ≤ r − 1.

(7)

If Ωr = IRn(r+1), the system is said to have uniform observation delay relative degree
equal to r.

Remark 2.2. Note that the term Lk
FH(X0,r), k ≤ r, is actually a function of X0,k,

and the term LGL
k
FH(X0,r), k ≤ r − 1, is a function of X0,k+1.

Remark 2.3. The computation of the observation delay relative degree of a non-
linear delay system is made applying Definition 2.1 to integers r = 1, 2, . . . , until
the conditions (5) are verified.

At this point it is useful the definition of the stack operator.

Definition 2.4. Consider a function q(t) ∈ IRm, defined for t ∈ [t1, t2] ⊆ IR. The
symbol Stacki,j(q), with i, j such that 0 ≤ j− i ≤ (t2− t1)/∆, denotes the following
function, defined for t ∈ [t1 + j∆, t2 + i∆],

Stacki,j

(
q
)
(t) =




qi∆(t)
q(i+1)∆(t)

...
qj∆(t)


 ∈ IR

(j−i+1)m. (8)

Using the stack operator, the following vector functions can be defined:

Xi,j(t) = Stacki,j(x)(t), Ui,j(t) = Stacki,j(u)(t) (9)

Using the previous definitions, the following differential equation can be derived,
that holds for t ≥ (r − 1)∆,

Ẋ0,r−1(t) = F (X0,r(t)) +G(X0,r(t))U0,r−1(t),

y(t) = H(X0,r(t)),
(10)
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and the following map can be defined

z = Φ(X0,r−1) =




H(X0,0)
LFH(X0,1)

...
Lr−1

F H(X0,r−1)


 . (11)

For systems having observation delay relative degree r in Ωr it is

y(k)(t) = Lk
FH

(
X0,k(t)

)
, k = 0, 1, . . . r − 1

y(r)(t) = Lr
FH

(
X0,r(t)

)
+ LGL

r−1
F H

(
X0,r(t)

)
U0,r−1(t),

(12)

and therefore substitution of X0,r−1(t) in the map Φ(·) provides the output deriva-
tives up to order (r − 1)

z(t) = Φ
(
X0,r−1(t)

)
=




y(t)
ẏ(t)

...
y(r−1)(t)


 . (13)

Note that, being x(t) defined for t ≥ −∆, it follows that X0,r−1(t) and z(t) are well
defined for t ≥ (r − 2)∆.

In the next section an observer for nonlinear delay systems is presented and
exponential state observation is proved under suitable assumptions.

Among the assumptions, in the case in which the input u(t) is not identically
zero, the following is needed:

Hp0) system (1), (2) has uniform observation delay relative degree equal to n (the
dimension of vector x(t)).

Note that under assumption Hp0 the vector z(t) ∈ IRn is defined for t ≥ (n−2)∆.
Defining the Brunovsky triple

Ab =
[
0(n−1)×1 In−1

0 01×(n−1)

]
, Bb =

[
0(n−1)×1

1

]
,

Cb =
[

1 01×(n−1)

]
,

(14)

it can be verified that, thanks to (10), it is

dΦ(X0,n−1)
dX0,n−1

F (X0,n) = AbΦ(X0,n−1) +BbL
n
FH(X0,n),

dΦ(X0,n−1)
dX0,n−1

G(X0,n) = BbLGL
n−1
F (X0,n),

H(X0,n) = CbΦ(X0,n−1).

(15)



An Asymptotic State Observer for a Class of Nonlinear Delay Systems 463

From these, the following equation can be derived for the dynamics of the variable
z(t) defined in (13)

ż(t) = Abz(t) +Bb

(
Ln

FH
(
X0,n(t)

)
+ LGL

n−1
F H

(
X0,n(t)

)
U0,n−1(t)

)
,

y(t) = Cbz(t), t ≥ (n− 1)∆.
(16)

The pair Ab, Cb is observable, and it is an easy matter to assign eigenvalues to the
matrix Ab −KCb, that has the companion structure

Ab −KCb =




−k1 1 · · · 0
...

...
. . .

...
−kn−1 0 · · · 1
−kn 0 · · · 0


 . (17)

Let K(λ) denote the gain vector that assigns eigenvalues λ = (λ1, . . . , λn) to matrix
Ab −K(λ)Cb (the gain K(λ) contains the coefficients of the monic polynomial that
has the λj ’s as roots). If eigenvalues λj ’s are distinct, the matrix Ab − K(λ)Cb is
diagonalized by the Vandermonde matrix

V (λ) =



λn−1

1 · · · λ1 1
...

...
...
...

...
...

λn−1
n · · · λn 1


 , (18)

so that
V (λ)

(
Ab −K(λ)Cb

)
V (λ)−1 = diag{λ} = Λ. (19)

Lemma 2.5. For any positive a, b, there exists λ ∈ IRn that satisfies λn < · · · <
λ1 < 0, such that

b‖V −1(λ)‖+ λ1 = −a. (20)

P r o o f . In [3] it is shown that if the n reals λj are chosen as functions of a
parameter ρ > 0 as follows: λj(ρ) = −ρj , for j = 1, . . . , n, then

lim
ρ→+∞

‖V −1(λ(ρ))‖ = 1, lim
ρ→0+

‖V −1(λ(ρ))‖ = +∞. (21)

It follows that the function σ(ρ) defined for ρ ∈ (0,+∞) as

σ(ρ) = b‖V −1(λ(ρ))‖ − ρ, (22)

is a continuous function such that

lim
ρ→0+

σ(ρ) = +∞, lim
ρ→+∞

σ(ρ) = −∞. (23)

This implies that there exists at least one solution ρ̄ for the equation σ(ρ) = −a.
Moreover, ρ̄ is such that the vector λ(ρ̄) solves equation (20). 2

The following three lemmas are required in the proof of convergence of the pro-
posed observer.
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Lemma 2.6. Let c0, c1, c2 and β be positive constants, and let s(t) be a non
negative function, defined for t ∈ [t0−n∆,∞), that for t ≥ t0 satisfies the following
inequality

s(t) ≤ c0e
−β(t−t0) + c1

∫ t

t0

e−β(t−τ)
n∑

i=1

s(τ − i∆)dτ + c2

n−1∑

i=1

s(t− i∆). (24)

Let s0(t) be a function such that:

s0(θ) ≥ s(θ), θ ∈ [t0 − n∆, t0], (25)

and for t ≥ t0

s0(t) = c0e
−β(t−t0) + c1

∫ t

t0

e−β(t−τ)
n∑

i=1

s0(τ − i∆)dτ + c2

n−1∑

i=1

s0(t− i∆). (26)

Then
s0(t) ≥ s(t), t ∈ [t0 − n∆,∞). (27)

P r o o f . Consider the function δ(t) = s0(t) − s(t). By assumption it is δ(t) ≥ 0
in [t0 − n∆, t0]. The theorem is proven by induction, by showing that if for a given
non negative integer i it is δ(t) ≥ 0 in [t0 − n∆, t0 + i∆], then it follows that δ ≥ 0
in [t0 − n∆, t0 + (i+ 1)∆]. This result is obtained by writing the inequality

δ(t) ≥ c1

∫ t

t0

e−β(t−τ)
n∑

i=1

δ(τ − i∆)dτ + c2

n−1∑

i=1

δ(t− i∆), (28)

that is obtained subtracting from both sides of equation (26) both sides of inequality
(24). Being positive the constants c1 and c2, and being positive δ(t) for t ∈ [t0 −
n∆, t0 + i∆] by assumption, from (2.28) it follows that δ(t) is positive also for
t ∈ (t0 + i∆, t0 + (i + 1)∆], and therefore in [t0 − n∆, t0 + (i + 1)∆]. By finite
induction it follows that for all t ∈ [t0 − n∆,∞) it is δ(t) ≥ 0, that is the thesis. 2

Lemma 2.7. Let c0, c1, c2 and β be positive constants. If

c1
β

+ c2(n− 1) < 1, (29)

then equation (26) admits the solution

s0(t) = s̄0e
−α(t−t0), s̄0 > 0, α > 0, t ∈ [t0 − n∆,+∞) (30)

where the coefficient α is the unique solution in [0, β) of equation

c1
β − α

n∑

i=1

(eα∆)i + c2

n−1∑

i=1

(eα∆)i = 1, (31)
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and s̄0 is given by
s̄0 =

c0

1− c2
n−1∑
i=1

(eα∆)i

. (32)

P r o o f . First of all note that the function σ : [0, β) 7→ [0,∞), defined as

σ(α) =
c1

β − α

n∑

i=1

(eα∆)i + c2

n−1∑

i=1

(eα∆)i, (33)

is a continuous, monotonically increasing function such that

σ(0) =
c1
β

+ c2(n− 1) < 1, lim
α→β−

σ(α) = +∞. (34)

It follows that one and only one solution to equation σ(α) = 1 exists in (0, β).
Now, by direct substitution, it can be readily verified that the expression (30) is a
solution of equation (26) with α solution of (31) and s̄0 given by (32). Note that
the denominator of (32) is positive because it is

1− c2

n−1∑

i=1

(eα∆)i =
c1

β − α

n∑

i=1

(eα∆)i, (35)

where c1 > 0 and β > α. 2

Lemma 2.8. Let c0, c1, c2, β and sM be positive constants, and let s(t) be a non
negative function defined for t ∈ [t0 − n∆,∞), such that for t ∈ [t0 − n∆, t0] it is
s(t) ≤ sM and for t ≥ t0 it satisfies inequality (24).

Then, if
c1
β

+ c2(n− 1) < 1, (36)

the following inequality holds

s(t) ≤ s̄0e
−α(t−t0), t ≥ t0 − n∆, (37)

where α is the unique solution of eq. (31) in [0, β) and s̄0 is given by

s̄0 = max





c0

1− c2
n−1∑
i=1

(eα∆)i

, sM




. (38)

P r o o f . Lemma 2.7 ensures that the solution of (31) in [0, β) exists unique, and

that 1− c2
n−1∑
i=1

(eα∆)i is finite and positive, so that s̄0 is well defined. Define now

s0(t) = s̄0e
−α(t−t0) (39)
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and

c̄0 = s̄0

(
1− c2

n−1∑

i=1

(eα∆)i
)
. (40)

From (38) it is c̄0 ≥ c0. Moreover it is s0(t) ≥ s(t), for t ∈ [t0 − n∆, t0] and for
t ≥ t0

s0(t) = c̄0e
−β(t−t0) + c1

∫ t

t0

e−β(t−τ)
n∑

i=1

s0(τ − i∆)dτ + c2

n−1∑

i=1

s0(t− i∆), (41)

as it can be checked by direct substitution. Note that, being c̄0 ≥ c0, in [t0−n∆, t0]
it is also

s(t) ≤ c̄0e
−β(t−t0) + c1

∫ t

t0

e−β(t−τ)
n∑

i=1

s(τ − i∆)dτ + c2

n−1∑

i=1

s(t− i∆), (42)

and therefore the assumptions of Lemma 2.6 are satisfied, so that s(t) ≤ s0(t), for
all t ∈ [t0 − n∆,∞). This proves the theorem. 2

Let ϑ be a function in C1
(
[−∆, 0], IRn

)
. In the following the symbol x(t;ϑ) will

denote the state trajectory of the nonlinear delay system (1), (2) when the initial
state is ϑ (note that for τ ∈ [−∆, 0] it is x(τ ;ϑ) = ϑ(τ)). In the same way z(t;ϑ)
will denote the vector of output derivatives defined in (2.13) (with r = n) when the
initial state is ϑ.

Definition 2.9. A system of the form (1), (2) is said to be globally delay drift-
detectable if for u(t) ≡ 0, and for any pair of initial states ϑ, ϑ̄ ∈ C1

(
[−∆, 0], IRn

)
,

the inequality
‖z(t;ϑ)− z(t, ϑ̄)‖ ≤ νe−β(t−t0), t ≥ t0, (43)

where t0, ν and β are positive real, implies the inequality

‖x(t;ϑ)− x(t, ϑ̄)‖ ≤ µe−α(t−t0), t ≥ t0, (44)

for suitable positive µ and α.

Remark 2.10. It can be shown that this definition, when applied to linear delay
systems, implies the definition of (−α)-observability given in [18], where inequality
(43) is substituted by equality ‖z(t;ϑ)− z(t, ϑ̄)‖ = 0, t ≥ t0.

Throughout the paper it will be referred to the map z = Φ(X0,n−1) as the ob-
servability map of system (1) – (1), because suitable assumptions on this map imply
delay drift-detectability of the system and allow the construction of an observer.

The observability map can be seen as a square map from χ0 to z, in which the
sub-vector X1,n−1 ∈ IRn(n−1) is considered as a vector of parameters. To stress this
point of view, in the following the map Φ will be rewritten as follows

z = Φ(χ0,X1,n−1). (45)
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Definition 2.11. The observability map associated to a system (1), (2) is said
to be globally partially invertible if, for any X1,n−1 ∈ IRn(n−1), the map (45) is a
diffeomorphism in IRn.

The inverse of the map (45) can be denoted as

χ0 = Φ−1(z,X1,n−1). (46)

Substituting the trajectories z(t) and X1,n−1(t) in the inverse map one has

x(t) = Φ−1
(
z(t), X1,n−1(t)

)
, t ≥ (n− 2)∆. (47)

The expression (47) can be substituted in the nonlinear perturbation term in
expression (16) of system (1), (2), yielding

ż(t) = Abz(t) +BbL̃
(
z(t), X1,n(t), U0,n−1(t)

)
,

y(t) = Cbz(t), t ≥ (n− 1)∆,
(48)

in which the function L̃(·, ·, ·) is defined as

L̃(z,X1,n,V0,n−1) = Ln
FH

(
Φ−1(z,X1,n−1),X1,n−1

)

+LGL
n−1
F H

(
Φ−1(z,X1,n−1),X1,n−1

)V0,n−1.
(49)

The differential equation (48) can be used for the description of system (1), (2)
completing it with (47) and by writing the following updating equation for X1,n(t)
for t ≥ (n− 1)∆

X1,n(t) = Stack1,n(x)(t) = Stack1,n

(
Φ−1(z,X1,n−1)

)
(t). (50)

For a correct initialization of system (48) at the initial time t0 = (n − 1)∆
the vector X1,n−1(t) in the interval [(n − 2)∆, (n − 1)∆] is needed. Since it is
X1,n−1(t) = Stack1,n−1(x)(t), the knowledge of x(t) in [−∆, (n− 1)∆] is required.

An assumption that will be needed later in the paper is the following:

Hp1) The observability map of system (1), (2) is such that there exist positive γ̃0

and γ̃1 such that

‖Φ(χ0,X1,n−1)− Φ(χ̂0, X̂1,n−1)‖+ γ̃1‖X1,n−1 − X̂1,n−1‖ ≥ γ̃0‖χ0 − χ̂0‖,

with
γ̃1

γ̃0
(n− 1) < 1.

(51)

The following theorem can be given.
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Theorem 2.12. If the observability map of system (1), (2) is globally partially
invertible and if assumption Hp1 holds, then the system is globally drift-detectable.

P r o o f . Inequality (51) of assumption Hp1 can be rewritten as

‖χ0 − χ̂0‖ ≤ 1
γ̃0
‖Φ(χ0,X1,n−1)− Φ(χ̂0, X̂1,n−1)‖

+ γ̃1
γ̃0

n−1∑
i=1

‖χi − χ̂i‖.
(52)

From (47), for any pair ϑ, ϑ̄ ∈ C1
(
[−∆, 0], IRn

)
it is, for t ≥ (n− 2)∆,

z(t;ϑ) = Φ
(
x(t;ϑ), X1,n−1(t;ϑ)

)
,

z(t; ϑ̄) = Φ
(
x(t; ϑ̄), X1,n−1(t; ϑ̄)

)
.

(53)

With substitutions χ0 = x(t;ϑ), χ̂0 = x(t; ϑ̄), X1,n−1 = X1,n−1(t;ϑ), X̂1,n−1 =
X1,n−1(t; ϑ̄), inequality (52) becomes

‖x(t;ϑ)− x̂(t, ϑ̄)‖ ≤ γ0‖z(t;ϑ)− z(t; ϑ̄)‖+ γ1

n−1∑

i=1

‖xi∆(t;ϑ)− x̂i∆(t; ϑ̄)‖, (54)

where γ0 = 1/γ̃0 and γ1 = γ̃1/γ̃0.
Let s(t) = ‖x(t;ϑ)− x̂(t, ϑ̄)‖. If there exist positive ν and β such that inequality

(43) holds, (t0 necessarily must be greater than (n − 2)∆), then from (54) the
following is derived

s(t) ≤ γ0νe
−β(t−t0) + γ1

n−1∑

i=1

s(t− i∆). (55)

Since, by assumption Hp1, it is γ1(n − 1) < 1, then a constant c1 can be chosen
small enough to satisfy

c1
β

+ γ1(n− 1) < 1. (56)

From (55) it is also

s(t) ≤ γ0νe
−β(t−t0) + c1

∫ t

t0

eβ(t−τ)γ1

n∑

i=1

s(t− i∆) + γ1

n−1∑

i=1

s(t− i∆), (57)

being positive the integral term. From Lemma 2.8, there exist positive µ and α such
that s(t) ≤ µe−α(t−t0), t ≥ t0. Recalling the definition of s(t), this inequality is
precisely inequality (44), so that drift-detectability is proved. 2
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3. AN OBSERVER FOR NONLINEAR DELAY SYSTEMS

From Definition 2.11 the matrix function

Q0

(X0,n−1

)
=
∂Φ(χ0,X1,n−1)

∂χ0
(58)

associated to a globally partially invertible observability map is nonsingular for all
X0,n−1 ∈ IRn2

. Moreover it is such that

∂Φ−1(z,X1,n−1)
∂z

∣∣∣
z=Φ(X0,n−1)

= Q−1
0

(X0,n−1

)
. (59)

Also the following matrices can be defined

Qi

(X0,n−1

)
=
∂Φ(X0,n−1)

∂χi
, i = 1, . . . , n− 1. (60)

In many cases it will be preferred to split the argument of Qi and of Q−1
0 , writing

Qi(χ0,X1,n−1) and Q−1
0 (χ0,X1,n−1).

The proposed observer for nonlinear delay systems that are globally delay drift-
detectable is the following:

˙̂x(t) = f(x̂(t), x̂∆(t)) + g(x̂(t), x̂∆(t))u(t) + w(t), t ≥ 0

w(t) = Q−1
0 (x̂(t), X̂1,n−1(t))

(
K

(
y(t)−h(x̂(t)))−

n−1∑
i=1

Qi

(
x̂(t), X̂1,n−1(t)

)
wi∆(t)

)

(61)
with initial conditions

x̂(τ) = ξ(τ), ξ ∈ C1([−n∆, 0]; IRn),

w(τ) = ξ̇(τ)− f(ξ(τ), ξ(τ −∆))− g(ξ(τ), ξ(τ −∆))ũ(τ),

X̂1,n−1(t) = Stack1,n−1(ξ)(t), t ∈ [−∆, 0],

(62)

in which ũ(τ) in [−(n − 1)∆, 0] is any bounded extension of the function u(t) for
negative times.

The gain vector K ∈ IRn is chosen such to assign the eigenvalues to the ma-
trix Ab −KCb. The function ξ that initializes the observer represents the a priori
knowledge on the system state.

Lemma 3.1. Let system (1), (2) have observation delay relative degree equal to n,
and let the observability map be globally partially invertible. Then, for t ≥ 0, the
observed state x̂(t) provided by the observer (61) can be obtained as follows

x̂(t) = Φ−1
(
ẑ(t), X̂1,n−1(t)

)
, (63)

where

˙̂z(t) = Abẑ(t) +Bb

(
Ln

FH
(
X̂0,n(t)

)
+ LGL

n−1
F H

(
X̂0,n(t)

)
U0,n−1(t)

)

+K
(
y(t)− Cbẑ(t)

)

ẑ(0) = Φ(X̂0,n−1(0)
)
,

(64)
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and the initial values are chosen as in (62).

P r o o f . It is sufficient to verify that differentiation of (63) and substitution of
(64) gives back the observer equation (61). In this proof the input u(t) is extended
in the interval [−(n−1)∆, 0] by the function ũ(t) used for the observer initialization
in (62), so that U0,n−1(t) is defined for t ≥ 0.

Consider the map (13) in the form

ẑ(t) = Φ
(
x̂(t), X̂1,n−1(t)

)
= Φ

(
x̂(t), x̂∆(t), . . . , x̂(n−1)∆(t)

)
. (65)

Differentiation of (63), recalling definitions (58) – (60) gives

˙̂x(t) = Q−1
0

(
X̂0,n−1(t)

)
(

˙̂z(t)−
n−1∑

i=1

Qi

(
X̂0,n−1(t)

) ˙̂xi∆(t)

)
. (66)

By (64), recalling also the definition (58), it is

˙̂x(t) = Q−1
0

(
X̂0,n−1(t)

)(
AbΦ

(
X̂0,n−1(t)

)
+Bb

(
Ln

FH
(
X̂0,n(t)

)

+LGL
n−1
F H

(
X̂0,n(t)

)
U0,n−1(t)

)
+K

(
y(t)− h(x̂(t))

))

−Q−1
0

(
X̂0,n−1(t)

) n−1∑
i=1

Qi

(
X̂0,n−1

) ˙̂xi∆(t).

(67)

Note that it is

dΦ
(
X0,n−1

)
dX0,n−1

F (X0,n) =
n−1∑
i=0

Qi

(X0,n−1

)
f(χi, χi+1),

dΦ
(
X0,n−1

)
dX0,n−1

G(X0,n)V0,n−1 =
n−1∑
i=0

Qi

(X0,n−1

)
g(χi, χi+1)vi.

(68)

From these and from the first two equations of (15), with the substitution X0,n−1 =
X̂0,n−1(t) and V0,n−1 = U0,n−1(t), it follows that for t ≥ 0

AbΦ(X̂0,n−1) +BbL
n
FH(X̂0,n) =

n−1∑

i=0

Qi

(
X̂0,n−1

)
f(x̂i∆, x̂(i+1)∆), (69)

and

BbLGL
n−1
F H(X̂0,n)U0,n−1 =

n−1∑

i=0

Qi

(
X̂0,n−1

)
g(x̂i∆, x̂(i+1)∆)ui∆. (70)

Substitution of these in (67) gives the following differential equation for t ≥ 0

˙̂x = f(x̂, x̂∆) + g(x̂, x̂∆)u+Q−1
0

(
X̂0,n−1

)
K (y − h(x̂))

−Q−1
0

(
X̂0,n−1

) n−1∑
i=1

Qi

(
X̂0,n−1

) (
˙̂xi∆ − f(x̂i∆, x̂(i+1)∆)− g(x̂i∆, x̂(i+1)∆)ui∆

)
.

(71)
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Consider now that from the first of (61) for t ≥ 0 it is

w(t) = ˙̂x(t)− f(x̂(t), x̂(t−∆))− g(x̂(t), x̂(t−∆))u(t), (72)

and that (3.15) holds also for t ∈ [−(n− 1)∆, 0] thanks to the initialization (62). It
follows that for t ≥ 0 and i = 0, 1, . . . , n− 1 it is

wi∆(t) = ˙̂xi∆(t)− f
(
x̂i∆(t), x̂(i+1)∆(t)

)− g
(
x̂i∆(t), x̂(i+1)∆(t)

)
ui∆(t). (73)

Substitution of (3.16) in (71) gives back the observer equation (61). 2

Remark 3.2. Using the definition (49) of the function L̃(·, ·, ·) the observer (64)
can be written as

˙̂z(t) = Abẑ(t) +BbL̃
(
ẑ(t), X̂1,n(t), U0,n−1(t)

)
+K

(
y(t)− Cbẑ(t)

)

ẑ(0) = Φ(X̂0,n−1(0)
)
,

x̂(t) = Φ−1
(
ẑ(t), X̂1,n−1(t)

)
, t ≥ 0,

(74)

with the initial values chosen as in (62).

Remark 3.3. On the basis of expression (64) for the observer, it can be noted that
if for a given t̄ it is x̂(τ) = x(τ) for τ ∈ [t̄− (n− 1)∆, t̄], it follows that x̂(t) = x(t)
for all t > t̄. This result follows from the fact that coincidence of x and x̂ on the
interval τ ∈ [t̄− (n− 1)∆, t̄] implies that w(τ) = 0 and y(τ) = h(x̂(τ)) on the same
interval, so that for t ≥ t̄ the feedback terms in (61) are identically zero.

Now it is possible to give the main result of the paper, that is the convergence
theorem for the proposed observer (61).

Theorem 3.4. Consider system (1), (2) and assume the following assumptions:

H1) the system has observation delay relative degree equal to n (Hp0) and there
exists a positive uM such that |u(t)| ≤ uM ∀ t ≥ 0;

H2) the observability map is globally partially invertible;

H3) the observability map satisfies assumption Hp1;

H4) there exists a positive γeL such that

sup
V0,n−1∈S

‖L̃(z,X1,n,V0,n−1)− L̃(ẑ, X̂1,n,V0,n−1)‖ ≤ γeL

∥∥∥∥
z − ẑ

X1,n − X̂1,n

∥∥∥∥ , (75)

where S = [−uM , uM ]n ⊂ IRn;

H5) the observation error ‖x(t)− x̂(t)‖ is bounded in [−∆, (n− 1)∆].
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Then, there exists a gain vector K ∈ IRn to be put in the observer (61) such that

‖x(t)− x̂(t)‖ ≤ µ0e
−αt, (76)

for suitable positive µ0 and α.

P r o o f . Let λ be a n-ple of real eigenvalues, with λn < · · · < λ2 < λ1 < 0.
Let K(λ) be the gain vector that assigns such eigenvalues to matrix Ab −K(λ)Cb.
Consider the expression (48) of system (1) and the expression (74) of the observer.
For t ≥ (n − 1)∆, the dynamics of the error in z-coordinates ez = z − ẑ can be
written as

ėz = (Ab −K(λ)Cb)ez +Bb

(
L̃(z,X1,n, U0,n−1)− L̃(ẑ, X̂1,n, U0,n−1)

)
. (77)

As stated in the introductory section, the Vandermonde matrix V (λ) defined in (18)
diagonalizes Ab −K(λ)Cb. Let ξ(t) = V (λ)ez(t) and let Λ = diag{λ}, so that

ξ̇(t) = Λξ(t) + V (λ)Bb

(
L̃(z(t), X1,n(t), U0,n−1(t))− L̃(ẑ(t), X̂1,n(t), U0,n−1(t))

)
.

(78)
Note that assumption H4 implies that for t ≥ (n− 1)∆

‖L̃(z,X1,n, U0,n−1)− L̃(ẑ, X̂1,n, U0,n−1)‖ ≤ γeL
(
‖ez‖+

n∑

i=1

‖xi∆ − x̂i∆(τ)‖
)
, (79)

By integration of (77), taking also into account that ‖V (λ)Bb‖ =
√
n and that

‖ez‖ ≤ ‖V −1(λ)‖·‖ξ‖, it follows

‖ξ(t)‖ ≤ eλ1(t−t0)‖ξ(t0)‖

+
∫ t

t0
eλ1(t−τ)

√
nγeL

(
‖V −1(λ)‖·‖ξ(τ)‖+

n∑
i=1

‖xi∆(τ)− x̂i∆(τ)‖
)

dτ,

(80)
where t0 = (n − 1)∆. Rewriting (3.23) in terms of the variable e−λ1(t−t0)‖ξ(t)‖,
applying the Gronwall inequality and returning to ‖ξ(t)‖, yields

‖ξ(t)‖ ≤ e

(√
nγeL‖V −1(λ)‖+λ1

)
(t−t0)‖ξ(t0)‖

+
∫ t

t0
e

(√
nγeL‖V −1(λ)‖+λ1

)
(t−τ) · √nγeL

n∑
i=1

‖xi∆(τ)− x̂i∆(τ)‖dτ.
(81)

Being assumption Hp1 satisfied, and being

z(t) = Φ
(
x(t), X1,n−1(t)

)
,

ẑ(t) = Φ
(
x̂(t), X̂1,n−1(t)

)
,

(82)

it is, from (54),

‖x(t)− x̂(t)‖ ≤ γ0‖ez(t)‖+ γ1

n−1∑

i=1

‖xi∆(t)− x̂i∆(t)‖, (83)
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where γ0 = 1/γ̃0 and γ1 = γ̃1/γ̃0. Since it is ‖ez(t)‖ ≤ ‖V −1(λ)‖ · ‖ξ(t)‖, and
‖ξ(t0)‖ ≤ ‖V (λ)‖·‖ez(t0)‖, it follows

‖x(t)− x̂(t)‖ ≤ γ0‖V −1(λ)‖e
(√

nγeL‖V −1(λ)‖+λ1

)
(t−t0)‖V (λ)‖·‖ez(t0)‖

+γ0‖V −1(λ)‖ ∫ t

t0
e

(√
nγeL‖V −1(λ)‖+λ1

)
(t−τ) · √nγeL

n∑
i=1

‖xi∆(τ)− x̂i∆(τ)‖dτ

+γ1

n−1∑
i=1

‖xi∆(t)− x̂i∆(t)‖.
(84)

Note that, setting s(t) = ‖x(t) − x̂(t)‖, inequality (84) has the same structure of
inequality (24) considered in Lemmas from 2.6 to 2.8, with

β =
√
nγeL‖V −1(λ)‖+ λ1,

c0 = γ0‖V −1(λ)‖·‖V (λ)‖·‖ez(t0)‖,
c1 = γ0‖V −1(λ)‖√nγeL,
c2 = γ1.

(85)

Moreover, by assumption Hp1, it is c2(n− 1) < 1. It follows that a sufficiently large
positive constant β can be chosen such that

c1
β

+ c2(n− 1) < 1. (86)

By Lemma 2.5 it is always possible to choose a set of eigenvalues λ such to ensure
√
nγeL‖V −1(λ)‖+ λ1 = β. (87)

Then, all the assumptions of Lemma 2.8 are satisfied by inequality (84), with t0 =
(n− 1)∆. It follows that there exist positive µ0 and α such to satisfy (76), and this
proves the theorem. 2

Remark 3.5. It must be stressed that only assumption H2 of Theorem 3.4 is nec-
essary for the observer implementation. The other conditions are only sufficient to
ensure exponential convergence of the observation error to zero. Indeed, in computer
simulation, the observer performed well also on many systems that did not satisfy
such conditions.

Remark 3.6. An interesting class of systems that satisfy hypotheses of Theo-
rem 3.4 is the one described by the following nth order differential equation

x(n)(t) = ϕ(x(t), x(t−∆), x(1)(t), x(1)(t−∆), . . . , x(n−1)(t), x(n−1)(t−∆))

+ψ(x(t), x(t−∆), x(1)(t), x(1)(t−∆), . . . , x(n−1)(t), x(n−1)(t−∆))u(t),

y(t) = x(t),
(88)

where x(i)(t) denotes the ith derivative of the scalar function x(t), for any given C∞

Lipschitz functions ϕ and ψ.
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4. EXAMPLE

In this section let ixj∆(t), i = 1, 2, denote the ith component of a vector x ∈ IR2

delayed of j∆, that is ixj∆(t) = ix(t− j∆), j = 0, 1, 2, . . . .
Consider the following nonlinear delay system:

1ẋ(t) = −3 2x(t) + 0.5 1x∆(t) 2x∆(t),
2ẋ(t) = −( 1x∆)2(t) 2x∆(t) + u(t),

y(t) = 1x(t).

(89)

The observation delay relative degree can be computed exploiting Definition 2.1,
obtaining r = n = 2. Computations give

H(X0,2) = 1x,

F (X0,2) =




−3 2x+ 0.5 1x∆
2x∆

−( 1x∆)2 2x∆

−3 2x∆ + 0.5 1x2∆
2x2∆

−( 1x2∆)2 2x2∆


 G(X0,2) =




0 0
1 0
0 0
0 1


 ,

LFH(X0,2) =
[
1 0 0 0

]
F (X0,2) = −3 2x+ 0.5 1x∆

2x∆

L2
FH(X0,2) =

[
0 −3 0.5 2x∆ 0.5 1x∆

]
F (X0,2)

= 3( 1x∆)2 2x∆ + 0.5 2x∆(−3 2x∆ + 0.5 1x2∆
2x2∆)

+0.5 1x∆(−( 1x2∆)2 2x2∆)

LGH(X0,2) =
[
1 0 0 0

]
G(X0,2) =

[
0 0

]

LGLFH(X0,2) =
[
0 −3 0.5 2x∆ 0.5 1x∆

]
G(X0,2) =

[−3 0.5 1x∆

]
.

The map Φ is as follows

z = Φ(x, x∆) =
[

1x
−3 2x+ 0.5 1x∆

2x∆

]
,

and

Q−1
0 (x, x∆) =

[
1 0
0 − 1

3

]
.

In this case, the observer has the following equations:

1 ˙̂x = −3 2x̂+ 0.5 1x̂∆
2x̂∆ + 1w,

2 ˙̂x = − 1x̂2
∆

2x̂∆ + u+ 2w,

w =
[

1w
2w

]
=

[
1 0
0 − 1

3

]
K(y − 1x̂)−

[
1 0
0 − 1

3

] [
0 0

0.5 2x̂∆ 0.5 1x̂∆

]
w∆,

(90)
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where, as usual, w∆(t) = w(t − ∆). In the simulations here reported it has been
taken ∆ = 0.1. The initial state of the system has been chosen constant over the
interval[−∆, 0]

x(τ) =
[
x̄
x̄

]
, τ ∈ [−0.1, 0]. (91)

Two simulations are reported here, one with x̄ = 1 and one with x̄ = −1. In both
cases the observer has been initialized with

x̂(τ) = 0, w(τ) = 0, τ ∈ [−0.1, 0]. (92)

The vector K has been chosen such to assign eigenvalues λ = (−1,−2) for the
matrix A−KC in (17). The input applied is u(t) = sin 4t. In Figures 1–2 the two
components of the true and estimated state are plotted, in the interval [−0.1, 5], in
the case of x̄ = 1. Figures 3–4 report simulation results for x̄ = −1.

Many simulations on different systems have been carried out, and in most cases
they showed good performance, also when hypotheses of Theorem 3.4 were not
satisfied. The observer has been tested successfully also with respect to robustness
to disturbance on output measures.

5. CONCLUSIONS

An observer for a class of nonlinear delay systems has been proposed in this paper.
The observer is very easy to implement, and sufficient conditions for the convergence
of the estimated state to the true one are provided. Global and delay independent
results are presented in this paper. Computer simulations have shown the good
performance of the proposed observer.

Fig. 1. True and observed variable 1x in the case of x̄ = 1.



476 A. GERMANI, C. MANES AND P. PEPE

Fig. 2. True and observed variable 2x in the case of x̄ = 1.

Fig. 3. True and observed variable 1x in the case of x̄ = −1.

Fig. 4. True and observed variable 2x in the case of x̄ = −1.
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