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TESTING LINEARITY AND MODELLING
NONLINEAR TIME SERIES

Timo Teräsvirta

This paper discusses some of the recent developments in testing linearity of a time

series against the alternative that the series has been generated by a nonlinear process.

The focus is on testing linearity against parametric alternatives. Special attention is given

to the situations in which the parametric nonlinear model only is identified under the

alternative but not under the null hypothesis of linearity. The use of some of the linearity

tests in the modelling of nonlinear series is considered and illustrated with an example.

1. INTRODUCTION

Modelling possibly nonlinear time series is not an easy task. Once a model builder
leaves the linear world behind the choice in principle is immense. In some disciplines
such as physics the model choice may not be a major problem because much of the
theory is nonlinear, and as a rule this theory is sufficient for specifying the structure
of the model. In some other fields such as economics the theory often leaves the
functional form of the model open. In such situations linear approximations to the
unknown functional form have been very popular when economic relationships have
been estimated from data. Quite a few such approximations have turned out to be
satisfactory representations of the underlying economic phenomenon. Before trying
nonlinear approximations it is therefore advisable to find out whether a linear model
offers an adequate representation of the data or not. Only if the latter is true should
nonlinear models be considered. This argument makes linearity testing an integral
part of nonlinear modelling of time series. In this paper the emphasis lies on tests
against parametric nonlinear alternatives which will also be called parametric tests
for short. This area has developed rather rapidly since the contribution of Pagan
[20]. His paper was perhaps the first one to stress the importance of the score or
Lagrange multiplier approach in linearity testing.

Tests against a nonspecified alternative have actually been more popular in the
applications than those against a completely specified one. In economics this has
been partly because testing linearity has been an aim as such, and rejection of this
hypothesis has often not been followed up by any model building exercise. However,
rejecting the null hypothesis against an unspecified alternative is generally not very
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helpful if the ultimate aim is to build a workable model for the phenomenon in
question. In this paper it is shown that some of the parametric tests can be very
useful in nonlinear time series model building. Other accounts describing these ideas
include Granger and Teräsvirta [12], Teräsvirta [26], and Teräsvirta, Tjøstheim, and
Granger [27]. The last-mentioned paper also considers nonparametric testing and
modelling techniques which for reasons of space will be omitted here.

The contents of the paper are as follows. Section 2 is devoted to linearity testing.
Section 3 shows how some of the ideas of the previous section can be applied to test-
ing the parameter constancy in linear models. Section 4 briefly mentions some other
approaches to linearity testing. The use of parametric linearity tests in nonlinear
model building are discussed in Section 5, and Section 6 contains an application to
Wolf’s sunspot number series. Section 7 concludes.

2. LINEARITY TESTING

Consider the following nonlinear model

yt = f(wt, νt, θ1) + g(wt, νt, θ2) ut (1)

where g(wt, νt, θ2) ≥ 0, wt = (1, yt−1, . . . , yt−p)′, νt = (ut−1, . . . , ut−q)′, and ut ∼
nid(0, σ2). Following Granger and Teräsvirta [12, p. 8], if f can be expressed as a
linear function of its variables

f(wt, νt, θ1) = θ′11wt + θ′12νt (2)

then (2.1) is called linear in mean. If, in addition g ≡ constant, then (2.1) has a
complete linear representation. Otherwise (2.1) is nonlinear. Linearity testing thus
involves testing both the hypothesis that the conditional mean of yt is linear and the
constancy of g within (2.1). However, the discussion will concern a more restricted
case where the model can be written as

yt = β′wt + f1(wt, νt, θ) + ut (3)

where f1 is at least twice continuously differentiable in a neighbourhood of θ = 0
and f1(wt, νt, 0) = 0. Furthermore, the errors are assumed homoskedastic, i. e., g
is a constant. The latter assumption is made for the case of exposition, but it is
also fairly common practice to assume homoskedastic errors when testing linearity
in mean. Making the tests robust for the situation where this assumption does not
hold is discussed in Granger and Teräsvirta [12, Chapter 6]. The structure of (2.3)
implies that linearity in mean is a nested alternative within the nonlinear model,
which simplifies the testing problem. The linearity hypothesis is H0 : θ = 0.

Because (2.3) is linear under the null hypothesis it is natural to apply the score
or Lagrange Multiplier principle to test the null hypothesis. If this is done the
estimation of (2.3) under the alternative is avoided, which is the whole point. See
Engle [9] and Godfrey [11] for more discussion. In this standard situation, the test
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statistic has the form

LM = (1/σ̂2)
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(4)

where ût = yt− β̂′wt (β̂ is an OLS estimator of β under H0), σ̂2 = (1/T )
T∑

t=1
û2

t , and

ẑt = ∂
∂θ f1(wt, νt, 0).

Under the null hypothesis (2.4) has an asymptotic χ2 distribution with k degrees
of freedom where k is the dimension of θ. The same result is obtained in the absence
of normality if the errors are iid and the moments implied by (2.4) exist; see for
instance White [33, Chapter 4] or Luukkonen et al. [18].

The test may also be carried out as follows.

(i) Estimate (2.3) under the null hypothesis using ordinary least squares, estimate

the residuals ût, and compute the sum of squared residuals SSR0 =
T∑

t=1
û2

t .

(ii) Regress ût on wt and zt and compute the sum of squared residuals SSR1.

(iii) Compute the test statistic

F (k, T − k − p− 1) =
(SSR0 − SSR1)/k

SSR1/(T − k − p− 1)
.

The F -version of the test is recommended in the small samples whenever k is not
small, because its size tends to be closer to the nominal size than that of the χ2 test
while the power remains good. See e. g. Harvey [14, pp. 174–175]. As an example
consider a bilinear model in which

f1(wt, νt, θ) = w′tΘνt, θ = vec (Θ).

A total of pq − k elements of θ are assumed zero a priori. Stage (ii) of the test
simply consists of regressing ut on wt and the yt−i ut−j terms corresponding to the
k nonzero elements of θ. This is the linearity test against bilinearity discussed in
Weiss [32] and Saikkonen and Luukkonen [24].

The above set-up is simple, but unfortunately it does not cover all the interesting
nonlinear time series models appearing in the literature. Consider the following
model

yt = β′wt + f1(wt; θ1, θ2) + ut (5)

where f1(wt; 0, θ2) = 0. The null hypothesis of linearity is H0 : θ1 = 0 whereas the
alternative is H1 : θ1 6= 0. The problem is that (2.5) is only identified or estimable
under H1 but not under H0. An interesting special case of (2.5) is

yt = β′wt + (θ′21wt) F (wt; θ1, θ22) + ut (6)
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where θ2 = (θ′21, θ
′
22)

′. If θ21 = (θ210, . . . , θ21p)′ with θ210 = 0 and

F (wt; θ1, θ22) = 1− exp
{−θ1 y2

t−1

}
, θ1 > 0 (7)

with θ22 = 0, (2.6) becomes the exponential autoregressive (EAR) model discussed
for instance in Haggan and Ozaki [13]. Another example is obtained by setting

F (wt; θ1, θ22) = (1 + exp{−θ1(yt−d − θ22})−1 − 1/2, θ1 > 0 (8)

where F + 1/2 is the so-called transition function of the logistic smooth transition
autoregressive (LSTAR) model; for discussion see Chan and Tong [5], Luukkonen et
al. [19], Granger and Teräsvirta [12], and Teräsvirta [26]. Writing

yt = β′wt + θ′1wt F (yt−d; θ2) + ut (9)

where F (yt−d; θ2) = 0 for yt−d ≤ θ2 and F (yt−d; θ2) = 1 for yt−d > θ2, it is seen
that the threshold autoregressive (TAR) model of Tong [29, 30] with two regimes
and threshold variable yt−d fits into this framework as well.

Davies [6, 7] considered the above testing problem in a general setting. His sol-
ution was the following. Fix the nuisance parameter θ2 and derive the test, call the
test statistic LM(θ2). Use LM∗ = supθ2

LM(θ2) as the (conservative) test statistic.
Because the analytic null distribution of LM∗ is usually not available obtain the
critical value of LM∗ at a given significance level through a suitable approximation.

In this paper I discuss another solution which is feasible for models of type (2.6)
if the transition function F (wt; θ1, θ22) is sufficiently regular. It is based on approx-
imating F by a suitable Taylor expansion. As an example, consider the EAR model
(2.6) with (2.7) and assume that under the linearity hypothesis (2.6) is stationary.
Write the transition function (2.7) using the first-order Taylor expansion as follows

F (wt; θ1, 0) = F ′(wt; 0, 0) θ1 + R(wt; θ1, 0) (10)

where F ′(wt; 0, 0) = y2
t−1. Substituting the right-hand side of (2.10) for F in (2.6)

and reparameterizing yields

yt = β̃′wt + δ′w̃ty
2
t−1 + u∗t (11)

where u∗t = ut under the linearity hypothesis H0 : θ1 = 0 and w̃t = (yt−1, . . . , yt−p)′.
Furthermore, δ = θ1δ1 so that linearity may be tested within (2.11), the null hy-
pothesis being H ′

0 : δ = 0. This leads to a standard test, and again the F -version of
the test is recommended instead of the χ2(p) test if the time series is not long. If
the errors are iid but not normal, the moment assumption E u6

t < ∞ is required for
the asymptotic theory to apply.

If the nonlinear alternative (2.6) is a smooth transition autoregressive model with
transition function (2.8), the corresponding approximation of (2.6) is

yt = β̃′wt + δ′w̃tyt−d + u∗t (12)

where δ = θ1δ1. The linearity hypothesis is H ′
0 : δ = 0 in (2.12).
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This theory does not work if the nonlinear model is a threshold autoregressive
model, because in that case F is a step function of yt−d, and this introduces a
discontinuity in the likelihood function. Note, however, that the two-regime TAR
model is a special case of the LSTAR model (2.6) with (2.8) and is obtained by
letting θ1 →∞ in (2.8). The test based on (2.12) is applicable in this limiting case
as well. The small-sample power simulations is Petruccelli [21] showed that it has
reasonable power when the true model is a TAR.

3. TESTING PARAMETER CONSTANCY

The aforementioned theory is also applicable in multivariate cases; for discussion
see Granger and Teräsvirta [12]. An important special case is the one in which the
transition function of (2.6) has time as transition variable. For instance, the logistic
transition function has the form

F (t; θ1, θ22) = (1 + exp{−θ1(t− θ22)})−1
, θ1 > 0. (13)

The corresponding auxiliary regression for testing H0 : θ1 = 0 against θ1 > 0
becomes

yt = β′wt + δ′1wtt + u∗t . (14)

Using the asymptotic theory in Lai and Wei [16] it can be shown that the asymp-
totic null distribution of the usual test statistic for testing H ′

0 : δ1 = 0 in (3.2) is
chi-squared with p + 1 degrees of freedom. This requires iid errors, the stationarity
of (3.2) under H ′

0 and the existence of the second moments. For more discussion see
Lin and Teräsvirta [17].

Combining (2.6) with (3.1) and testing linearity is useful because it amounts
to constructing a parametric test against structural change in a linear model; see
Antoch and Hušková [1] for a review of this change-point problem. The approach
allows the parameter change to be continuous, which often is a feasible assumption
in areas such as econometrics. If the null is rejected an additional advantage is that
the alternative may be estimated. This gives the investigator an idea of where in the
sample the parameter constancy breaks down and whether the structural change is
continuous or rather resembles a single break. By a suitable choice of the transition
function different types of structural change may be postulated and detected. The
logistic function (3.1) is just one example and more general shapes are possible.
A detailed discussion and examples can be found in Lin and Teräsvirta [17].

4. TESTS WITHOUT A SPECIFIC NONLINEAR ALTERNATIVE

As the focus here is on parametric linearity tests many important developments in
testing linearity are neglected. Tests based on procedures for detecting structural
change such as the CUSUM test of Brown, Durbin, and Evans [4] may be applied to
testing linearity against threshold autoregression if the observations are rearranged
according to the values of the transition variable. There also exists tests without a
specific nonlinear alternative such as tests based on the bispectrum (see Priestley
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[22], for a review) or the Brock–Dechert–Scheinkman (BDS) test of independence
based on the correlation dimension. The latter is usually applied to the residuals of a
linear model, and a rejection of the iid hypothesis is interpreted as evidence in favour
of undetected nonlinear structure in the data. For discussion and examples see for
instance Brock, Hsieh, and LeBaron [3]. Another important class of tests without
a specific alternative are nonparametric linearity tests. The idea is to compare the
best linear and nonparametric predictor (both based on the same information set)
of a variable and reject linearity if the distance between them is sufficiently large. In
the simulation experiments of Hjellvik and Tjøstheim [15] who recently developed
tests based on this idea such tests behaved very well. For recent surveys discussing
nonparametric tests of independence and linearity see Tjøstheim [28] and Teräsvirta,
Tjøstheim, and Granger [27].

It should be stressed, however, that some of the linearity tests presented as tests
without a specific alternative can also be interpreted as Lagrange multiplier tests
against parametric alternatives. The Regression Specification Error Test or RESET
(Ramsey, [23]) and the linearity test of Tsay [31] are examples of such tests. The LM
interpretation helps one to find out when the test is powerful and, conversely, against
which alternatives it cannot be expected to perform well. For more discussion, see
Granger and Teräsvirta [12, Section 6.3].

5. USE OF LINEARITY TESTS IN MODEL BUILDING

In this section I shall describe the use of parametric linearity tests in nonlinear time
series model building. For successful use of data-based modelling techniques it is
necessary to restrict the class of nonlinear models under consideration. Here it is
assumed that if the model generating the data is nonlinear it can only be a STAR
model:

yt = ϕ′wt + (θ′wt) F (yt−d; γ, c) + ut (15)

where wt = (1, yt−1, . . . , yt−p)′, ϕ = (ϕ0, ϕ1, . . . , ϕp)′, and θ = (θ0, θ1, . . . , θp)′. F is
a bounded continuous function of yt−d. More specifically, it is assumed that (5.1) is
either a logistic STAR (LSTAR) model (see Section 2) with

F (yt−d; γ, c) = (1 + exp{−γ(yt−d − c)})−1
, γ > 0 (16)

or an exponential STAR (ESTAR) model

F (yt−d; γ, c) = 1− exp
{−γ(yt−d − c)2

}
, γ > 0. (17)

The ESTAR model is a generalization of the EAR model discussed in Section 2.
Write (5.1) as

yt = (ϕ + θF )′ wt + ut. (18)

The model can be interpreted as an autoregressive model whose local dynamics
depend on yt−d. The transition function (5.2) is a monotonically increasing function
of yt−d, so that the “parameter vector” of (5.4) changes from ϕ to ϕ + θ with this
transition variable. For the ESTAR model the change is symmetric about c. The
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parameter vector equals ϕ at yt−d − c and approaches ϕ + θ for both low and high
values of yt−d. The LSTAR and ESTAR models taken together are thus capable
of characterizing rather different types of nonlinear behaviour. Note that in most
applications the delay parameter d is unknown and has to be determined from the
data.

In the following I shall present a data-based modelling strategy for building STAR
models. A more detailed exposition can be found in Teräsvirta [26]. It consists of
specification, estimation, and evaluation of a STAR model and thus is similar in
character to the linear ARMA model building approach in Box and Jenkins [2]. I
shall begin with the specification. It consists of three stages:

(i) Specify a linear autoregressive model for {yt}.
(ii) Test linearity for different values of d and if rejected determine d using the test

results.
(iii) Choose between LSTAR and ESTAR.

Stage (i) forms the starting-point for testing linearity and is necessary because the
lag length p is generally unknown. It can be carried out by applying a suitable order
selection criterion such as AIC. The second stage can be performed using another
auxiliary regression

yt = β′wt + δ′1w̃tyt−d + δ′2w̃ty
2
t−d + δ′3w̃ty

3
t−d + ut (19)

where the linearity hypothesis equals H ′
0 : δ1 = δ2 = δ3 = 0. Testing this hypothesis

guarantees power against both LSTAR and ESTAR simultaneously. The motivation
for including the fourth-order terms δ′3w̃ty

3
t−d is given in Teräsvirta [26]. The test

is carried out for different values of d ∈ D = {1, . . . , d0}. If the null is rejected, the
d corresponding to the smallest p-value among the tests is selected. The reason for
this is that if there is a correct d among the alternatives considered, the power of the
test is maximized against it. The test may have power against other alternatives as
well but is on the average less powerful against them. Proving the consistency of this
selection procedure is difficult because the true alternative is nonlinear, but simu-
lations in Teräsvirta [26] support the notion. They also show that the specification
procedure as a whole works reasonably well.

The third stage is based on (5.5) and the knowledge of δj , j = 1, 2, 3, as functions
of the parameters of the original STAR model. These vectors are different functions
of ϕ, θ, γ and c in the LSTAR case compared to the ESTAR model, and this fact can
be used in selecting between the two families. The choice is based on the outcome
of the following test sequence of nested hypotheses:

H03 : δ3 = 0
H02 : δ2 = 0|δ3 = 0
H01 : δ1 = 0|δ2 = δ3 = 0.

The decision rule is as follows. If the p-value for rejecting H02 is less than that of
the two other tests, choose an ESTAR model. Otherwise choose an LSTAR model.
The foundation of this decision rule is discussed in Teräsvirta [26], where it is also
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shown that the procedure works well already in small samples. Thus the auxiliary
regression (5.5) which is a consequence of the Taylor expansion approach to linearity
testing when the model is only identified under the alternative is also a useful tool
in nonlinear STAR model specification.

The same approach is also applicable at the evaluation stage after a STAR (either
LSTAR or ESTAR) model has been estimated. An appropriate question to ask is
whether the model has successfully captured all the nonlinear features in the data
or not. The latter case calls for respecification of the model. A parametric test of
no remaining nonlinearity is obtained as follows. Define an additive STAR model

yt = ϕ′wt + (θ′1wt)F1(yt−d, γ1, c1) + (θ′2wt) F2(yt−d2 , γ2, c2) + ut (20)

where γ1, γ2 > 0 and F1 and F2 are either of LSTAR or ESTAR type. Assume that
a single STAR model has been consistently estimated. To test the adequacy of the
STAR model approximate F2 with a third-order Taylor expansion as above to cover
both the LSTAR and ESTAR alternatives. The auxiliary regression for the test has
the form

ût = β′ẑt + δ′1w̃tyt−d2 + δ′2w̃ty
2
t−d2

+ δ′3w̃ty
3
t−d2

+ u∗t (21)

where z̃t = (∂ût/∂ϕ0, ∂ût/∂ϕ1, . . . , ∂ût/∂c1)
′, and ût is the residual consistently

estimated under the assumption that (5.6) is an ordinary STAR model, i. e., that
γ2 = 0. This null hypothesis is equivalent to H ′

0 : δ1 = δ2 = δ3 = 0 in (5.7). The
standard asymptotic theory applied when the null model is stationary and ergodic
and its parameters consistently estimated: the details are found in Eitrheim and
Teräsvirta [8]. The result is that the LM type statistic has an asymptotic χ2(3p)
distribution under H ′

0.

6. APPLICATION

In this section the above theory is applied to the well-known Wolf’s sunspot numbers,
1700 – 1979. At present there is no theory available for specifying the dynamics of
the process generating the sunspots. As a result, various nonlinear models have
been fitted to this series. Tong [30, Section 7.3] reviews these developments. I shall
consider the square-root transformed data as in Ghaddar and Tong [10]. Let yt

be the tth observation of the original series. Then the transformed observation is
xt = 2

(
(yt + 1)1/2 − 1

)
, i. e., the Box-Cox transformation of the original observation

plus one with the transformation parameter λ = 1/2. The transformed series is
graphed in Figure 1.

Fig. 1. Transformed Wolf’s sunspot numbers, 1700 – 1979.
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I shall characterize the dynamics of the series by a STAR model. The exposition
here follows Teräsvirta (1993). To specify a STAR model the first step is to find a
linear autoregressive model, and applying AIC yields an AR(9) model. Linearity is
tested next using (5.5) with p = 9 in wt. The results are in Table 1. It is seen that
the p-value is minimized for d = 2, and this value is selected as the delay. The test
sequence of the third stage is carried out for d̂ = 2, and by far the strongest rejection
is that of H01. This leads to the selection of an LSTAR model. The model is usually
reduced at the estimation stage by imposing exclusion restrictions and re-estimating
the parameters, and that has also been done in this example. The final estimated
model is

Table 1. Obtained p-valued of tests of linearity for the transformed sunspot series and of

no remaining nonlinearity in LSTAR model (6.1) for the transformed sunspot series.

Delay 1 2 3 4 5 6 7 8 9

(a) Linearity tests
Null hypothesis
H0 : δ1 =δ2 =δ3 =0 in (5.5) 0.059 2×10−5 6×10−4 0.015 0.059 0.016 0.0026 0.0042 0.030
H03 : δ3 =0 0.41
H02 : δ2 =0|δ3 =0 0.033
H01 : δ1 =0|δ2 =δ3 =0 3×10−6

(b) Tests of no remaining
nonlinearity

Null hypothesis
H0 : δ1δ2 =δ3 =0 in (5.7) 0.30 0.091 0.098 0.075 0.13 0.34 0.53 0.42 0.18
H03 : δ3 =0 0.42 0.33 0.29
H02 : δ2 =0|δ3 =0 0.040 0.041 0.068
H01 : δ1 =0|δ2 =δ3 =0 0.44 0.57 0.32

xt = 1.55 xt−1

(0.080)
− 0.82 xt−2

(0.15)
+ 0.27 xt−7

(0.040)

+( 2.58
(0.79)

− 0.69 xt−1

(0.11)
+0.82 xt−2

(0.15)
− 0.31 xt−3

(0.038)
− 0.27 xt−7

(0.040)
− 0.12 xt−8

(0.064)

+ 0.15 xt−9

(0.084)
+0.16 xt−11

(0.059)
)(1+ exp{−4.7

(2.2)
× 0.178(xt−2 − 7.8

(0.69)
)})−1+ ût

s =1.91,
T∑

t=1
û2

t /T = 3.47.

(22)

Restrictions ϕ2 = −θ2 and ϕ7 = −θ7 have been suggested by the data and
imposed. The figures below the parameter estimates are asymptotic standard devi-
ations based on the Hessian matrix, and s is the standard error of residuals. The
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inverse of the sample standard deviation of xt appearing in (6.1) (1/σ̂(x) = 0.178)
is a scale factor with the purpose of making γ scale independent.

The dynamic properties of the estimated model are best seen through the roots

of the characteristic polynomial q(z) = zp−
p∑

j=1

(ϕj + θjF ) zp−j at different values of

F . Two interesting values are F = 0 and F = 1, respectively, because they represent
the two extreme regimes. In turns out that for F = 1, the dominant as well as all the
other roots lie inside the unit circle indicating that the model is locally stationary for
moderate and high values of transition variable yt−2. In fact, its local dynamics are
close to those of the linear AR(9) model. On the other hand, for F = 0 there exists
a complex pair of explosive roots which describe the behaviour of the process at
the troughs and shortly thereafter. The number of sunspots after a trough seems to
increase at a faster rate than it decreased, see Figure 1, and the local nonstationarity
is there to characterize that phenomenon.

At the evaluation stage the estimated model is subjected to a number of tests; see
Teräsvirta [25]. As this paper is focusing on parametric linearity tests, the results
of the test of no remaining nonlinearity are of interest. They are found in Table 1.
It is seen that (6.1) has captured most of the nonlinearity. There may be some
ESTAR-type nonlinearity left as the p-values at delays 2, 3 and 4 are between 0.05
and 0.1, and each test sequence points at ESTAR. The p-values are not very small,
however, so that tentatively accepting (6.1) is not an unreasonable thing to do.

7. CONCLUSIONS

This paper illustrates the role of parametric linearity tests in nonlinear model build-
ing. They can be used not only for testing linearity against parametric nonlinear
alternatives but also as helpful tools in attempts of modelling the nonlinearity that
may be discovered in the data when these tests are applied. To do the latter, however,
the family of nonlinear models under consideration has to be rather restricted. Oth-
erwise the data-based specification techniques may easily fail or be inefficient. This
may be considered a drawback, but another advantage of the Lagrange-multiplier
type tests discussed here is that they usually work well already in short time se-
ries that are frequently encountered for instance in econometric applications. Tests
against nonspecified alternatives such as the BDS or bispectrum test may have power
against a wide range of alternatives, but the power tends to be less satisfactory in
short series.

(Received March 3, 1994.)
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[19] R. Luukkonen, P. Saikkonen and T. Teräsvirta: Testing linearity against smooth tran-
sition autoregressive models. Biometrika 75 (1988), 491–499.

[20] A. Pagan: Some simple tests for non-linear time series models. CORE Discussion
Paper No. 7812, 1978.

[21] J. Petruccelli: On tests for SETAR-type nonlinearity in time series. J. Forecast. 9
(1990), 25–36.

[22] M.B. Priestley: Non-linear and Non-stationary Time Series Analysis. Academic Press,
London – San Diego 1988.

[23] J. B. Ramsey: Tests for specification errors in classical linear least-squares regression
analysis. J. Roy. Statist. Soc. Ser. B 31 (1969), 350–371.

[24] P. Saikkonen and R. Luukkonen: Lagrange multiplier tests for testing non-linearities
in time series models. Scand. J. Statist. 15 (1988), 55–68.
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